Increasing the Efficacy of Treatment of Staphylococcus aureus–Candida albicans Mixed Infections with Myrtenol
Abstract
:1. Introduction
2. Results
2.1. Antibacterial and Antifungal Activity of Myrtenol
2.2. Myrtenol Potentiates Both Antibacterial and Antifungal Agents
2.3. Myrtenol Increases the Antimicrobial and Antifungal Activity of Benzalkonium Chloride against an S. aureus and C. albicans Mixed Culture
2.4. Myrtenol Damages the Cell Membrane of Bacterial and Fungal Cells
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.2. Strains and Cultivation Conditions
4.3. Determination of the Minimum Inhibitory (MIC) and the Minimum Bactericidal/Fungicidal Concentrations (MBC/MFC)
4.4. Determination of the Biofilm Prevention Concentration (BPC)
4.5. Analysis of the Antimicrobial Effect in the Combined Use of Antimicrobial Agents (Chequerboard Approach)
4.6. Evaluation of Viability of Bacterial and Fungal Cells
4.7. Membrane Potential Evaluation
4.8. Estimation of the Penetration Rate of Myrtenol into Bacterial and Fungal Cells
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482. [Google Scholar] [CrossRef]
- Rangelova, V.; Kevorkyan, A.; Krasteva, M. Nosocomial infections in the neonatal intensive care unit. Arch. Balk Med. Union 2020, 55, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Petrosillo, N.; Pagani, L.; Ippolito, G. Nosocomial infections in HIV-positive patients: An overview. Infection 2003, 31, 28–34. [Google Scholar] [PubMed]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Azzam Lopez, A.; Diez-Remesal, Y.; Martinez Castro, N.; Ruiz-Garbajosa, P.; Pestaña, D. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef]
- Abushaheen, M.A.; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo, C.; Vellappally, S. Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month 2020, 66, 100971. [Google Scholar] [CrossRef]
- Brogden, K.A.; Guthmiller, J.M.; Taylor, C.E. Human polymicrobial infections. Lancet 2005, 365, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.L.; Connell, J.L.; Stacy, A.; Turner, K.H.; Whiteley, M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 2014, 52, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Little, W.; Black, C.; Smith, A.C. Clinical implications of polymicrobial synergism effects on antimicrobial susceptibility. Pathogens 2021, 10, 144. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Gomes, F.; Rodrigues, C.F. Candida spp./bacteria mixed biofilms. J. Fungi 2019, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Carolus, H.; Van Dyck, K.; Van Dijck, P. Candida albicans and Staphylococcus species: A threatening twosome. Front. Microbiol. 2019, 10, 2162. [Google Scholar] [CrossRef]
- Harriott, M.M.; Noverr, M.C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrob. Agents Chemother. 2009, 53, 3914–3922. [Google Scholar] [CrossRef] [Green Version]
- Harriott, M.M.; Noverr, M.C. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob. Agents Chemother. 2010, 54, 3746–3755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.-S.; El Nahhas, N.; Mabrok, M.A. Methicillin-Resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect. Drug Resist. 2020, 13, 3255. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482. [Google Scholar] [CrossRef]
- Costa-de-Oliveira, S.; Rodrigues, A.G. Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Prasad, R.; Nair, R.; Banerjee, A. Emerging mechanisms of drug resistance in Candida albicans. In Yeasts in Biotechnology and Human Health; Springer: Berlin/Heidelberg, Germany, 2019; pp. 135–153. [Google Scholar]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Wu, H.; Moser, C.; Wang, H.-Z.; Høiby, N.; Song, Z.-J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Pereira, R.; dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida albicans: Formation, regulation and resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kayumov, A.R.; Sharafutdinov, I.S.; Trizna, E.Y.; Bogachev, M.I. Antistaphylococcal activity of 2 (5H)-furanone derivatives. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–89. [Google Scholar]
- Sharafutdinov, I.S.; Ozhegov, G.D.; Sabirova, A.E.; Novikova, V.V.; Lisovskaya, S.A.; Khabibrakhmanova, A.M.; Kurbangalieva, A.R.; Bogachev, M.I.; Kayumov, A.R. Increasing susceptibility of drug-resistant Candida albicans to fluconazole and terbinafine by 2 (5 H)-furanone derivative. Molecules 2020, 25, 642. [Google Scholar] [CrossRef] [Green Version]
- Baidamshina, D.R.; Trizna, E.Y.; Holyavka, M.G.; Bogachev, M.I.; Artyukhov, V.G.; Akhatova, F.S.; Rozhina, E.V.; Fakhrullin, R.F.; Kayumov, A.R. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci. Rep. 2017, 7, 46068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baidamshina, D.R.; Koroleva, V.A.; Olshannikova, S.S.; Trizna, E.Y.; Bogachev, M.I.; Artyukhov, V.G.; Holyavka, M.G.; Kayumov, A.R. Biochemical properties and anti-biofilm activity of chitosan-immobilized papain. Mar. Drugs 2021, 19, 197. [Google Scholar] [CrossRef]
- Sudarikov, D.V.; Gyrdymova, Y.V.; Borisov, A.V.; Lukiyanova, J.M.; Rumyantcev, R.V.; Shevchenko, O.G.; Baidamshina, D.R.; Zakarova, N.D.; Kayumov, A.R.; Sinegubova, E.O. Synthesis and Biological Activity of Unsymmetrical Monoterpenylhetaryl Disulfides. Molecules 2022, 27, 5101. [Google Scholar] [CrossRef] [PubMed]
- Szczepanski, S.; Lipski, A. Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 2014, 36, 224–229. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. Chem. Biodivers. 2019, 16, e1900434. [Google Scholar] [CrossRef]
- Mohammed, A.E.; Abdul-Hameed, Z.H.; Alotaibi, M.O.; Bawakid, N.O.; Sobahi, T.R.; Abdel-Lateff, A.; Alarif, W.M. Chemical diversity and bioactivities of monoterpene indole alkaloids (MIAs) from six Apocynaceae genera. Molecules 2021, 26, 488. [Google Scholar] [CrossRef]
- Soares-Castro, P.; Soares, F.; Santos, P.M. Current advances in the bacterial toolbox for the biotechnological production of monoterpene-based aroma compounds. Molecules 2020, 26, 91. [Google Scholar] [CrossRef]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives—Recent development in biological and medical applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef]
- Elbe, H.; Yigitturk, G.; Cavusoglu, T.; Uyanikgil, Y.; Ozturk, F. Apoptotic effects of thymol, a novel monoterpene phenol, on different types of cancer. Bratisl. Lek. Listy 2020, 121, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Kifer, D.; Mužinić, V.; Klarić, M.Š. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1, 8-cineole against Staphylococcus aureus planktonic and biofilm growth. J. Antibiot. 2016, 69, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Zacchino, S.A.; Butassi, E.; Cordisco, E.; Svetaz, L.A. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine 2017, 37, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Nikitina, L.E.; Lisovskaya, S.A.; Startseva, V.A.; Frolova, L.L.; Kutchin, A.V.; Shevchenko, O.G.; Ostolopovskaya, O.V.; Pavelyev, R.S.; Khelkhal, M.A.; Gilfanov, I.R. Biological Activity of Bicyclic Monoterpene Alcohols. Bionanoscience 2021, 11, 970–976. [Google Scholar] [CrossRef]
- Selvaraj, A.; Valliammai, A.; Sivasankar, C.; Suba, M.; Sakthivel, G.; Pandian, S.K. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci. Rep. 2020, 10, 21975. [Google Scholar] [CrossRef]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Barbosa-Filho, J.; Lima, E. Antibacterial and antibiofilm activity of myrtenol against Staphylococcus aureus. Pharmaceuticals 2020, 13, 133. [Google Scholar] [CrossRef]
- Maione, A.; La Pietra, A.; de Alteriis, E.; Mileo, A.; De Falco, M.; Guida, M.; Galdiero, E. Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida auris and Klebsiella pneumoniae. Microorganisms 2022, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, B.B.; Neto, H.D.; da Silva-Rocha, W.P.; de Oliveira Lima, E.; Barbosa Filho, J.M.; de Castro, R.D.; Sampaio, F.C.; Guerra, F.Q.S. Inhibitory Effect of (−)-myrtenol alone and in combination with antifungal agents on Candida spp. Res. Soc. Dev. 2021, 10, e35101522434. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guseva, G.B.; Antina, E.V.; Berezin, M.B.; Pavelyev, R.S.; Kayumov, A.R.; Ostolopovskaya, O.V.; Gilfanov, I.R.; Frolova, L.L.; Kutchin, A.V.; Akhverdiev, R.F. Design, spectral characteristics, and possibilities for practical application of BODIPY FL-labeled monoterpenoid. ACS Appl. Bio Mater. 2021, 4, 6227–6235. [Google Scholar] [CrossRef]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgio, J.F.; Rasdan, A.S.; Sonbol, B.; Alhamid, G.; Almandil, N.B.; AbdulAzeez, S. Emerging Status of Multidrug-Resistant Bacteria and Fungi in the Arabian Peninsula. Biology 2021, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Kaye, D. Multidrug-resistant pathogens: Mechanisms of resistance and epidemiology. Curr. Infect. Dis. Rep. 2000, 2, 391–398. [Google Scholar] [CrossRef]
- Gulshan, K.; Moye-Rowley, W.S. Multidrug resistance in fungi. Eukaryot. Cell 2007, 6, 1933–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Na, S.W.; Alodaini, H.A.; Al-Dosary, M.A.; Nandhakumari, P.; Dyona, L. Prevalence of multidrug-resistant bacteria associated with polymicrobial infections. J. Infect. Public Health 2021, 14, 1864–1869. [Google Scholar] [CrossRef]
- Orazi, G.; O’Toole, G.A. “It takes a village”: Mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms. J. Bacteriol. 2019, 202, e00530-19. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Gupta, P. Polymicrobial interaction in biofilm: Mechanistic insights. Pathog. Dis. 2022, 80, ftac010. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Mah, F.S.; Kowalski, R.P.; Yates, K.A.; Gordon, Y.J. Benzalkonium chloride enhances the antibacterial efficacy of gatifloxacin in an experimental rabbit model of intrastromal keratitis. J. Ocul. Pharmacol. Ther. 2008, 24, 380–384. [Google Scholar] [CrossRef]
- Shadman, S.A.; Sadab, I.H.; Noor, M.S.; Khan, M.S. Development of a benzalkonium chloride based antibacterial paper for health and food applications. ChemEngineering 2021, 5, 1. [Google Scholar] [CrossRef]
- Richards, R.M.E.; Mizrahi, L.M. Differences in antibacterial activity of benzalkonium chloride. J. Pharm. Sci. 1978, 67, 380–383. [Google Scholar] [CrossRef]
- Todd, O.A.; Peters, B.M. Candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions: Lessons beyond koch’s postulates. J. Fungi 2019, 5, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, E.F.; Tsui, C.; Kucharíková, S.; Andes, D.; Van Dijck, P.; Jabra-Rizk, M.A. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio 2016, 7, e01365-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagkopoulos, I. Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Appl. Environ. Microbiol. 2019, 85, e00377-19. [Google Scholar]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A., Jr.; Buschmann, J.; Dagli, M.L.; Date, M.; Dekant, W.; Deodhar, C. RIFM fragrance ingredient safety assessment, myrtenol, CAS Registry Number 515-00-4. Food Chem. Toxicol. 2019, 130, 110602. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.S.; Neto, B.P.S.; Lopes, E.M.; Cunha, F.V.M.; Araújo, A.R.; Wanderley, C.W.S.; Wong, D.V.T.; Júnior, R.C.P.L.; Ribeiro, R.A.; Sousa, D.P. Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chem. Biol. Interact. 2017, 273, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Tan, Z.; Cai, J.; Wang, Z.; Tian, Y. Myrtenol improves brain damage and promotes angiogenesis in rats with cerebral infarction by activating the ERK1/2 signalling pathway. Pharm. Biol. 2021, 59, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, A.; Jayasree, T.; Valliammai, A.; Pandian, S.K. Myrtenol attenuates MRSA biofilm and virulence by suppressing sarA expression dynamism. Front. Microbiol. 2019, 10, 2027. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.P.; McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance material review on myrtenol. Food Chem. Toxicol. 2008, 46, S237–S240. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.-K.; Moo, C.-L.; Song, A.A.-L.; Chong, C.-M.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.E.; Lai, K.-S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Noriega, P. Terpenes in Essential Oils: Bioactivity and Applications. In Terpenes and Terpenoids: Recent Advances; Books on Demand: Norderstedt, Germany, 2020. [Google Scholar]
- Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Kiesgen de Richter, R.; Bonato, M.; Follet, M.; Kamenka, J.M. The (+)-and (−)-[2-(1, 3-dithianyl)] myrtanylborane. Solid and stable monoalkylboranes for asymmetric hydroboration. J. Org. Chem. 1990, 55, 2855–2860. [Google Scholar] [CrossRef]
- Kayumov, A.R.; Khakimullina, E.N.; Sharafutdinov, I.S.; Trizna, E.Y.; Latypova, L.Z.; Thi Lien, H.; Margulis, A.B.; Bogachev, M.I.; Kurbangalieva, A.R. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. J. Antibiot. 2015, 68, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, R.; Cantón, R.; Brown, D.F.J.; Giske, C.G.; Heisig, P.; MacGowan, A.P.; Mouton, J.W.; Nordmann, P.; Rodloff, A.C.; Rossolini, G.M. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testing, E.C. on A.S. European committee for antimicrobial susceptibility testing of the european society of clinical, M. & infectious, D. EUCAST definitive document E. DEF 3.1, June 2000: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by aga. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar]
- Merritt, J.H.; Kadouri, D.E.; O’Toole, G.A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 2011, 22, 1B-1. [Google Scholar] [CrossRef] [Green Version]
- Stein, C.; Makarewicz, O.; Forstner, C.; Weis, S.; Hagel, S.; Löffler, B.; Pletz, M.W. Should daptomycin–rifampin combinations for MSSA/MRSA isolates be avoided because of antagonism? Infection 2016, 44, 499–504. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Den Hollander, J.G.; Mouton, J.W.; Verbrugh, H.A. Use of pharmacodynamic parameters to predict efficacy of combination therapy by using fractional inhibitory concentration kinetics. Antimicrob. Agents Chemother. 1998, 42, 744–748. [Google Scholar] [CrossRef] [Green Version]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef]
Strains | (−)-Myrtenol | (+)-Myrtenol | Amikacin | BAC | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
S. aureus ATCC 29213 (MSSA) | 1024 | 1024 | 512 | 512 | 4 | 8 | 0.5 | 1 |
S. aureus 18 (MSSA) | 1024 | 1024 | 1024 | 1024 | 16 | 32 | 0.25 | 1 |
S. aureus 25 (MSSA) | 1024 | 1024 | 1024 | 1024 | 8 | 16 | 0.25 | 0.5 |
S. aureus 26 (MSSA) | 1024 | 1024 | 512 | 512 | 16 | 16 | 0.5 | 1 |
S. aureus 27 (MSSA) | 1024 | 1024 | 512 | 512 | 4 | 16 | 0.5 | 1 |
S. aureus 1053 (MRSA) | 1024 | 1024 | 2048 | 2048 | 128 | 512 | 0.5 | 2 |
S. aureus 1065 (MRSA) | 1024 | 1024 | 512 | 512 | 128 | 256 | 0.5 | 2 |
S. aureus 1130 (MRSA) | 512 | 1024 | 512 | 512 | 256 | 512 | 0.5 | 2 |
S. aureus 1145 (MRSA) | 1024 | 512 | 512 | 512 | 64 | 1024 | 1 | 1 |
S. aureus 1167 (MRSA) | 2048 | 2048 | 512 | 512 | 256 | 512 | 0.5 | 2 |
S. aureus 1168 (MRSA) | 2048 | 2048 | 512 | 512 | 8 | 8 | 0.5 | 1 |
S. aureus 1173 (MRSA) | 512 | 512 | 256 | 256 | 256 | 256 | 0.5 | 1 |
Strains | (−)-Myrtenol | (+)-Myrtenol | Fluconazole | BAC | ||||
---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
C. albicans 722 | 2048 | 2048 | 1024 | 1024 | 8 | 8 | 0.5 | 2 |
C. albicans 761 | 1024 | 1024 | 2048 | 2048 | 8 | 8 | 0.5 | 1 |
C. albicans 661 FR | 1024 | 1024 | 2048 | 2048 | 512 | 512 | 0.5 | 1 |
C. albicans 672 FR | 1024 | 1024 | 2048 | 2048 | 512 | 512 | 0.5 | 0.5 |
C. albicans 688 FR | 1024 | 1024 | 2048 | 2048 | 512 | 512 | 0.5 | 1 |
C. albicans 701 FR | 2048 | 2048 | 2048 | 2048 | 512 | 512 | 1 | 1 |
C. albicans 703 FR | 1024 | 1024 | 1024 | 1024 | 512 | 512 | 0.5 | 2 |
C. albicans 748 FR | 1024 | 1024 | 2048 | 2048 | 512 | 512 | 1 | 2 |
C. albicans 762 FR | 1024 | 1024 | 2048 | 2048 | 512 | 512 | 1 | 2 |
C. albicans 763 FR | 2048 | 2048 | 2048 | 2048 | 512 | 512 | 0.5 | 1 |
Strains | Amikacin | Benzalkonium Chloride | ||||||
---|---|---|---|---|---|---|---|---|
Growth Repression | Biofilm Prevention | Growth Repression | Biofilm Prevention | |||||
(−)-Myrtenol | (+)-Myrtenol | (−)-Myrtenol | (+)-Myrtenol | (−)-Myrtenol | (+)-Myrtenol | (−)-Myrtenol | (+)-Myrtenol | |
S. aureus ATCC (MSSA) | 0.30 | 0.50 | 0.38 | 1.00 | 1.25 | 0.75 | 0.75 | 1.50 |
S. aureus 18 (MSSA) | 0.50 | 0.31 | 1.12 | 0.75 | 0.75 | 0.5 | 0.63 | 0.75 |
S. aureus 25 (MSSA) | 0.75 | 0.31 | 1.00 | 0.50 | 2.25 | 0.5 | 1.50 | 0.75 |
S. aureus 26 (MSSA) | 0.75 | 0.75 | 0.75 | 1.25 | 0.75 | 0.75 | 0.75 | 0.28 |
S. aureus 27 (MSSA) | 0.38 | 0.50 | 0.75 | 1.00 | 0.75 | 0.75 | 0.50 | 1.50 |
S. aureus 1053 (MRSA) | 0.75 | 0.38 | 0.38 | 0.38 | 0.75 | 0.5 | 0.63 | 0.38 |
S. aureus 1065 (MRSA) | 0.75 | 0.50 | 1.12 | 1.25 | 0.75 | 1.25 | 0.19 | 2.25 |
S. aureus 1130 (MRSA) | 0.75 | 0.38 | 1.00 | 1.00 | 0.75 | 0.75 | 1.00 | 1.00 |
S. aureus 1145 (MRSA) | 0.75 | 0.50 | 0.25 | 0.63 | 1.25 | 0.5 | 0.16 | 0.63 |
S. aureus 1167 (MRSA) | 0.31 | 0.75 | 0.31 | 0.31 | 0.5 | 1.25 | 0.38 | 0.75 |
S. aureus 1168 (MRSA) | 0.38 | 0.31 | 0.28 | 0.31 | 0.75 | 1.25 | 0.38 | 1.25 |
S. aureus 1173 (MRSA) | 0.75 | 0.75 | 0.625 | 1.50 | 1.25 | 1.25 | 0.16 | 0.53 |
Fraction of strains with shown synergy | 42% | 75% | 42% | 33% | 8% | 33% | 50% | 17% |
Strains | Fluconazole | Benzalkonium Chloride | ||||||
---|---|---|---|---|---|---|---|---|
Growth Repression | Biofilm Prevention | Growth Repression | Biofilm Prevention | |||||
(−)-Myrtenol | (+)-Myrtenol | (−)-Myrtenol | (+)-Myrtenol | (−)-Myrtenol | (+)-Myrtenol | (−)-Myrtenol | (+)-Myrtenol | |
C. albicans 722 | 1.25 | 1.25 | 0.37 | 0.40 | 0.50 | 0.50 | 1.25 | 0.31 |
C. albicans 761 | 1.25 | 1.25 | 0.37 | 0.50 | 0.75 | 0.50 | 0.38 | 0.50 |
C. albicans 661 FR | 1.25 | 0.75 | 1.25 | 1.25 | 0.75 | 0.38 | 1.25 | 0.50 |
C. albicans 672 FR | 0.27 | 0.50 | 0.28 | 0.50 | 0.75 | 0.50 | 0.38 | 0.75 |
C. albicans 688 FR | 1.25 | 0.75 | 0.26 | 1.25 | 0.50 | 0.50 | 0.75 | 0.75 |
C. albicans 701 FR | 0.28 | 0.27 | 0.75 | 0.75 | 0.75 | 0.75 | 0.50 | 0.38 |
C. albicans 703 FR | 0.38 | 0.27 | 0.31 | 4.25 | 0.75 | 0.50 | 0.75 | 0.75 |
C. albicans 748 FR | 1.25 | 0.27 | 0.26 | 1.25 | 0.75 | 0.50 | 0.75 | 0.50 |
C. albicans 762 FR | 1.25 | 0.27 | 1.25 | 1.25 | 0.38 | 0.50 | 0.50 | 0.38 |
C. albicans 763 FR | 0.27 | 0.50 | 0.75 | 0.30 | 0.50 | 1.25 | 0.75 | 0.50 |
Fraction of strains with shown synergy | 36% | 64% | 54% | 36% | 45% | 81% | 36% | 72% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, R.Y.; Trizna, E.Y.; Sulaiman, R.K.; Pavelyev, R.S.; Gilfanov, I.R.; Lisovskaya, S.A.; Ostolopovskaya, O.V.; Frolova, L.L.; Kutchin, A.V.; Guseva, G.B.; et al. Increasing the Efficacy of Treatment of Staphylococcus aureus–Candida albicans Mixed Infections with Myrtenol. Antibiotics 2022, 11, 1743. https://doi.org/10.3390/antibiotics11121743
Mahmoud RY, Trizna EY, Sulaiman RK, Pavelyev RS, Gilfanov IR, Lisovskaya SA, Ostolopovskaya OV, Frolova LL, Kutchin AV, Guseva GB, et al. Increasing the Efficacy of Treatment of Staphylococcus aureus–Candida albicans Mixed Infections with Myrtenol. Antibiotics. 2022; 11(12):1743. https://doi.org/10.3390/antibiotics11121743
Chicago/Turabian StyleMahmoud, Ruba Y., Elena Y. Trizna, Rand K. Sulaiman, Roman S. Pavelyev, Ilmir R. Gilfanov, Svetlana A. Lisovskaya, Olga V. Ostolopovskaya, Larisa L. Frolova, Alexander V. Kutchin, Galina B. Guseva, and et al. 2022. "Increasing the Efficacy of Treatment of Staphylococcus aureus–Candida albicans Mixed Infections with Myrtenol" Antibiotics 11, no. 12: 1743. https://doi.org/10.3390/antibiotics11121743
APA StyleMahmoud, R. Y., Trizna, E. Y., Sulaiman, R. K., Pavelyev, R. S., Gilfanov, I. R., Lisovskaya, S. A., Ostolopovskaya, O. V., Frolova, L. L., Kutchin, A. V., Guseva, G. B., Antina, E. V., Berezin, M. B., Nikitina, L. E., & Kayumov, A. R. (2022). Increasing the Efficacy of Treatment of Staphylococcus aureus–Candida albicans Mixed Infections with Myrtenol. Antibiotics, 11(12), 1743. https://doi.org/10.3390/antibiotics11121743