Detecting Carbapenemases in Animal and Food Samples by Droplet Digital PCR
Abstract
:1. Introduction
2. Results
2.1. Detection of Carbapenem Resistant Bacteria Using Conventional Methods
2.2. Optimization of Extraction and ddPCR Conditions
2.3. Carbapenemase-Encoding Genes as Detected by ddPCR
3. Discussion
4. Materials and Methods
4.1. Areas Considered in the Study
4.2. Sampling
4.2.1. Animal Samples
- Faecal samples from farm animals. Fifty-tree samples of animal faeces were collected from 7 small- and medium-scale pig and cattle farms located in the Marche region. For each sample about 60 g of faeces were obtained from a mix of 3–5 stool samples collected from apparently healthy finishing pigs and beef cattle. After nucleic acid extraction, 51 samples reached sufficient quantity and purity for downstream application (see Section 4.4).
- Faecal samples from companion animals. A total of 295 faecal or litter samples from mammals (dogs, cats, other mammals) and ornamental birds (finches, psittacides, other birds) received for diagnostic purposes at the Verona laboratory of Istituto Zooprofilattico delle Venezie (IZSVe) were selected. Upon arrival, samples were plated in culture medium containing ertapenem, and 2 g of each sample were recovered and stored at −20 °C until further processing. After nucleic acid extraction, 152 samples reached sufficient quantity and purity for downstream application (see Section 4.4).
4.2.2. Food Samples
- Raw meat. Fifty-eight samples of raw pork and beef meat were collected at the slaughterhouses of the seven above-mentioned farms. Under sterile conditions, 100 g of meat were sampled, immediately stored at 4 °C and processed within 24 h. After nucleic acid extraction, fifty-four samples reached sufficient quantity and purity for downstream application (see Section 4.4).
- Bivalve molluscs. Two hundred and twenty samples were collected from natural beds along the Adriatic Sea coast in the Ancona province. Harvesting areas more impacted by faecal contamination were selected for this study, based on historical microbiological quality data for the area, and sources and types of faecal contamination in close proximity. Sampling was performed in two different seasons (winter and summer) according to the variation in filter-feeding activity of bivalve molluscs. After nucleic acid extraction, 27 samples reached levels of quantity and purity required for downstream application (see Section 4.4).
4.2.3. Human Samples
4.3. Detection of CPB by Conventional Methods
4.4. DNA Extraction and Purification
4.5. Primers for Droplet Digital PCR
4.6. Droplet Digital PCR
4.7. Whole Genome Sequencing (WGS) Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Swift, B.M.; Bennett, M.; Waller, K.; Dodd, C.; Murray, A.; Gomes, R.L.; Humphreys, B.; Hobman, J.L.; Jones, M.A.; Whitlock, S.E.; et al. Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci. Total Environ. 2019, 649, 12–20. [Google Scholar] [CrossRef]
- Xu, C.; Kong, L.; Gao, H.; Cheng, X.; Wang, X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front. Microbiol. 2022, 13, 822689. [Google Scholar] [CrossRef]
- Adams, R.J.; Kim, S.S.; Mollenkopf, D.F.; Mathys, D.A.; Schuenemann, G.M.; Daniels, J.B.; Wittum, T.E. Antimicrobial-resistant Enterobacteriaceae recovered from companion animal and livestock environments. Zoonoses Public Health 2018, 65, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.C.C.; Wong, S.C.; Wong, S.C.Y.; Ho, P.L.; Yuen, K.Y. Control of Carbapenemase-producing Enterobacteriaceae: Beyond the Hospital. EClinicalMedicine 2018, 6, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Bercot, B.; Millemann, Y.; Bonnin, R.A.; Pannaux, G.; Nordmann, P. Carbapenemase-producing Acinetobacter spp. in Cattle, France. Emerg. Infect. Dis. 2012, 18, 523–525. [Google Scholar] [CrossRef]
- Fischer, J.; Rodríguez, I.; Schmoger, S.; Friese, A.; Roesler, U.; Helmuth, R.; Guerra, B. Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. J. Antimicrob. Chemother. 2013, 68, 478–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, J.; José, M.S.; Roschanski, N.; Schmoger, S.; Baumann, B.; Irrgang, A.; Friese, A.; Roesler, U.; Helmuth, R.; Guerra, B. Spread and persistence of VIM-1 Carbapenemase-producing Enterobacteriaceae in three German swine farms in 2011 and 2012. Vet. Microbiol. 2017, 200, 118–123. [Google Scholar] [CrossRef]
- Ljungquist, O.; Ljungquist, D.; Myrenas, M.; Ryden, C.; Finn, M.; Bengtsson, B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs—A pilot study. Infect. Ecol. Epidemiol. 2016, 6, 31514. [Google Scholar] [CrossRef]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.D.; Menezes, J.; Marques, C.; Pomba, C.F. Companion Animals-An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics 2022, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, S.; Pitino, R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital. J. Food Saf. 2019, 8, 7956. [Google Scholar] [CrossRef]
- Mairi, A.; Pantel, A.; Sotto, A.; Lavigne, J.P.; Touati, A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 587–604. [Google Scholar] [CrossRef] [PubMed]
- León-Sampedro, R.; DelaFuente, J.; Díaz-Agero, C.; Crellen, T.; Musicha, P.; Rodríguez-Beltrán, J.; de la Vega, C.; Hernández-García, M.; López-Fresneña, N.; Ruiz-Garbajosa, P.; et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat. Microbiol. 2021, 6, 606–616. [Google Scholar] [CrossRef]
- Gong, L.; Tang, N.; Chen, D.; Sun, K.; Lan, R.; Zhang, W.; Zhou, H.; Yuan, M.; Chen, X.; Zhao, X.; et al. A Nosocomial Respiratory Infection Outbreak of Carbapenem-Resistant Escherichia coli ST131 With Multiple Transmissible bla KPC-2 Carrying Plasmids. Front. Microbiol. 2020, 11, 2068. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Wong, H.S.; Turnidge, J.; Johnson, J.R.; Trott, D.J. Carbapenemase-producing bacteria in companion animals: A public health concern on the horizon. J. Antimicrob. Chemother. 2014, 69, 1155–1157. [Google Scholar] [CrossRef] [Green Version]
- Guerra, B.; Fischer, J.; Helmuth, R. An emerging public health problem: Acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet. Microbiol. 2014, 171, 290–297. [Google Scholar] [CrossRef]
- Sacher-Pirklbauer, A.; Klein-Jobstl, D.; Sofka, D.; Blanc-Potard, A.B.; Hilbert, F. Phylogenetic Groups and Antimicrobial Resistance Genes in Escherichia coli from Different Meat Species. Antibiotics 2021, 10, 1543. [Google Scholar] [CrossRef]
- Treskova, M.; Kuhlmann, A.; Freise, F.; Kreienbrock, L.; Brogden, S. Occurrence of Antimicrobial Resistance in the Environment in Germany, Austria, and Switzerland: A Narrative Review of Existing Evidence. Microorganisms 2022, 10, 728. [Google Scholar] [CrossRef]
- Mader, R.; Damborg, P.; Amat, J.-P.; Bengtsson, B.; Bourély, C.; Broens, E.M.; Busani, L.; Crespo-Robledo, P.; Filippitzi, M.-E.; Fitzgerald, W.; et al. Building the European Antimicrobial Resistance Surveillance network in veterinary medicine (EARS-Vet). Eurosurveillance 2021, 26, 1359. [Google Scholar] [CrossRef]
- Belas, A.; Menezes, J.; Gama, L.T.; Pomba, C. Sharing of Clinically Important Antimicrobial Resistance Genes by Companion Animals and Their Human Household Members. Microb. Drug Resist. 2020, 26, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Oreiby, A.F.; El-Hafeez, A.A.A.; Okanda, T.; Haque, A.; Anwar, K.S.; Tanaka, M.; Miyako, K.; Tsuji, S.; Kato, Y.; et al. First Report of Multidrug-Resistant Carbapenemase-Producing Bacteria Coharboring mcr-9 Associated with Respiratory Disease Complex in Pets: Potential of Animal-Human Transmission. Antimicrob. Agents Chemother. 2020, 65, e01890-20. [Google Scholar] [CrossRef] [PubMed]
- Van den Bunt, G.; Fluit, A.C.; Spaninks, M.P.; Timmerman, A.J.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.A.; Bonten, M.J.M.; et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum beta-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Bodor, A.; Bounedjoum, N.; Vincze, G.E.; Kis, E.; Laczi, K.; Bende, G.; Szilágyi, Á.; Kovács, T.; Perei, K.; Rákhely, G. Challenges of unculturable bacteria: Environmental perspectives. Rev. Environ. Sci. Biotechnol. 2020, 19, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hedman, J.; Radstrom, P. Overcoming inhibition in real-time diagnostic PCR. Methods Mol. Biol. 2013, 943, 17–48. [Google Scholar] [CrossRef]
- Cremonesi, P.; Garofalo, C.; Picozzi, C.; Castiglioni, B.; Mangieri, N.; Milanović, V.; Osimani, A.; Aquilanti, L. Development of quantitative real-time PCR and digital droplet-PCR assays for rapid and early detection of the spoilage yeasts Saccharomycopsis fibuligera and Wickerhamomyces anomalus in bread. Food Microbiol. 2022, 101, 103894. [Google Scholar] [CrossRef]
- Anderson, R.E.V.; Boerlin, P. Carbapenemase-producing Enterobacteriaceae in animals and methodologies for their detection. Can. J. Vet. Res. 2020, 84, 3–17. [Google Scholar]
- Cave, L.; Brothier, E.; Abrouk, D.; Bouda, P.S.; Hien, E.; Nazaret, S. Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues. Appl. Microbiol. Biotechnol. 2016, 100, 10597–10608. [Google Scholar] [CrossRef]
- Cristiano, D.; Peruzy, M.; Aponte, M.; Mancusi, A.; Proroga, Y.; Capuano, F.; Murru, N. Comparison of droplet digital PCR vs real-time PCR for Yersinia enterocolitica detection in vegetables. Int. J. Food Microbiol. 2021, 354, 109321. [Google Scholar] [CrossRef]
- Pendergraph, D.P.; Ranieri, J.; Ermatinger, L.; Baumann, A.; Metcalf, A.L.; DeLuca, T.H.; Church, M.J. Differentiating Sources of Fecal Contamination to Wilderness Waters Using Droplet Digital PCR and Fecal Indicator Bacteria Methods. Wilderness Environ. Med. 2021, 32, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, J.; Shin, S.G.; Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 2006, 123, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, D.; van Essen-Zandbergen, A.; Veldman, K.T.; Tafro, N.; Haenen, O.; Mevius, D.J. Chromosome-Based blaOXA-48-Like Variants in Shewanella Species Isolates from Food-Producing Animals, Fish, and the Aquatic Environment. Antimicrob. Agents Chemother. 2017, 61, e01013-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephan, R.; Sarno, E.; Hofer, E.; Nuesch-Inderbinen, M.T.; Hachler, H. Lack of evidence so far for carbapenemase-producing Enterobacteriaceae in food-producing animals in Switzerland. Schweiz. Arch. Tierheilkd. 2013, 155, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Zahedi Bialvaei, A.; Dolatyar Dehkharghani, A.; Asgari, F.; Shamloo, F.; Eslami, P.; Rahbar, M. Modified CIM test as a useful tool to detect carbapenemase activity among extensively drug-resistant Klebsiella pneumoniae, Escherichia coli and Acinetobacter baumannii. Ann. Microbiol. 2021, 71, 23. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Makowska, N.; Philips, A.; Dabert, M.; Nowis, K.; Trzebny, A.; Koczura, R.; Mokracka, J. Metagenomic analysis of beta-lactamase and carbapenemase genes in the wastewater resistome. Water Res. 2020, 170, 115277. [Google Scholar] [CrossRef]
Total Samples Tested (N = 626) | Culture Method | MHT | Standard PCR | |
---|---|---|---|---|
Faeces (livestock animals) | 53 | 13 | - | - |
Meat (livestock animals) | 58 | 12 | 1 | 1 |
Faeces (companion animals) | 295 | 77 | - | - |
Bivalve molluscs | 220 | 49 | 1 | 1 |
Temperature | Time | Cycles (N°) |
---|---|---|
95 °C | 5 min | 1 |
95 °C | 30 s | 40 |
55 °C–58 °C–60 °C (respectively for blaKPC, blaVIM, blaOXA-48-like detection) | 45 s | |
4 °C | 5 min | 1 |
90 °C | 5 min | 1 |
4 °C | hold |
Sample ID | ddPCR | Carbapenemase Producing Isolate | Bacterial Species | bla Genes | |||||
---|---|---|---|---|---|---|---|---|---|
blaKPC Result Positive Droplets | blaVIM Result Positive Droplets | blaOXA-48-like Result Positive Droplets | |||||||
A | + | 16,500 | + | 5 | + | 36 | + | K. pneumoniae | KPC, TEM, CTX-M, SHV |
B | + | 2356 | − | 3 | + | 19 | + | K. pneumoniae | KPC, TEM, CTX-M, SHV |
C | + | 16,662 | − | 3 | + | 11 | + | K. pneumoniae | KPC, TEM, CTX-M, SHV |
D | − | 3 | + | 13,514 | + | 37 | + | P. oleovorans | VIM |
E | + | 857 | − | 0 | + | 8 | + | K. pneumoniae | KPC, TEM, CTX-M, SHV |
F | + | 15,646 | + | 10,471 | + | 38 | + | K. pneumoniae | KPC, TEM, CTX-M, SHV |
G | + | 5 | − | 0 | + | 31 | − | K. pneumoniae | TEM, CTX-M, SHV |
H | + | 4 | − | 1 | + | 13 | + | A. baumannii | OXA-66, OXA-72, ADC-25 |
I | − | 2 | − | 0 | + | 10 | − | K. pneumoniae | CTX-M, SHV |
J | − | 1 | − | 1 | − | 2 | − | H. alvei | SHV |
K | − | 0 | − | 0 | − | 2 | − | K. pneumoniae | TEM, CTX-M, SHV |
L | + | 80 | + | 14 | + | 56 | − | K. pneumoniae | SHV |
M | + | 17 | − | 0 | + | 13 | − | S. liquefaciens | - |
N | − | 2 | − | 0 | + | 8 | − | K. pneumoniae | TEM, CTX-M, SHV |
O | + | 8 | − | 0 | + | 20 | − | C. freundii | - |
P | − | 0 | − | 1 | − | 2 | − | E. cloacae | - |
Q | − | 0 | − | 0 | + | 7 | − | E. cloacae | - |
R | − | 0 | − | 0 | + | 18 | − | C. freundii | CMY |
S | − | 3 | − | 1 | + | 20 | − | S. maltophila | - |
T | − | 3 | − | 0 | + | 28 | − | M. morganii | - |
blaKPC | blaVIM | blaOXA-48-like | |||||
---|---|---|---|---|---|---|---|
N. of Samples with at Least 1 Resistance Gene | Samples Tested (N = 281) | Detected | Samples Tested (N = 280) | Detected | Samples Tested (N = 283) | Detected | |
Faeces (livestock animals) | 38 | 51 | 1 | 51 | 3 | 51 | 37 |
Meat (livestock animals) | 14 | 54 | - | 54 | 1 | 54 | 14 |
Faeces (companion animals) | 34 | 149 | 7 | 149 | 5 | 152 | 27 |
Bivalve molluscs | 17 | 27 | 1 | 26 | - | 26 | 16 |
Gene | Primer Sequence | Product Size | Reference |
---|---|---|---|
blaOXA-48-like | OXA48_F: 5′ TGTTTTTGGTGGCATCGAT 3′ | 177 bp | [25] |
OXA48_R: 5′ GTAAMRATGCTTGGTTCGC 3′ | |||
blaKPC | KPC_F: 5′ CAGCTCATTCAAGGGCTTTC 3′ | 155 bp | |
KPC_R: 5′ GGCGGCGTTATCACTGTATT 3′ | |||
blaVIM | VIM_F: 5′ TCCGTGATGGTGATGAGT 3′ | 262 bp | |
VIM_R: 5′ GCTCGATGAGAGTCCTTCTA 3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carelli, M.; Griggio, F.; Mingoia, M.; Garofalo, C.; Milanović, V.; Pozzato, N.; Leoni, F.; Veschetti, L.; Malerba, G.; Sandri, A.; et al. Detecting Carbapenemases in Animal and Food Samples by Droplet Digital PCR. Antibiotics 2022, 11, 1696. https://doi.org/10.3390/antibiotics11121696
Carelli M, Griggio F, Mingoia M, Garofalo C, Milanović V, Pozzato N, Leoni F, Veschetti L, Malerba G, Sandri A, et al. Detecting Carbapenemases in Animal and Food Samples by Droplet Digital PCR. Antibiotics. 2022; 11(12):1696. https://doi.org/10.3390/antibiotics11121696
Chicago/Turabian StyleCarelli, Maria, Francesca Griggio, Marina Mingoia, Cristiana Garofalo, Vesna Milanović, Nicola Pozzato, Francesca Leoni, Laura Veschetti, Giovanni Malerba, Angela Sandri, and et al. 2022. "Detecting Carbapenemases in Animal and Food Samples by Droplet Digital PCR" Antibiotics 11, no. 12: 1696. https://doi.org/10.3390/antibiotics11121696
APA StyleCarelli, M., Griggio, F., Mingoia, M., Garofalo, C., Milanović, V., Pozzato, N., Leoni, F., Veschetti, L., Malerba, G., Sandri, A., Patuzzo, C., Simoni, S., Lleo, M. M., & Vignaroli, C. (2022). Detecting Carbapenemases in Animal and Food Samples by Droplet Digital PCR. Antibiotics, 11(12), 1696. https://doi.org/10.3390/antibiotics11121696