Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Virulence Factors in Biofilm-Forming S. aureus
2.2. Antibiogram Profiles of Biofilm-Forming S. aureus
2.3. Association of Antibiotic Resistance Patterns with Biofilm-Forming S. aureus
2.4. Phenotypic MDR and MAR Nature in Biofilm-Forming S. aureus
2.5. Genotypic Prevalence of MRSA and other Antibiotic Resistance in Biofilm-Forming S. aureus
3. Discussion
4. Materials and Methods
4.1. Selection of S. aureus Isolates
4.2. Molecular Detection of Virulence Factors
4.3. Antimicrobial Susceptibility Testing (AST)
4.4. Molecular Detection of MRSA with other Antibiotic Resistance Genes
4.5. Statistical Analysis
4.5.1. Descriptive Analysis
4.5.2. Bivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.; Sobur, M.; Islam, M.; Ievy, S.; Hossain, M.; El Zowalaty, M.E.; Rahman, A.M.M.; Ashour, H.M. Zoonotic diseases: Etiology, impact, and control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- Urmi, M.R.; Ansari, W.K.; Islam, M.S.; Sobur, M.A.; Rahman, M.; Rahman, M.T. Antibiotic resistance patterns of Staphylococcus spp. Isolated from fast foods sold in different restaurants of Mymensingh. Bangladesh. J. Adv. Vet. Anim. Res. 2021, 8, 274–281. [Google Scholar] [CrossRef]
- Argudín, M.Á.; Mendoza, M.C.; Rodicio, M.R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef]
- Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 2018, 10, 252. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.K.; Singh, M.; Joshi, V.G.; Chhabra, R.; Singh, K.; Rana, Y.S. Virulence and antimicrobial resistance gene profiles of Staphylococcus aureus associated with clinical mastitis in cattle. PLoS ONE 2022, 17, e0264762. [Google Scholar]
- Ricciardi, B.F.; Muthukrishnan, G.; Masters, E.; Ninomiya, M.; Lee, C.C.; Schwarz, E.M. Staphylococcus aureus evasion of host immunity in the setting of Prosthetic Joint Infection: Biofilm and beyond. Curr. Rev. Musculoskelet. Med. 2018, 11, 389–400. [Google Scholar] [CrossRef]
- Costa, O.Y.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef] [Green Version]
- Donlan, R.M. Biofilm Formation: A Clinically Relevant Microbiological Process. Clin. Infect. Dis. 2001, 33, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Poudel, B.; Zhang, Q.; Trongtorsak, A.; Pyakuryal, B.; Egoryan, G.; Sous, M.; Ahmed, R.; Trelles-Garcia, D.P.; Yanez-Bello, M.A.; Trelles-Garcia, V.P.; et al. An overlooked cause of septic shock: Staphylococcal Toxic Shock Syndrome secondary to an axillary abscess. IDCases 2021, 23, e01039. [Google Scholar] [CrossRef]
- Schaumburg, F.; Ngoa, U.A.; Kösters, K.; Köck, R.; Adegnika, A.A.; Kremsner, P.G.; Lell, B.; Peters, G.; Mellmann, A.; Becker, K. Virulence factors and genotypes of Staphylococcus aureus from infection and carriage in Gabon. Clin. Microbiol. Infect. 2011, 17, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Paul, A.; Talukder, M.; Roy, K.; Sobur, M.A.; Ievy, S.; Nayeem, M.M.H.; Rahman, S.; Nazir, K.N.H.; Hossain, M.T.; et al. Migratory birds travelling to Bangladesh are potential carriers of multi-drug resistant Enterococcus spp., Salmonella spp., and Vibrio spp. Saudi J. Bio. Sci. 2021, 28, 5963–5970. [Google Scholar] [CrossRef]
- Islam, M.; Sobur, M.; Rahman, S.; Ballah, F.M.; Ievy, S.; Siddique, M.P.; Rahman, M.; Kafi, M.; Rahman, M. Detection of blaTEM, blaCTXM-M, blaCMY, and blaSHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh. Microb. Ecol. 2022, 83, 942–950. [Google Scholar] [CrossRef]
- Ievy, S.; Islam, M.; Sobur, M.; Talukder, M.; Rahman, M.; Khan, M.F.R. Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorganisms 2020, 8, 1021. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Roy, K.; Islam, M.S.; Paul, A.; Ievy, S.; Talukder, M.; Sobur, M.A.; Ballah, F.M.; Khan, M.S.R.; Rahman, M.T. Molecular detection and antibiotyping of multi-drug resistant Enterococcus faecium from healthy broiler chickens in Bangladesh. Vet. Med. Sci. 2022, 8, 200–210. [Google Scholar] [CrossRef]
- Talukder, M.; Islam, M.S.; Ievy, S.; Sobur, M.A.; Ballah, F.M.; Najibullah, M.; Rahman, M.B.; Rahman, M.T.; Khan, M.F.R. Detection of multidrug resistant Salmonella spp. From healthy and diseased broilers having potential public health significance. J. Adv. Biotechnol. Exp. Ther. 2021, 4, 248–255. [Google Scholar] [CrossRef]
- Saber, T.; Samir, M.; El-Mekkawy, R.M.; Ariny, E.; El-Sayed, S.R.; Enan, G.; Abdelatif, S.H.; Askora, A.; Merwad, A.M.; Tartor, Y.H. Methicillin-and vancomycin-resistant Staphylococcus aureus from humans and ready-to-eat meat: Characterization of antimicrobial resistance and biofilm formation ability. Front. Microbiol. 2021, 12, 735494. [Google Scholar] [CrossRef]
- Klevens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298, 1763–1771. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.J.; Islam, M.S.; Sobur, M.A.; Zaman, S.B.; Nahar, A.; Rahman, M.; Rahman, M.T. Exploring poultry farm environment for antibiotic resistant Escherichia coli, Salmonella spp., and Staphylococcus spp. having public health significance. J. Bangladesh Agric. Univ. 2020, 18, 615–622. [Google Scholar]
- Rahman, M.T.; Kobayashi, N.; Alam, M.M.; Ishino, M. Genetic analysis of mecA homologues in Staphylococcus sciuri strains derived from mastitis in dairy cattle. Microb. Drug Resist. 2005, 11, 205–214. [Google Scholar] [CrossRef]
- Piechota, M.; Kot, B.; Frankowska-Maciejewska, A.; Gruzewska, A.; Woźniak-Kosek, A. Biofilm formation by Methicillin-resistant and Methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. BioMed Res. Int. 2018, 2018, 4657396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Xie, S.; Lou, X.; Cheng, S.; Liu, X.; Zheng, W.; Zheng, Z.; Wang, H. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen 2020, 9, e00946. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Andersen, P.S.; Stegger, M.; Sieber, R.N.; Ingmer, H.; Staubrand, N.; Dalsgaard, A.; Leisner, J.J. Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus from Food Products in Denmark. Front. Microbiol. 2019, 10, 2681. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Parveen, S.; Rahman, M.; Huq, M.; Nabi, A.; Khan, Z.U.M.; Ahmed, N.; Wagenaar, J.A. Occurrence and characterization of methicillin resistant Staphylococcus aureus in processed raw foods and ready-to-eat foods in an urban setting of a developing country. Front. Microbiol. 2019, 10, 503. [Google Scholar] [CrossRef]
- Mashouf, R.Y.; Hosseini, S.M.; Mousavi, S.M.; Arabestani, M.R. Prevalence of enterotoxin genes and antibacterial susceptibility pattern of Staphylococcus aureus strains isolated from animal originated foods in West of Iran. Oman Med. J. 2015, 30, 283–290. [Google Scholar] [CrossRef]
- Puah, S.M.; Chua, K.H.; Tan, J.A.M.A. Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes. Int. J. Environ. Res. Public Health 2016, 13, 199. [Google Scholar] [CrossRef] [Green Version]
- Rong, D.; Wu, Q.; Xu, M.; Zhang, J.; Yu, S. Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Staphylococcus aureus from retail aquatic products in China. Front. Microbiol. 2017, 8, 714. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, S.; Wu, Q.; Zhang, J.; Wu, S.; Rong, D. Multilocus Sequence Typing and Virulence-Associated Gene Profile Analysis of Staphylococcus aureus Isolates from Retail Ready-to-Eat Food in China. Front. Microbiol. 2018, 9, 197. [Google Scholar] [CrossRef]
- Adame-Gómez, R.; Castro-Alarcón, N.; Vences-Velázquez, A.; Toribio-Jiménez, J.; Pérez-Valdespino, A.; Leyva-Vázquez, M.A.; Ramírez-Peralta, A. Genetic diversity and virulence factors of S. aureus isolated from food, humans, and animals. Int. J. Microbiol. 2020, 2020, 1048097. [Google Scholar] [CrossRef]
- Lv, G.; Jiang, R.; Zhang, H.; Wang, L.; Li, L.; Gao, W.; Zhang, H.; Pei, Y.; Wei, X.; Dong, H.; et al. Molecular Characteristics of Staphylococcus aureus From Food Samples and Food Poisoning Outbreaks in Shijiazhuang, China. Front. Microbiol. 2021, 12, 1436. [Google Scholar] [CrossRef]
- Zschöck, M.; Kloppert, B.; Wolter, W.; Hamann, H.P.; Lämmler, C.H. Pattern of enterotoxin genes seg, seh, sei and sej positive Staphylococcus aureus isolated from bovine mastitis. Vet. Microbiol. 2005, 108, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, G.; Xia, X.; Yang, B.; Xi, M.; Meng, J. Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathog. Dis. 2014, 11, 281–286. [Google Scholar] [CrossRef]
- Weber, J.T. Community-associated methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 2005, 41, S269–S272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, J.S.; Costa, W.L.R.; Cerqueira, E.S.; Carvalho, J.S.; Oliveira, L.C.; Almeida, R.C.C. Food handler-associated methicillin-resistant Staphylococcus aureus in public hospitals in Salvador, Brazil. Food Control 2014, 37, 395–400. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Yu, S.; Wu, Q.; Guo, W.; Huang, J.; Cai, S. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail ready-to-eat foods in China. Front. Microbiol. 2016, 7, 816. [Google Scholar] [CrossRef]
- Devkota, S.P.; Paudel, A.; Gurung, K. Vancomycin Intermediate MRSA Isolates Obtained from Retail Chicken Meat and Eggs Collected at Pokhara, Nepal. Nepal J. Biotechnol. 2019, 7, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, M.; Dubal, Z.B.; Kumar, A.; Bhilegaonkar, K.; Vinodh Kumar, O.R.; Kumar, S.; Kadwalia, A.; Shagufta, B.; Grace, M.R.; Ramees, T.P.; et al. Virulent methicillin resistant Staphylococcus aureus (MRSA) in street vended foods. J. Food Sci. Technol. 2019, 56, 1116–1126. [Google Scholar] [CrossRef]
- Mahros, M.A.; Abd-Elghany, S.M.; Sallam, K.I. Multidrug-, methicillin-, and vancomycin-resistant Staphylococcus aureus isolated from ready-to-eat meat sandwiches: An ongoing food and public health concern. Int. J. Food Microbiol. 2021, 346, 109165. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Sobur, M.; Islam, M.; Haque, Z.F.; Orubu, E.S.F.; Toniolo, A.; Choudhury, M.; Rahman, M. Higher seasonal temperature enhances the occurrence of methicillin resistance of Staphylococcus aureus in house flies (Musca domestica) under hospital and environmental settings. Folia Microbiol. 2022, 67, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Martineau, F.; Picard, F.J.; Lansac, N.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballah, F.M.; Islam, M.S.; Rana, M.L.; Ferdous, F.B.; Ahmed, R.; Pramanik, P.K.; Karmoker, J.; Ievy, S.; Sobur, M.A.; Siddique, M.P.; et al. Phenotypic and Genotypic Detection of Biofilm-Forming Staphylococcus aureus from Different Food Sources in Bangladesh. Biology 2022, 11, 949. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H. Methicillin (oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Appl. Environ. Microbiol. 2003, 69, 6489–6494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randall, L.P.; Cooles, S.W.; Osborn, M.K.; Piddock, L.J.; Woodward, M.J. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 2004, 53, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.E.; Kreiswirth, B.N.; Craig, W.A.; Eisner, W.; Climo, M.W.; Archer, G.L. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 2003, 47, 1460–1463. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Roth, R.; Peters, G. Rapid and Specific Detection of Toxigenic Staphylococcus aureus: Use of Two Multiplex PCR Enzyme Immunoassays for Amplification and Hybridization of Staphylococcal Enterotoxin Genes, Exfoliative Toxin Genes, and Toxic Shock Syndrome Toxin 1 Gene. J. Clin. Microbiol. 1998, 36, 2548–2553. [Google Scholar] [CrossRef] [Green Version]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of panton-valentine leukocidin—Producing Staphylococcus aureus in primary skin infections and pneumonia. Genet. Mol. Res. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Islam, M.S.; Nayeem, M.M.H.; Sobur, M.A.; Ievy, S.; Islam, M.A.; Rahman, S.; Kafi, M.A.; Ashour, H.M.; Rahman, M.T. Virulence determinants and multidrug resistance of Escherichia coli isolated from migratory birds. Antibiotics 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Tawyabur, M.; Islam, M.; Sobur, M.; Hossain, M.; Mahmud, M.; Paul, S.; Hossain, M.T.; Ashour, H.M.; Rahman, M. Isolation and characterization of multidrug-resistant Escherichia coli and Salmonella spp. from healthy and diseased turkeys. Antibiotics 2020, 9, 770. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100s; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
Virulence Genes | Virulence in Different Degrees of Biofilm Formation | Total No. of Positive Isolates (%, 95% CI) | p-Value | ||
---|---|---|---|---|---|
No. of Strong Biofilm Formers (n = 20) | No. of Intermediate Biofilm Formers (n = 77) | No. of Non-Biofilm Formers (n = 3) | |||
sea | 20 (100% a) | 10 (12.98% b) | 0 (0% b) | 30 (30, 21.90–39.59%) | <0.001 |
seb | 0 (0% a) | 0 (0% a) | 0 (0% a) | 0 (0, 00.00–3.70%) | NA |
tst | 14 (70% a) | 6 (7.79% b) | 0 (0% b) | 20 (20, 13.34–28.88%) | <0.001 |
PVL | 11 (55% a) | 4 (5.19% b) | 0 (0% b) | 15 (15, 9.31–23.28%) | <0.001 |
sea | seb | tst | PVL | ||
---|---|---|---|---|---|
sea | ρ | 1 | |||
p-value | - | ||||
seb | ρ | .a | .a | ||
p-value | - | - | |||
tst | ρ | 0.600 ** | .a | 1 | |
p-value | 0.000 | - | - | ||
PVL | ρ | 0.458 ** | .a | 0.420 ** | 1 |
p-value | 0.000 | - | 0.000 | - |
Antibiotics | Antibiotic Resistance in Different Degrees of Staphylococcal Biofilm Formation | Total No. of Resistant Isolates (%, 95% CI) | p-Value | ||
---|---|---|---|---|---|
No. of Strong Biofilm Formers (n = 20) | No. of Intermediate Biofilm Formers (n = 77) | No. of Non-Biofilm Formers (n = 3) | |||
C | 0 (0% a) | 1 (1.30% a) | 0 (0% a) | 1 (1, 0.05–5.45%) | 0.860 |
E | 11 (55% a) | 19 (24.68% b) | 0 (0% b) | 30 (30, 21.90–39.59%) | 0.016 |
COT | 1 (5% a) | 3 (3.90% a) | 0 (0% a) | 4 (4, 1.57–9.84%) | 0.914 |
CIP | 0 (0% a) | 1 (1.30% a) | 0 (0% a) | 1 (1, 0.05–5.45%) | 0.860 |
AZM | 2 (10% a) | 2 (2.60% a) | 0 (0% a) | 4 (4, 1.57–9.84%) | 0.302 |
GEN | 3 (15% a) | 8 (10.39% a) | 0 (0% a) | 11 (11, 6.25–18.63%) | 0.695 |
OX | 20 (100% a) | 77 (100% a) | 3 (100% a) | 100 (100, 96.30–100%) | NA |
AMP | 20 (100% a) | 77 (100% a) | 3 (100% a) | 100 (100, 96.30–100%) | NA |
TE | 3 (15% a) | 4 (5.20% a) | 0 (0% a) | 7 (7, 3.43–13.75%) | 0.276 |
CX | 20 (100% a) | 77 (100% a) | 3 (100% a) | 100 (100, 96.30–100%) | NA |
P | 20 (100% a) | 77 (100% a) | 3 (100% a) | 100 (100, 96.30–100%) | NA |
No. of Pattern | Antibiotic Resistance Patterns | No. of Antibiotics (Classes) | No. of Isolates | Overall MDR Isolates (%) | MAR Index |
---|---|---|---|---|---|
1 | E, COT, OX, AMP, P, CX | 6 (4) | 1 | 51/100 (51) | 0.55 |
2 | AZM, GEN, OX, AMP, P, CX | 6 (4) | 1 | ||
3 | E, OX, AMP, P, CX, TE | 6 (4) | 3 | ||
4 | E, GEN, OX, AMP, P, CX | 6 (4) | 2 | ||
5 | E, OX, AMP, P, CX | 5 (3) | 24 | 0.46 | |
6 | AZM, OX, AMP, P, CX | 5 (3) | 3 | ||
7 | GEN, OX, AMP, P, CX | 5 (3) | 8 | ||
8 | COT, OX, AMP, P, CX | 5 (3) | 3 | ||
9 | OX, AMP, P, CX, TE | 5 (3) | 4 | ||
10 | CIP, OX, AMP, P, CX | 5 (3) | 1 | ||
11 | C, OX, AMP, P, CX | 5 (3) | 1 | ||
12 * | OX, AMP, P, CX | 4 (2) | 49 | - | 0.33 |
Antibiotic Resistance Genes | Occurrence of Antibiotic Resistance Genes in Different Degrees of Staphylococcal Biofilm Formation | Total No. of Positive Isolates (%, 95% CI) | p-Value | ||
---|---|---|---|---|---|
No. of Strong Biofilm Formers (n = 20) | No. of Intermediate Biofilm Formers (n = 77) | No. of Non-Biofilm Formers (n = 3) | |||
mecA | 16 (80% a) | 45 (58.44% b) | 0 (0% b) | 61 (61, 51.20–69.98%) | 0.0189 |
blaZ | 20 (100% a) | 77 (100% a) | 3 (100% a) | 100 (100, 96.30–100.00%) | NA |
tetA | 0 (0% a) | 3 (3.90% a) | 0 (0% a) | 3 (3, 0.82–8.45%) | 0.6301 |
tetB | 0 (0% a) | 0 (0% a) | 0 (0% a) | 0 (0, 0.00–3.70%) | NA |
tetC | 2 (10% a) | 1 (1.30% a) | 0 (0% a) | 3 (3, 0.82–8.45%) | 0.1209 |
Factors | Targeted Genes | Primer Sequence (5′–3′) | Annealing Temperature | Amplicon Size (Bp) | References |
---|---|---|---|---|---|
Antibiotic resistance | mecA | F: AAAATCGATGGTAAAGGTTGG R: AGTTCTGGCACTACCGGATTTTGC | 55 | 533 | [45] |
tetA | F: GGTTCACTCGAACGACGTCA R: CTGTCCGACAAGTTGCATGA | 57 | 577 | [46] | |
tetB | F: CCTCAGCTTCTCAACGCGTG R: GCACCTTGCTCATGACTCTT | 56 | 634 | ||
tetC | F: CTT GAGAGCCTTCAACCCAG R: ATG GTCGTCATCTACCTGCC | 57 | 418 | [47] | |
blaZ | F: TCAAACAGTTCACATGCC R: TTCATTACACTCTGGCG | 46 | 900 | [48] | |
Virulence | sea | F: CCTTTGGAAACGGTTAAAACG R: TCTGAACCTTCCCATCAAAAAC | 55 | 128 | [49] |
seb | F: TCGCATCAAACTGACAAACG R: GCAGGTACTCTATAAGTGCCTGC | 55 | 477 | ||
tst | F: AAGCCCTTTGTTGCTTGCG R: ATCGAACTTTGGCCCATACTTT | 55 | 445 | ||
PVL | F: ATCATTAGGTAAAATGTCTGGACATGATCCA R: GCATCAAGTGTATTGGATAGCAAAAGC | 55 | 433 | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballah, F.M.; Islam, M.S.; Rana, M.L.; Ullah, M.A.; Ferdous, F.B.; Neloy, F.H.; Ievy, S.; Sobur, M.A.; Rahman, A.T.; Khatun, M.M.; et al. Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh. Antibiotics 2022, 11, 1666. https://doi.org/10.3390/antibiotics11111666
Ballah FM, Islam MS, Rana ML, Ullah MA, Ferdous FB, Neloy FH, Ievy S, Sobur MA, Rahman AT, Khatun MM, et al. Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh. Antibiotics. 2022; 11(11):1666. https://doi.org/10.3390/antibiotics11111666
Chicago/Turabian StyleBallah, Fatimah Muhammad, Md. Saiful Islam, Md. Liton Rana, Md. Ashek Ullah, Farhana Binte Ferdous, Fahim Haque Neloy, Samina Ievy, Md. Abdus Sobur, AMM Taufiquer Rahman, Mst. Minara Khatun, and et al. 2022. "Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh" Antibiotics 11, no. 11: 1666. https://doi.org/10.3390/antibiotics11111666
APA StyleBallah, F. M., Islam, M. S., Rana, M. L., Ullah, M. A., Ferdous, F. B., Neloy, F. H., Ievy, S., Sobur, M. A., Rahman, A. T., Khatun, M. M., Rahman, M., & Rahman, M. T. (2022). Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh. Antibiotics, 11(11), 1666. https://doi.org/10.3390/antibiotics11111666