Association of Physcion and Chitosan Can Efficiently Control Powdery Mildew in Rosa roxburghii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Fungicide, Chemical, and Electrostatic Atomizer
2.2. R. roxburghii Orchard
2.3. Control Experiment
Leaf number at each level)/(Total leaf number × the biggest level)
index value of fungicide/Increased disease index value of control)
2.4. Determination Methods
2.5. Data Analyses
3. Results
3.1. Efficacy of Physcion and Chitosan Control Powdery Mildew
3.2. Impacts of Physcion and Chitosan on Leaf Resistance
3.3. Impacts of Physcion and Chitosan on Leaf Photosynthesis
3.4. Impacts of Physcion and Chitosan on Yield, Quality, and Amino Acids of Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Lv, M.; An, J.; Fan, X.; Dong, M.; Zhang, S.; Wang, J.; Wang, Y.; Cai, Z.; Fu, Y. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review. Food Funct. 2021, 12, 1432–1451. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhou, R. The Healthcare Function and Development Trend of Toxburgh Rose. Food Res. Dev. 2016, 37, 212–214. [Google Scholar]
- Wang, D.; Lu, M.; Ludlow, R.A.; Zeng, J.; Ma, W.; An, H. Comparative ultrastructure of trichomes on various organs of Rosa roxburghii. Microsc. Res. Tech. 2021, 84, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, H.; Li, Y.; Yu, Z.; Liu, X.; Huang, M. Identification and Oenological Properties Analysis of a Strain of Hanseniaspora uvarum from Rosa roxburghii. Food Ferment. Ind 2020, 46, 97–104. [Google Scholar]
- Huang, X.; Yan, H.; Zhai, L.; Yang, Z.; Yi, Y. Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes. PLoS ONE 2019, 14, e0203014. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Pan, X.; Chen, H.; Yang, H.; Gong, F.; Guan, J.; Wang, M.; Mu, R. Effects of Oxalic Acid on the Nutrient of Calcareous Cultivated Soil and Leaf, Fruit Yield and Quality of Rosa roxburghii Tratt. J. Fruit Sci. 2021, 38, 1113–1122. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z.; Luo, Y.; Wu, X.; An, H. Chitosan Can Induce Rosa roxburghii Tratt. against Sphaerotheca sp. and Enhance Its Resistance, Photosynthesis, Yield, and Quality. Horticulturae 2021, 7, 289. [Google Scholar] [CrossRef]
- Han, L.; Liu, X.; Huang, W.; Wu, X. Occurrence and Control Technology of Powdery Mildew in Rose roxburgh Tratt. China Fruits 2021, 1, 6–10. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Li, J.; Su, Y.; Wu, X. Chitosan as an Adjuvant to Enhance the Control Efficacy of Low-Dosage Pyraclostrobin against Powdery Mildew of Rosa roxburghii and Improve Its Photosynthesis, Yield, and Quality. Biomolecules 2022, 12, 1304. [Google Scholar] [CrossRef]
- Yan, K.; Wang, J.; Zhou, Y.; Fu, D.; Huang, R. Efficacy of Five Fungicides in Rosa roxburghii Tratt against Sphaerotheca Sp. Agrochemicals 2018, 57, 609–610. [Google Scholar]
- Wu, Q.; Lei, Q.; Li, Z.; Wang, X.; Luo, Y.; An, H.; Wu, X. Field Effects of Different Fungicides on Powdery Mildew of Rosa roxburghii Tratt. China Plant. Prot. 2022, 42, 91–93. [Google Scholar]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Massi, F.; Torriani, S.F.F.; Borghi, L.; Toffolatti, S.L. Fungicide Resistance Evolution and Detection in Plant Pathogens: Plasmopara viticola as a Case Study. Microorganisms 2021, 9, 119. [Google Scholar] [CrossRef]
- Yang, X.; Ma, X.; Yang, L.; Yu, D.; Qian, Y.; Ni, H. Efficacy of Rheum Officinale Liquid Formulation on Cucumber Powdery Mildew. Crop. Prot 2009, 28, 1031–1035. [Google Scholar] [CrossRef]
- Slusarenko, A.J.; Patel, A.; Portz, D. Control of plant diseases by natural products: Allicin from Garlic as A Case Study. Eur. J. Plant. Pathol 2008, 121, 313–322. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Luo, Z.; Hu, F.; Wu, T.; Huang, R.M.; Yan, J. 6% Ascorbic Acid Aqueous Solutions Inducing Rosa roxburghii Tratt against Sphaerotheca Sp. Agrochemicals 2017, 56, 528–530. [Google Scholar]
- Li, J.; Li, R.; Zhang, C.; Guo, Z.; Wu, X.; An, H. Co-Application of Allicin and Chitosan Increases Resistance of Rosa roxburghii against Powdery Mildew and Enhances Its Yield and Quality. Antibiotics 2021, 10, 1449. [Google Scholar] [CrossRef]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent Developments in Antibacterial and Antifungal Chitosan and Its Derivatives. Carbohyd. Polym 2017, 164, 268–283. [Google Scholar] [CrossRef]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Torres-Rodriguez, J.A.; Reyes-Pérez, J.J.; Castellanos, T.; Angulo, C.; Hernandez-Montiel, L.G. A Biopomyler with Antimicrobial Properties and Plant Resistance Inducer Against Phytopathogens: Chitosan. Not. Sci. Biol 2021, 49, 12231. [Google Scholar] [CrossRef]
- Rahman, M.; Mukta, J.A.; Sabir, A.A.; Gupta, D.R.; Mohi-ud-din, M.; Hasanuzzaman, M.; Miah, M.G.; Rahman, M.; Islam, M.T. Chitosan Biopolymer Promotes Yield and Stimulates Accumulation of Antioxidants in Strawberry Fruit. PLoS ONE 2018, 13, e0203769. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, T.C.; Ferreira, M.C.; Rosa, L.H.; de Oliveira, A.M.; de Oliveira Júnior, E.N. Penicillium citrinum and Penicillium mallochii: New Phytopathogens of Orange Fruit and Their Control Using Chitosan. Carbohyd. Polym. 2020, 234, 115918. [Google Scholar] [CrossRef]
- El Amerany, F.; Meddich, A.; Wahbi, S.; Porzel, A.; Taourirte, M.; Rhazi, M.; Hause, B. Foliar Application of Chitosan Increases Tomato Growth and Influences Mycorrhization and Expression of Endo-Chitinase-Encoding Genes. Int. J. Mol. Sci. 2020, 21, 535. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, M. Studies on Chemical Constituents of Polygonum multiflorum. Chin. Tradit. Herb. Drug 1993, 24, 115–118. [Google Scholar]
- Choi, G.J.; Lee, S.W.; Jang, K.S.; Kim, J.S.; Cho, K.Y.; Kim, J.C. Effects of Chrysophenol, Parietin, and Nepodin of Rumex cripus on Barley and Cucumber Powdery Mildews. Crop. Prot. 2004, 23, 1215–1221. [Google Scholar] [CrossRef]
- Yang, L.; Gong, S.; Yang, X.; Yu, D. Activities of Botanical Fungicide Physcion on Several Plants Pathogenic Fungi. Agrochemicals 2020, 49, 133–135. [Google Scholar] [CrossRef]
- Yang, X.; Yang, L.; Wang, S.; Yu, D.; Ni, H. Synergistic Interaction of Physcion and Chrysophanol on Plant Powdery Mildew. Pest. Manag. Sci. 2007, 63, 511–515. [Google Scholar] [CrossRef]
- Yang, X.; Yang, L.; Ni, H.; Yu, D. Effects of Physcion, A Natural Anthraquinone Derivative, on the Infection Process of Blumeria graminis on wheat. Can. J. Plant. Pathol. 2008, 30, 391–396. [Google Scholar] [CrossRef]
- Yang, X.; Yang, L.; Wang, S.; Yu, D.; Ni, H. Distribution of Baseline Sensitivities to Natural Product Physcion Among Isolates of Sphaerotheca fuliginea and Pseudoperonospora cubensis. Plant. Dis. 2008, 92, 1451–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Yang, X.; Zeng, F.; Yang, L.; Yu, D.; Ni, H. Physcion, A Natural Anthraquinone Derivative, Enhances the Gene Expression of Leaf-specific Thionin of Barley against Blumeria graminis. Pest. Manag. Sci. 2010, 66, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Xue, M.; Yang, L.; Gong, S.; Yu, D. Bionic Fungicide Physcion Controls Gray Mold in Tomato: Possible Modes of Action. J. Gen. Plant. Pathol. 2019, 85, 57–65. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, F.; Wu, Q. Study on Control Effect of Physcion on Powdery Mildew of Rosa roxburghii. Anhui Agri. Sci. Bull. 2020, 26, 87–89. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Wu, X.; Su, Y.; Long, Y. Co-Application of Tetramycin and Chitosan in Controlling Leaf Spot Disease of Kiwifruit and Enhancing Its Resistance, Photosynthesis, Quality and Amino Acids. Biomolecules 2022, 12, 500. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, W.; Zhao, Y. Experiments Guidance on Postharvest Physiological and Biochemical of Fruits and Vegetables. China Light Industry Press: Beijing, China, 2007. [Google Scholar]
- Zhang, C.; Wang, Q.; Wu, X.; Long, Y.; Wu, Y.; Huang, Y.; Tang, J. Effects of Forchlorfenuron on Amino Acids and AromaComponents of Guichang Kiwifruit Postharvests. J. Nucl. Agric. Sci. 2019, 33, 2186–2194. [Google Scholar] [CrossRef]
- Vlot, A.C.; Sales, J.H.; Lenk, M.; Bauer, K.; Brambilla, A.; Sommer, A.; Chen, Y.; Wenig, M.; Nayem, S. Systemic Propagation of Immunity in Plants. New Phytol. 2021, 229, 1234–1250. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Lei, Y.; Su, Y.; Long, Y. Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids. Agriculture 2022, 12, 373. [Google Scholar] [CrossRef]
- Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int. J. Mol. Sci. 2019, 20, 332. [Google Scholar] [CrossRef] [Green Version]
- Dzung, N.A.; Khanh, V.T.P.; Dzung, T.T. Research on Impact of Chitosan Oligomers on Biophysical Characteristics, Growth, Development and Drought Resistance of Coffee. Carbohydr. Polym. 2011, 84, 751–755. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, K. Nutritional Evaluation of Protein—Ratio Coefficient of Amino Acid. Acta Nutr. Sin. 1988, 10, 187–190. [Google Scholar]
- Li, H.; Xiang, L.; Yang, N.; Cao, F.; Li, C.; Chen, P.; Ruan, X.; Feng, Y.; Zhou, N.; Wang, X. Zhiheshouwu Ethanol Extract Induces Intrinsic Apoptosis and Reduces Unsaturated Fatty Acids via SREBP1 Pathway in Hepatocellular carcinoma Cells. Food Chem. Toxicol. 2018, 119, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wang, C.; Li, Y.; Huang, L. Physcion Induces Apoptosis through Triggering Endoplasmic Reticulum Stress in Hepatocellular carcinoma. Biomed. Pharm. 2018, 99, 894–903. [Google Scholar] [CrossRef] [PubMed]
Indices | Amount | Indices | Amount | Indices | Amount |
---|---|---|---|---|---|
Average altitude | 1384 m | Organic matter | 13.65 g kg−1 | Available potassium | 28.23 mg kg−1 |
Annual sunshine | 1265 h | Total nitrogen | 1.41 g kg−1 | Exchangeable calcium | 18.16 cmol kg−1 |
Frostless season | 280 days | Total phosphorus | 1.70 g kg−1 | Exchangeable magnesium | 309.24 mg kg−1 |
Average temperature | 13.9 °C | Total potassium | 1.22 g kg−1 | Available zinc | 0.66 mg kg−1 |
Annual rainfall | 1100 mm | Available nitrogen | 57.18 mg kg−1 | Available iron | 6.62 mg kg−1 |
pH | 6.42 | Available phosphorus | 4.78 mg kg−1 | Available boron | 0.16 mg kg−1 |
Treatments | Disease Index before Spraying Fungicides | After Spraying Fungicides | |||
---|---|---|---|---|---|
Disease Index of 7 d | Control Effect (%) of 7 d | Disease Index of 14 d | Control Effect (%) of 14 d | ||
Ph 12.5 + Ch 250 | 2.27 ± 0.04 a | 2.83 ± 0.18 d | 92.65 ± 1.58 a | 3.47 ± 0.04 d | 90.68 ± 0.10 a |
Ph 25 | 2.23 ± 0.04 a | 3.47 ± 0.09 c | 83.62 ± 2.42 b | 4.79 ± 0.17 c | 80.43 ± 1.02 b |
Ch 500 | 2.24 ± 0.06 a | 4.46 ± 0.11 b | 70.75 ± 2.96 c | 5.15 ± 0.14 b | 77.80 ± 1.11 c |
Control | 2.28 ± 0.03 a | 9.92 ± 0.66 a | - | 15.38 ± 0.13 a | - |
Treatments | Ascorbic Acid (mg g−1) | Soluble Protein (%) | Soluble Sugar (%) | Total Acidity (%) | Soluble Solids (%) | Flavonoids (mg·g−1) | Triterpenes (mg·g−1) | SOD Activity (U g−1 FW) |
---|---|---|---|---|---|---|---|---|
Ph 12.5 + Ch 250 | 23.42 ± 0.95 a | 15.91 ± 0.49 a | 4.24 ± 0.10 a | 1.53 ± 0.05 a | 12.53 ± 0.15 a | 6.35 ± 0.23 a | 20.74 ± 0.29 a | 714.86 ± 16.47 a |
Ph 25 | 20.89 ± 0.74 b | 14.54 ± 0.36 b | 3.75 ± 0.09 b | 1.41 ± 0.06 b | 11.65 ± 0.32 b | 5.77 ± 0.12 b | 17.86 ± 0.26 b | 654.31 ± 16.08 b |
Ch 500 | 21.56 ± 0.96 b | 14.78 ± 0.62 b | 3.89 ± 0.10 b | 1.45 ± 0.08 b | 11.86 ± 0.20 b | 5.94 ± 0.27 b | 18.72 ± 0.56 b | 678.45 ± 19.95 b |
Control | 18.11 ± 0.65 c | 13.53 ± 0.13 c | 3.13 ± 0.11 c | 1.22 ± 0.07 b | 10.65 ± 0.34 c | 5.18 ± 0.12 c | 15.18 ± 0.56 c | 558.59 ± 28.06 c |
Treatments | EAA (mg kg−1) | NAA (mg kg−1) | TAA (mg kg−1) | The Proportion of EAA in TAA (%) | EAA/NAA |
---|---|---|---|---|---|
Ph 12.5 + Ch 250 | 88.32 ± 2.82 a | 339.09 ± 11.28 a | 468.27 ± 36.39 a | 18.91 ± 0.90 a | 0.2607 ± 0.0127 a |
Ph 25 | 73.29 ± 3.65 b | 315.77 ± 12.71 ab | 411.25 ± 12.19 b | 17.85 ± 1.40 ab | 0.2323 ± 0.0133 bc |
Ch 500 | 78.63 ± 1.54 b | 323.36 ± 10.53 a | 425.75 ± 15.47 ab | 18.48 ± 0.60 a | 0.2432 ± 0.0037 ab |
Control | 64.33 ± 5.96 c | 296.77 ± 15.80 b | 384.65 ± 31.57 b | 16.71 ± 0.25 b | 0.2168 ± 0.0184 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, J.; Su, Y.; Wu, X. Association of Physcion and Chitosan Can Efficiently Control Powdery Mildew in Rosa roxburghii. Antibiotics 2022, 11, 1661. https://doi.org/10.3390/antibiotics11111661
Zhang C, Li J, Su Y, Wu X. Association of Physcion and Chitosan Can Efficiently Control Powdery Mildew in Rosa roxburghii. Antibiotics. 2022; 11(11):1661. https://doi.org/10.3390/antibiotics11111661
Chicago/Turabian StyleZhang, Cheng, Jiaohong Li, Yue Su, and Xiaomao Wu. 2022. "Association of Physcion and Chitosan Can Efficiently Control Powdery Mildew in Rosa roxburghii" Antibiotics 11, no. 11: 1661. https://doi.org/10.3390/antibiotics11111661
APA StyleZhang, C., Li, J., Su, Y., & Wu, X. (2022). Association of Physcion and Chitosan Can Efficiently Control Powdery Mildew in Rosa roxburghii. Antibiotics, 11(11), 1661. https://doi.org/10.3390/antibiotics11111661