Identification and Characterization of Plasmids and Genes from Carbapenemase-Producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bacterial Identification and Antibiotic Susceptibility Test
2.2. Biofilm Formation of K. pneumoniae
2.3. Detection of Plasmids by PCR-Based Replicon Typing (PBRT)
2.4. Genotyping Characterization for Harboring Carbapenems Genes
2.5. Detection of Virulence Factors
3. Materials and Methods
3.1. Materials
3.2. Bacterial Inoculum Preparation
3.3. Minimum Inhibitory Concentration (MIC) Assay
3.4. Biofilm Formation of K. pneumoniae
3.5. Bacterial DNA Extraction
3.6. Detection of Plasmids by PCR-Based Replicon Typing (PBRT)
3.7. Detection of Carbapenem Genes by Polymerase Chain Reaction (PCR)
3.8. Detection of Virulence Genes by Polymerase Chain Reaction (PCR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, B.; Lin, C.; Liu, H.; Zhang, X.; Tian, Y.; Huang, Y.; Yan, H.; Qu, M.; Jia, L.; Wang, Q. Molecular Characteristics of Klebsiella pneumoniae Isolates from Outpatients in Sentinel Hospitals, Beijing, China, 2010–2019. Front. Cell. Infect. Microbiol. 2020, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjbar, R.; Fatahian Kelishadrokhi, A.; Chehelgerdi, M. Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infect. Drug Resist. 2019, 12, 603–611. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Ragheb, S.M.; Tawfick, M.M.; El-Kholy, A.A.; Abdulall, A.K. Phenotypic and Genotypic Features of Klebsiella pneumoniae Harboring Carbapenemases in Egypt: OXA-48-Like Carbapenemases as an Investigated Model. Antibiotics 2020, 9, 852. [Google Scholar] [CrossRef]
- Kopotsa, K.; Mbelle, N.M.; Osei Sekyere, J. Epigenomics, genomics, resistome, mobilome, virulome and evolutionary phylogenomics of carbapenem-resistant Klebsiella pneumoniae clinical strains. Microb. Genom. 2020, 6, mgen000474. [Google Scholar] [CrossRef]
- Imtiaz, W.; Syed, Z.; Rafaque, Z.; Andrews, S.C.; Dasti, J.I. Analysis of Antibiotic Resistance and Virulence Traits (Genetic and Phenotypic) in Klebsiella pneumoniae Clinical Isolates from Pakistan: Identification of Significant Levels of Carbapenem and Colistin Resistance. Infect. Drug Resist. 2021, 14, 227–236. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, L.; Yao, J. Analysis of Risk Factors and Mortality of Patients with Carbapenem-Resistant Klebsiella pneumoniae Infection. Infect. Drug Resist. 2022, 15, 2383–2391. [Google Scholar] [CrossRef]
- Xu, L.; Sun, X.; Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 18. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; 9240026436; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Y.; Bi, Y.; Liu, S.; Li, X.; Dong, S.; Ju, M. Predictors of mortality in patients with carbapenem-resistant Klebsiella pneumoniae infection: A meta-analysis and a systematic review. Ann. Palliat. Med. 2021, 10, 7340–7350. [Google Scholar] [CrossRef] [PubMed]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Kharazmkia, A.; Amirizadeh, M.; Goudarzi, Z.; Birjandi, M.; Barfipoursalar, A.; Mir, S. Prevalence of KPC-producing bacteria in negative gram of clinical samples obtained from patients. Ann. Med. Surg. 2022, 77, 103690. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef]
- Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Bedenić, B.; Sardelić, S. Carbapenemases. In Growing and Handling of Bacterial Cultures; IntechOpen: London, UK, 2018. [Google Scholar]
- Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-beta-lactamases: The quiet before the storm? Clin. Microbiol. Rev. 2005, 18, 306–325. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Lu, Y.; Xue, D.; Wei, Y.; Li, Q.; Li, G.; Lu, S.; Wang, J.; Wang, Y.; Peng, Y.; et al. Emergence of a Carbapenem-Resistant Klebsiella pneumoniae Isolate Co-harbouring Dual bla NDM- 6 -Carrying Plasmids in China. Front. Microbiol. 2022, 13, 900831. [Google Scholar] [CrossRef]
- Evans, B.A.; Amyes, S.G. OXA beta-lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, N.T.; Lamoureaux, T.L.; Toth, M.; Stewart, N.K.; Frase, H.; Vakulenko, S.B. Class D beta-lactamases: Are they all carbapenemases? Antimicrob. Agents Chemother. 2014, 58, 2119–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.J.A.; Alaa, H.A.A. Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. Afr. J. Microbiol. Res. 2016, 10, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazza, A.; Perini, M.; Mauri, C.; Comandatore, F.; Meroni, E.; Luzzaro, F.; Principe, L. Antimicrobial Susceptibility, Virulence, and Genomic Features of a Hypervirulent Serotype K2, ST65 Klebsiella pneumoniae Causing Meningitis in Italy. Antibiotics 2022, 11, 261. [Google Scholar] [CrossRef]
- Muraya, A.; Kyany’a, C.; Kiyaga, S.; Smith, H.J.; Kibet, C.; Martin, M.J.; Kimani, J.; Musila, L. Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens 2022, 11, 545. [Google Scholar] [CrossRef]
- Pan, Y.J.; Lin, T.L.; Chen, C.T.; Chen, Y.Y.; Hsieh, P.F.; Hsu, C.R.; Wu, M.C.; Wang, J.T. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci. Rep. 2015, 5, 15573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef] [PubMed]
- Ballen, V.; Gabasa, Y.; Ratia, C.; Ortega, R.; Tejero, M.; Soto, S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Front. Cell. Infect. Microbiol. 2021, 11, 738223. [Google Scholar] [CrossRef]
- Remya, P.A.; Shanthi, M.; Sekar, U. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J. Med. Microbiol. 2019, 37, 210–218. [Google Scholar] [CrossRef]
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.; Adhikari, P.; KC, S.S.; Shrestha, U.T.; Shah, P.K. Antibiogram and Biofilm Development among Klebsiella pneumoniae from Clinical Isolates. Tribhuvan Univ. J. Microbiol. 2021, 8, 83–92. [Google Scholar] [CrossRef]
- Wayne, P. Performance Standards for Antimicrobial Susceptibility Testing. In Twenty-Fourth Informational Supplement, M100–S24; Clinical Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2011; Volume 31, pp. 100–121. [Google Scholar]
- Ashwath, P.; Deekshit, V.K.; Rohit, A.; Dhinakaran, I.; Karunasagar, I.; Karunasagar, I.; Akhila, D.S. Biofilm Formation and Associated Gene Expression in Multidrug-Resistant Klebsiella pneumoniae Isolated from Clinical Specimens. Curr. Microbiol. 2022, 79, 73. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, J.; Wyres, K.L.; Judd, L.M.; Harshegyi, T.; Blakeway, L.; Wick, R.R.; Jenney, A.W.; Holt, K.E. ESBL plasmids in Klebsiella pneumoniae: Diversity, transmission and contribution to infection burden in the hospital setting. Genome Med. 2022, 14, 97. [Google Scholar] [CrossRef]
- Zaman, T.U.; Alrodayyan, M.; Albladi, M.; Aldrees, M.; Siddique, M.I.; Aljohani, S.; Balkhy, H.H. Clonal diversity and genetic profiling of antibiotic resistance among multidrug/carbapenem-resistant Klebsiella pneumoniae isolates from a tertiary care hospital in Saudi Arabia. BMC Infect. Dis. 2018, 18, 205. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, M.S.; Iriarte, A.; Reyes-Lamothe, R.; Sherratt, D.J.; Tolmasky, M.E. Small Klebsiella pneumoniae Plasmids: Neglected Contributors to Antibiotic Resistance. Front. Microbiol. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, K.; Chen, W.; Chen, J.; Zheng, J.; Liu, C.; Cheng, L.; Zhou, W.; Shen, H.; Cao, X. Epidemiological characteristics of carbapenem-resistant Enterobacteriaceae collected from 17 hospitals in Nanjing district of China. Antimicrob. Resist. Infect. Control 2020, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Alghoribi, M.F.; Binkhamis, K.; Alswaji, A.A.; Alhijji, A.; Alsharidi, A.; Balkhy, H.H.; Doumith, M.; Somily, A. Genomic analysis of the first KPC-producing Klebsiella pneumoniae isolated from a patient in Riyadh: A new public health concern in Saudi Arabia. J. Infect. Public Health 2020, 13, 647–650. [Google Scholar] [CrossRef]
- Alhazmi, W.; Al-Jabri, A.; Al-Zahrani, I. The Molecular Characterization of Nosocomial Carbapenem-Resistant Klebsiella pneumoniae Co-Harboring blaNDM and blaOXA-48 in Jeddah. Microbiol. Res. 2022, 13, 753–764. [Google Scholar] [CrossRef]
- Han, R.; Shi, Q.; Wu, S.; Yin, D.; Peng, M.; Dong, D.; Zheng, Y.; Guo, Y.; Zhang, R.; Hu, F.; et al. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Front. Cell. Infect. Microbiol. 2020, 10, 314. [Google Scholar] [CrossRef]
- Khan, M.A.; Mohamed, A.M.; Faiz, A.; Ahmad, J. Enterobacterial infection in Saudi Arabia: First record of Klebsiella pneumoniae with triple carbapenemase genes resistance. J. Infect. Dev. Ctries 2019, 13, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, N.; Kumar, M.; Katiyar, A.; Kumar, A.; Priya, P.; Kumar, B.; Biswas, N.R.; Kaur, P. Genome-wide identification of carbapenem-resistant Gram-negative bacterial (CR-GNB) isolates retrieved from hospitalized patients in Bihar, India. Sci. Rep. 2022, 12, 8477. [Google Scholar] [CrossRef] [PubMed]
- ElMahallawy, H.; Zafer, M.M.; Al-Agamy, M.; Amin, M.A.; Mersal, M.M.; Booq, R.Y.; Alyamani, E.; Radwan, S. Dissemination of ST101 blaOXA-48 producing Klebsiella pneumoniae at tertiary care setting. J. Infect. Dev. Ctries 2018, 12, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Nahavandinejad, M.; Asadpour, L. Mucoviscosity determination and detection of magA and rmpA genes in clinical isolates of Klebsiella pneumoniae in Northern Iran. Crescent J. Med. Biol. Sci. 2017, 4, 104–107. [Google Scholar]
- Izquierdo, L.; Coderch, N.; Pique, N.; Bedini, E.; Corsaro, M.M.; Merino, S.; Fresno, S.; Tomas, J.M.; Regue, M. The Klebsiella pneumoniae wabG gene: Role in biosynthesis of the core lipopolysaccharide and virulence. J. Bacteriol. 2003, 185, 7213–7221. [Google Scholar] [CrossRef] [Green Version]
- Uz Zaman, T.; Albladi, M.; Siddique, M.I.; Aljohani, S.M.; Balkhy, H.H. Insertion element mediated mgrB disruption and presence of ISKpn28 in colistin-resistant Klebsiella pneumoniae isolates from Saudi Arabia. Infect. Drug Resist. 2018, 11, 1183–1187. [Google Scholar] [CrossRef] [Green Version]
- Alsanie, W.F. Molecular diversity and profile analysis of virulence-associated genes in some Klebsiella pneumoniae isolates. Pract. Lab. Med. 2020, 19, e00152. [Google Scholar] [CrossRef]
- Arabaci, C.; Dal, T.; Basyigit, T.; Genisel, N.; Durmaz, R. Investigation of carbapenemase and mcr-1 genes in carbapenem-resistant Klebsiella pneumoniae isolates. J. Infect. Dev. Ctries 2019, 13, 504–509. [Google Scholar] [CrossRef]
- O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011, 47, e2437. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef]
- Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. J. Infect. Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef]
- Singh, A.K.; Prakash, P.; Achra, A.; Singh, G.P.; Das, A.; Singh, R.K. Standardization and Classification of In vitro Biofilm Formation by Clinical Isolates of Staphylococcus aureus. J. Glob. Infect. Dis. 2017, 9, 93–101. [Google Scholar] [CrossRef]
- Ahmed, O.B.; Dablool, A. Quality improvement of the DNA extracted by boiling method in gram negative bacteria. Int. J. Bioassays 2017, 6, 5347–5349. [Google Scholar] [CrossRef] [Green Version]
- Candan, E.D.; Aksoz, N. Klebsiella pneumoniae: Characteristics of carbapenem resistance and virulence factors. Acta Biochim. Polonica 2015, 62, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Amudhan, S.M.; Sekar, U.; Arunagiri, K.; Sekar, B. OXA beta-lactamase-mediated carbapenem resistance in Acinetobacter baumannii. Indian J. Med. Microbiol. 2011, 29, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Fevre, C.; Passet, V.; Deletoile, A.; Barbe, V.; Frangeul, L.; Almeida, A.S.; Sansonetti, P.; Tournebize, R.; Brisse, S. PCR-based identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the agent of rhinoscleroma. PLoS Negl. Trop. Dis. 2011, 5, e1052. [Google Scholar] [CrossRef]
- Ma, L.C.; Fang, C.T.; Lee, C.Z.; Shun, C.T.; Wang, J.T. Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J. Infect. Dis. 2005, 192, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.L.; Ko, W.C.; Cheng, K.C.; Lee, H.C.; Ke, D.S.; Lee, C.C.; Fung, C.P.; Chuang, Y.C. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin. Infect. Dis. 2006, 42, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.F.; Perry, C.; Elgohari, S.; Hampton, C.V. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J. Med. Microbiol. 2010, 59, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.L.; Ko, W.C.; Cheng, K.C.; Lee, C.C.; Lai, C.C.; Chuang, Y.C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn. Microbiol. Infect. Dis. 2008, 62, 1–6. [Google Scholar] [CrossRef]
- Abdul-Razzaq, M.S.; Al-Khafaji, J.K.T.; Al-Maamory, E.H.K.-A. Molecular characterization of capsular polysaccharide genes of Klebsiella pneumoniae in Iraq. Int. J. Curr. Microbiol. App Sci. 2014, 3, 224–234. [Google Scholar]
Strains | FOX R ≥ 32 | CPM R ≥ 16 | AZT R ≥ 4 | CAZ R ≥ 16 | CTC R ≥ 64 | CIP R ≥ 4 | MEM R ≥ 4 | IMI R ≥ 4 | AMP R ≥ 32 |
---|---|---|---|---|---|---|---|---|---|
MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | |
K1 | >1024 | >1024 | >1024 | 512 | >1024 | >1024 | 32 | 4 | >1024 |
K2 | >1024 | 512 | 512 | >1024 | >1024 | >1024 | 32 | 32 | >1024 |
K3 | 512 | 256 | 512 | 128 | >1024 | >1024 | 4 | 64 | >1024 |
K4 | >1024 | 1024 | 1024 | >1024 | >1024 | >1024 | 128 | 256 | 1024 |
K5 | 16 | <0.5 | <0.5 | <0.5 | >1024 | 2 | <0.5 | >1024 | >1024 |
K6 | >1024 | 1024 | >1024 | >1024 | >1024 | >1024 | 128 | 128 | >1024 |
K7 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | 256 | 128 | >1024 |
K8 | >1024 | 512 | 1024 | >1024 | >1024 | >1024 | 128 | 64 | >1024 |
K9 | 512 | 512 | >1024 | >1024 | >1024 | >1024 | 8 | 2 | >1024 |
K10 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | 512 | 128 | >1024 |
K11 | >1024 | 512 | 1024 | 512 | >1024 | >1024 | 8 | 16 | >1024 |
K12 | >1024 | >1024 | 1024 | >1024 | >1024 | >1024 | 128 | 256 | >1024 |
K13 | >1024 | 1024 | 1024 | >1024 | >1024 | >1024 | 64 | 256 | >1024 |
K14 | >1024 | 1024 | >1024 | >1024 | >1024 | >1024 | 256 | >1024 | >1024 |
K15 | >1024 | 1024 | >1024 | >1024 | >1024 | >1024 | 512 | >1024 | >1024 |
K16 | >1024 | 1024 | >1024 | >1024 | >1024 | >1024 | 256 | >1024 | >1024 |
K17 | >1024 | 512 | >1024 | 512 | >1024 | >1024 | 64 | >1024 | >1024 |
K18 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | 32 | 256 | >1024 |
K19 | >1024 | 512 | >1024 | 1024 | >1024 | >1024 | 64 | 512 | >1024 |
K20 | >1024 | 512 | >1024 | 512 | >1024 | >1024 | 4 | 32 | >1024 |
K21 | >1024 | 1024 | >1024 | 1024 | >1024 | >1024 | 1 | 8 | >1024 |
K22 | >1024 | 128 | 128 | 512 | 1024 | >1024 | 128 | >1024 | >1024 |
K23 | >1024 | >1024 | >1024 | >1024 | >1024 | >1024 | 32 | 32 | >1024 |
BAA 1705 | 512 | 64 | 1024 | 128 | 128 | >1024 | 32 | 8 | >1024 |
Biofilm Pattern | Frequency % (No of Isolates/23) |
---|---|
Strong | 0% (0/23) |
Moderate | 13.04% (3/23) |
Weak | 48.83% (11/23) |
No Biofilm | 39.13% (9/23) |
Sample No. | Source of Specimen | Sample No. | Source of Specimen |
---|---|---|---|
1 | Blood | 13 | Sputum |
2 | Wound | 14 | Sputum |
3 | Urine | 15 | Sputum |
4 | Blood | 16 | Sputum |
5 | Sputum | 17 | Central venous puncture |
6 | Urine | 18 | Urine |
7 | Wound | 19 | Sputum |
8 | Wound | 20 | Wound |
9 | Urine | 21 | Sputum |
10 | Sputum | 22 | Wound |
11 | Sputum | 23 | Sputum |
12 | Blood |
Gene | Positivity Rate (n/23) n = Number of Isolates | Positivity Rate (%) |
---|---|---|
blaKPC | 0/23 | 0% |
blaOXA-48 | 20/23 | 87% |
blaVIM | 23/23 | 100% |
blaNDM1 | 7/23 | 30% |
blaIMP | 0/23 | 0% |
blaOXA-23 | 1/23 | 4% |
Sample | blaKPC | blaOXA-48 | blaVIM | blaNDM | blaIMP | blaOXA-23 | Total |
---|---|---|---|---|---|---|---|
K1 | + | + | 2 | ||||
K2 | + | + | + | 3 | |||
K3 | + | + | 2 | ||||
K4 | + | + | 2 | ||||
K5 | + | 1 | |||||
K6 | + | + | + | 3 | |||
K7 | + | + | 2 | ||||
K8 | + | + | + | 3 | |||
K9 | + | + | 2 | ||||
K10 | + | + | + | 3 | |||
K11 | + | + | 2 | ||||
K12 | + | + | + | 3 | |||
K13 | + | + | 2 | ||||
K14 | + | + | 2 | ||||
K15 | + | + | 2 | ||||
K16 | + | + | 2 | ||||
K17 | + | + | 2 | ||||
K18 | + | + | 2 | ||||
K19 | + | + | 2 | ||||
K20 | + | + | 2 | ||||
K21 | + | 1 | |||||
K22 | + | + | + | + | 4 | ||
K23 | + | + | 2 |
Standard OD Value | Biofilm Formation |
---|---|
OD > 4 × ODc | Strong |
2 × ODc < OD ≤ 4 × ODc | Moderate |
ODc < OD ≤ 2 × ODc | Weak |
OD ≤ ODc | Non |
PCR Mix | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 |
---|---|---|---|---|---|---|---|---|
Target Site Amplicon Length (bp) | HI1 (534) | M (741) | FIB (683) | L (854) | T (750) | U (843) | FIB KN (631) | HIB-M (570) |
HI2 (298–308) | N (514) | FIA (462) | X3 (284) | A/C (418) | X1 (370) | X2 (376) | FIB-M (440) | |
HIα (159) | I2 (316) | P1 (345) | I1Y (161) | FIIS (259–260) | R (248) | FIB KQ (258) | FII (288–292) | |
BO (159) | W (242) | N2 (177) | FIIK (142–148) | K (190) | X4 (172) |
Gene | Primer Sequence | Amplicon Size (bp) | Reference |
---|---|---|---|
KPC | F: 5′-CGTCTAGTTCTGCTGTCTTG-3′ R: 5′-CTTGTCATCCTTGTTAGGCG-3′ | 798 | [57] |
NDM-1 | F: 5′-GGTTTGGCGATCTGGTTTTC-3 R: 5′-CGGAATGGCTCATCACGATC-3′ | 621 | [57] |
OXA-48 | F: 5′-GCGTGGTTAAGGATGAACAC-3′ R: 5′-CATCAAGTTCAACCCAACCG-3′ | 438 | [57] |
OXA-23 | F: 5′-GATCGGATTGGAGAACCAGA-3′ R: 5′-ATTTCTGACCGCATTTCCAT-3′ | 501 | [58] |
IMP | F: 5′-GGAATAGAGTGGCTTAAYTCTC-3′ R: 5′-GGTTTAAYAAAACAACCACC-3′ | 232 | [57] |
VIM | F: 5′-GATGGTGTTTGGTCGCATA-3′ R: 5′-CGAATGCGCAGCACCAG-3′ | 390 | [57] |
Gene | Primer Sequence | Amplicon Size (bp) | Reference |
---|---|---|---|
Kfu | F: GAAGTGACGCTGTTTCTGGC R: TTTCGTGTGGCCAGTGACTC | 797 | [60] |
WAb G | F: ACCATCGGCCATTTGATAGA R: CGGACTGGCAGATCCATATC | 683 | [61] |
Uge | F: TCTTCACGCCTTCCTTCACT R: GATCATCCGGTCTCCCTGTA | 534 | [61] |
rmpA | F: ACTGGGCTACCTCTGCTTCA R: CTTGCATGAGCCATCTTTCA | 516 | [61,62] |
Fim H | F: TGCTGCTGGGCTGGTCGATG R: GGGAGGGTGACGGTGACATC | 688 | [63] |
mag A | F: GGTGCTCTTTACATCATTGC R: GCAATGGCCATTTGCGTTAG | 1282 | [61] |
CPS | F: TATTCATCAGAAGCACGAGCTGGGAGAAGCC R: GTCGGTAGCTGTTAAGCCAGGGGCGGTAGCG | 418 | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Booq, R.Y.; Abutarboush, M.H.; Alolayan, M.A.; Huraysi, A.A.; Alotaibi, A.N.; Alturki, M.I.; Alshammari, M.K.; Bakr, A.A.; Alquait, A.A.; Tawfik, E.A.; et al. Identification and Characterization of Plasmids and Genes from Carbapenemase-Producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia. Antibiotics 2022, 11, 1627. https://doi.org/10.3390/antibiotics11111627
Booq RY, Abutarboush MH, Alolayan MA, Huraysi AA, Alotaibi AN, Alturki MI, Alshammari MK, Bakr AA, Alquait AA, Tawfik EA, et al. Identification and Characterization of Plasmids and Genes from Carbapenemase-Producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia. Antibiotics. 2022; 11(11):1627. https://doi.org/10.3390/antibiotics11111627
Chicago/Turabian StyleBooq, Rayan Y., Mohammed H. Abutarboush, Mohammed A. Alolayan, Abdulaziz A. Huraysi, Amjad N. Alotaibi, Maha I. Alturki, Maryam K. Alshammari, Abrar A. Bakr, Azzam A. Alquait, Essam A. Tawfik, and et al. 2022. "Identification and Characterization of Plasmids and Genes from Carbapenemase-Producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia" Antibiotics 11, no. 11: 1627. https://doi.org/10.3390/antibiotics11111627
APA StyleBooq, R. Y., Abutarboush, M. H., Alolayan, M. A., Huraysi, A. A., Alotaibi, A. N., Alturki, M. I., Alshammari, M. K., Bakr, A. A., Alquait, A. A., Tawfik, E. A., Alsaleh, N. B., Bahwerth, F. S., Alarawi, M. S., Alyamani, E. J., & Sendy, B. K. (2022). Identification and Characterization of Plasmids and Genes from Carbapenemase-Producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia. Antibiotics, 11(11), 1627. https://doi.org/10.3390/antibiotics11111627