Synergistic Action of Cinnamomum verum Essential Oil with Sertraline
Abstract
:1. Introduction
2. Results
2.1. Cinnamon verum EO Chemical Composition
2.2. Antibacterial Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Antimicrobial Activity
4.2.2. Microdilution Checkerboard Method
4.2.3. Gas Chromatography/Mass Spectrophotometer Equipment
4.2.4. Compound Identification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CEO | Cinnamomum verum L. essential oil |
EOs | Essential Oils |
GC | Gas Chromatography |
MS | Mass Spectrometer |
SEM | Structural Equation Modeling |
LRI | Linear Retention Indices |
AI | Arithmetic Index |
SI/MS | Similarity Index/Mass Spectra |
MIC | Minimal Inhibitory Concentration |
FICI | Fractional Inhibitory Concentration |
References
- Davies, S.C.; Fowler, T.; Watson, J.; Livermore, D.M.; Walker, D. Annual Report of the Chief Medical Officer: Infection and the rise of antimicrobial resistance. Lancet 2013, 381, 1606–1609. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Fair, R.J.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Med. Chem. 2014, 6, S14459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, A.; Carocci, A.; Defrenza, I.; Muraglia, M.; Carrieri, A.; VanBambeke, F.; Rosato, A.; Corbo, F.; Franchini, C. 2-Aminobenzothiazole derivatives: Search for new antibacterial agents. Eur. J. Med. Chem. 2013, 64, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defrenza, I.; Catalano, A.; Carocci, A.; Carrieri, A.; Muraglia, M.; Rosato, A.; Corbo, F.; Franchini, C. 1,3-Benzothiazoles as Antimicrobial Agents. J. Heterocycl. Chem. 2014, 52, 1705–1712. [Google Scholar] [CrossRef]
- Armenise, D.; Carocci, A.; Catalano, A.; Muraglia, M.; Defrenza, I.; De Laurentis, N.; Rosato, A.; Corbo, F.; Franchini, C. Synthesis and antimicrobial evaluation of a new series of N-1,3-benzothiazol-2-ylbenzamides. J. Chem. 2013, 2013, 181758. [Google Scholar] [CrossRef] [Green Version]
- Giovine, A.; Muraglia, M.; Florio, M.A.; Rosato, A.; Corbo, F.; Franchini, C.; Musio, B.; Degennaro, L.; Luisi, R. Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents. Molecules 2014, 19, 11505–11519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aacute; lvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef]
- Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Curr. Med. Chem. 2019, 26, 5501–5541. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Piarulli, M.; Schiavone, B.P.I.; Catalano, A.; Carocci, A.; Carrieri, A.; Carone, A.; Caggiano, G.; Franchini, C.; Corbo, F.; et al. In vitro effectiveness of Anidulafungin against Candida sp. biofilms. J. Antibiot. 2013, 66, 701–704. [Google Scholar] [CrossRef]
- Avato, P.; Raffo, F.; Guglielmi, G.; Vitali, C.; Rosato, A. Extracts from St. John’s Worth and their antimicrobial activity. Phytother. Res. 2004, 18, 230–232. [Google Scholar] [CrossRef]
- Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago spp.: Structure activity relationship. Phytother. Res. 2006, 20, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Roselli, M.; Cavalluzzi, M.M.; Bruno, C.; Lovece, A.; Carocci, A.; Franchini, C.; Habtemariam, S.; Lentini, G. Synthesis and evaluation of berberine derivatives and analogs as potential antiacetylcholinesterase and antioxidant agents. Phytochem. Lett. 2016, 18, 150–156. [Google Scholar] [CrossRef]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, H.A.; El-Ghorab, A.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–212. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Bueno, J.; Demirci, F.; Baser, K.H.C. Chapter 6: Essential Oils against Microbial Resistance Mechanisms Challenges and Ap-plications in Drug Discovery. In Essential Oils and Nanotechnology for Treatment of Microbial Diseases; Rai, M., Zacchino, S., Derita, M.G., Eds.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2017; ISBN 9781138630727. [Google Scholar]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faleiro, M.L. The mode of antibacterial action of essential oils. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 2, 1143–1156. [Google Scholar]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Crit. Rev. Food Sci. Nutr. 2020, 62, 1740–1751. [Google Scholar] [CrossRef]
- El-Tarabily, K.A.; El-Saadony, M.T.; Alagawany, M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Elwan, H.A.M.; Elnesr, S.S.; El-Hack, M.E.A. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J. Biol. Sci. 2021, 28, 5145–5156. [Google Scholar] [CrossRef] [PubMed]
- Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020, 32, 279–295. [Google Scholar] [CrossRef]
- Ni, Z.-J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Shaaban, H.A. Essential Oil as Antimicrobial Agents: Efficacy, Stability, and Safety Issues for Food Application. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). In Biochemistry and Molecular Biology of Plants; Buchanan, B., Gruissem, W., Jones, R., Eds.; American Society of Plant Physiologist: Rock Ville, MD, USA, 2000. [Google Scholar]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Singh, N.; Rao, A.S.; Nandal, A.; Kumar, S.; Yadav, S.S.; Ganaie, S.A.; Narasimhan, B. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition. Food Chem. 2020, 338, 127773. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Kunnath, K.; Alfarhan, A.; Rajagopal, R.; Ramesh, V. Chemical composition of Cinnamomum verum leaf and flower essential oils and analysis of their antibacterial, insecticidal, and larvicidal properties. Molecules 2021, 26, 6303. [Google Scholar] [CrossRef]
- Firmino, D.F.; Cavalcante, T.T.; Gomes, G.A.; Firmino, N.; Rosa, L.D.; de Carvalho, M.G.; Catunda, F.E., Jr. Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: Antimicrobial activities. Sci. World J. 2018, 2018, 7405736. [Google Scholar] [CrossRef] [Green Version]
- Akrami, S.; Amin, M.; Saki, M. In vitro evaluation of the antibacterial effects of Cinnamomum zeylanicum essential oil against clinical multidrug-resistant Shigella isolates. Mol. Biol. Rep. 2021, 48, 2583–2589. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2013, 40, 76–94. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Krishnan, T.; Chan, K.-G.; Lim, S.H.E. Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain. J. Microbiol. Biotechnol. 2015, 25, 1299–1306. [Google Scholar] [CrossRef]
- Rosato, A.; Sblano, S.; Salvagno, L.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics. Antibiotics 2020, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the synergistic action of Mentha Piperita essential oil with common antimicrobials. PLoS ONE 2018, 13, e0200902. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Milillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef]
- Salvagno, L.; Sblano, S.; Fracchiolla, G.; Corbo, F.; Clodoveo, M.L.; Rosato, A. Antibiotics—Mentha piperita essential oil synergism inhibits mature bacterial biofilm. Chem. Today 2020, 38, 49–52. [Google Scholar]
- Boyd, N.K.; Teng, C.; Frei, C.R. Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus on Drug Repurposing. Front. Cell. Infect. Microbiol. 2021, 11, 684515. [Google Scholar] [CrossRef] [PubMed]
- Foletto, V.S.; da Rosa, T.F.; Serafin, M.B.; Bottega, A.; Hörner, R. Repositioning of non-antibiotic drugs as an alternative to microbial resistance: A systematic review. Int. Antimicrob. Agents 2021, 58, 106380. [Google Scholar] [CrossRef]
- Barbarossa, A.; Rosato, A.; Corbo, F.; Clodoveo, M.L.; Fracchiolla, G.; Carrieri, A.; Carocci, A. Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics 2022, 11, 816. [Google Scholar] [CrossRef] [PubMed]
- Caldara, M.; Marmiroli, N. Antimicrobial Properties of Antidepressants and Antipsychotics—Possibilities and Implications. Pharmaceuticals 2021, 14, 915. [Google Scholar] [CrossRef]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.-U.; Ullah, F.; Ullah, I.; Ali, G.; Syed, N.-I.; Hussain, S. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J. Biol. Res. 2015, 22, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottega, A.; Serafin, M.B.; Da Rosa, T.F.; Foletto, V.S.; Machado, C.D.S.; Coelho, S.S.; Mainardi, A.; Hörner, R. Antimicrobial and Antineoplastic Properties of Sertraline. Am. J. Ther. 2020, 27, e632–e635. [Google Scholar] [CrossRef] [PubMed]
- Gowri, M.; Jayashree, B.; Jeyakanthan, J.; Girija, E. Sertraline as a promising antifungal agent: Inhibition of growth and biofilm of Candida auris with special focus on the mechanism of action in vitro. J. Appl. Microbiol. 2019, 128, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Muthu, D.; Gowri, M.; Kumar, G.S.; Kattimani, V.S.; Girija, E.K. Repurposing of antidepression drug sertraline for antimicrobial activity against Staphylococcus aureus: A potential approach for the treatment of osteomyelitis. New J. Chem. 2019, 43, 5315–5324. [Google Scholar] [CrossRef]
- Rosato, A.; Altini, E.; Sblano, S.; Salvagno, L.; Maggi, F.; de Michele, G.; Carocci, A.; Clodoveo, M.; Corbo, F.; Fracchiolla, G. Synergistic Activity of New Diclofenac and Essential Oils Combinations against Different Candida spp. Antibiotics 2021, 10, 688. [Google Scholar] [CrossRef]
- Waseem, R.; Low, K.H. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry. J. Sep. Sci. 2015, 38, 483–501. [Google Scholar] [CrossRef]
- Gende, L.B.; Floris, I.; Fritz, R.; Eguaras, M.J. Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bull. Insectol. 2008, 61, 1–4. [Google Scholar]
- Unlu, M.; Ergene, E.; Unlu, G.V.; Zeytinoglu, H.S.; Vural, N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol. 2010, 48, 3274–3280. [Google Scholar] [CrossRef] [PubMed]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook 2022. Available online: https://webbook.nist.gov/chemistry/ (accessed on 20 April 2022). [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Steam, IL, USA, 1995; ISBN 978-1-932633-21-4. [Google Scholar]
- Koo, I.; Kim, S.; Zhang, X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography–mass spectrometry. J. Chromatogr. A 2013, 1298, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, K.X.; Vidavsky, I.; Gross, M.L. From similarity index to spectral contrast angle. J. Am. Soc. Mass Spectrom. 2002, 13, 85–88. [Google Scholar]
- Rosato, A.; Catalano, A.; Carocci, A.; Carrieri, A.; Carone, A.; Caggiano, G.; Franchini, C.; Corbo, F.; Montagna, M.T. In vitro interactions between anidulafungin and nonsteroidal anti-inflammatory drugs on biofilms of Candida spp. Bioorganic Med. Chem. 2016, 24, 1002–1005. [Google Scholar] [CrossRef]
- Rosato, A.; Piarulli, M.; Schiavone, B.I.P.; Montagna, M.T.; Caggiano, G.; Muraglia, M.; Carone, A.; Franchini, C.; Corbo, F. In vitro synergy testing of Anidulafungin with Sertraline, Tioconazole, 5-Flucytosine and Amphotericin B against some Candida spp. Med. Chem. 2012, 8, 690698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandalari, G.; Bennett, R.; Bisignano, G.; Trombetta, D.; Saija, A.; Faulds, C.; Gasson, M.; Narbad, A. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J. Appl. Microbiol. 2007, 103, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Approved Standard—Ninety Edition 2012, Volume 32, No. 2.
- M27-A3; Reference Method for Broth Dilution Antifungal suscEptibility Testing of Yeast. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; Approved standard, 3rd ed.
- EUCAST. Terminology Relating to Methods for the Determination of Susceptibility of Bacteria to Antimicrobial Agents, Eucast Definitive Document 2.1; European Committee for Antimicrobial Susceptibility Testing; European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Basel, Switzerland, 2000; Volume 6, pp. 503–508. [Google Scholar]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef] [Green Version]
- Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401–409. [Google Scholar] [CrossRef]
- Camero, M.; Lanave, G.; Catella, C.; Capozza, P.; Gentile, A.; Fracchiolla, G.; Britti, D.; Martella, V.; Buonavoglia, C.; Tempesta, M. Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1. Vet. Microbiol. 2019, 230, 150–155. [Google Scholar] [CrossRef]
Compound | Peacks Area % ± SEM | Library/ID | SI/MS | LRI | AI |
---|---|---|---|---|---|
1 | 0.3 ± 0.04 | α-Pinene a | 94 | 934 | 934 |
2 | 0.12 ± 0.06 | Camphene | 96 | 950 | 949 |
3 | 0.5 ± 0.06 | β-Thujene | 91 | 965 | 968 |
4 | 0.2 ± 0.04 | α-Phellandrene a | 90 | 1005 | 1001 |
5 | 0.52 ± 0.04 | p-Cymene | 95 | 1021 | 1021 |
6 | 1.47 ± 0.29 | Eucalyptol a | 98 | 1023 | 1023 |
7 | 6.78 ± 1.25 | Linalool a | 97 | 1095 | 1098 |
8 | 0.16 ± 0.012 | o-Anisaldehyde | 98 | 1220 | 1222 |
9 | 72 ± 5.9 | (E)-Cinnamaldehyde a | 97 | 1225 | 1226 |
10 | 0.21 ± 0.029 | Safrole | 97 | 1285 | 1287 |
11 | 0.3 ± 0.05 | α-Cubebene | 98 | 1348 | 1348 |
12 | 6 ± 1.7 | Eugenol a | 98 | 1360 | 1359 |
13 | 3.7 ± 0.8 | Caryophyllene a | 99 | 1410 | 1408 |
14 | 0.5 ± 0.06 | Humulene | 95 | 1452 | 1452 |
15 | 5 ± 1.5 | Cinnamyl Acetate a | 97 | 1455 | 1455 |
16 | 0.13 ± 0.023 | Eugenol Acetate | 96 | 1525 | 1524 |
17 | 0.24 ± 0.028 | Caryophyllene oxide | 83 | 1580 | 1578 |
18 | 0.6 ± 0.08 | Benzyl Benzoate | 96 | 1755 | 1753 |
Strains | MICo a | MICc b | FIC c | FICI d | R% e |
---|---|---|---|---|---|
Bacillus subtilis ATCC 6633 | |||||
Sertraline | 64.0 | 4.00 | 0.06 | 0.11 | 94 |
CEO | 1.22 | 0.06 | 0.05 | 95 | |
Enterococcus faecalis ATCC 29212 | |||||
Sertraline | 16.0 | 0.50 | 0.03 | 0.08 | 97 |
CEO | 1.22 | 0.06 | 0.05 | 95 | |
Enterococcus faecalis BN21 | |||||
Sertraline | 32.0 | 1.00 | 0.03 | 0.13 | 97 |
CEO | 1.22 | 0.12 | 0.10 | 90 | |
Enterococcus faecalis BS | |||||
Sertraline | 32.0 | 1.00 | 0.03 | 0.08 | 97 |
CEO | 1.22 | 0.06 | 0.05 | 95 | |
Staphylococcus aureus ATCC 25923 | |||||
Sertraline | 16.0 | 0.50 | 0.03 | 0.13 | 97 |
CEO | 1.22 | 0.12 | 0.10 | 90 | |
Staphylococcus aureus ATCC 29213 | |||||
Sertraline | 16.0 | 0.50 | 0.03 | 0.28 | 97 |
CEO | 1.22 | 0.31 | 0.25 | 75 | |
Staphylococcus aureus ATCC 43300 | |||||
Sertraline | 32.0 | 1.00 | 0.03 | 0.43 | 97 |
CEO | 1.22 | 0.49 | 0.40 | 60 | |
Staphylococcus aureus ATCC 6538p | |||||
Sertraline | 64.0 | 4.00 | 0.06 | 0.11 | 94 |
CEO | 1.22 | 0.06 | 0.05 | 95 | |
Staphylococcus aureus BS | |||||
Sertraline | 16.0 | 1.00 | 0.06 | 0.26 | 94 |
CEO | 1.22 | 0.24 | 0.20 | 80 | |
Acinetobacter baumannii ATCC 19606 | |||||
Sertraline | 16.0 | 0.50 | 0.03 | 0.08 | 97 |
CEO | 1.22 | 0.06 | 0.20 | 80 | |
Corynebacterium striatum RM | |||||
Sertraline | 32.0 | 1.00 | 0.03 | 0.08 | 97 |
CEO | 2.44 | 0.13 | 0.20 | 95 | |
Escherichia coli ATCC 25922 | |||||
Sertraline | 16.0 | 0.50 | 0.03 | 0.23 | 97 |
CEO | 4.88 | 0.98 | 0.20 | 80 | |
Escherichia coli ESBL | |||||
Sertraline | 32.0 | 1.00 | 0.03 | 0.43 | 97 |
CEO | 4.88 | 1.95 | 0.40 | 60 | |
Klebsiella pneumoniae ATCC 13883 | |||||
Sertraline | 33.0 | 1.03 | 0.13 | 0.53 | 97 |
CEO | 4.88 | 1.95 | 0.40 | 60 | |
Pseudomonas aeruginosa ATCC 27853 | |||||
Sertraline | 64.0 | 8.00 | 0.06 | 0.11 | 87 |
CEO | 4.88 | 0.24 | 0.05 | 95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbarossa, A.; Sblano, S.; Rosato, A.; Carrieri, A.; Corbo, F.; Clodoveo, M.L.; Fracchiolla, G.; Carocci, A. Synergistic Action of Cinnamomum verum Essential Oil with Sertraline. Antibiotics 2022, 11, 1617. https://doi.org/10.3390/antibiotics11111617
Barbarossa A, Sblano S, Rosato A, Carrieri A, Corbo F, Clodoveo ML, Fracchiolla G, Carocci A. Synergistic Action of Cinnamomum verum Essential Oil with Sertraline. Antibiotics. 2022; 11(11):1617. https://doi.org/10.3390/antibiotics11111617
Chicago/Turabian StyleBarbarossa, Alexia, Sabina Sblano, Antonio Rosato, Antonio Carrieri, Filomena Corbo, Maria Lisa Clodoveo, Giuseppe Fracchiolla, and Alessia Carocci. 2022. "Synergistic Action of Cinnamomum verum Essential Oil with Sertraline" Antibiotics 11, no. 11: 1617. https://doi.org/10.3390/antibiotics11111617
APA StyleBarbarossa, A., Sblano, S., Rosato, A., Carrieri, A., Corbo, F., Clodoveo, M. L., Fracchiolla, G., & Carocci, A. (2022). Synergistic Action of Cinnamomum verum Essential Oil with Sertraline. Antibiotics, 11(11), 1617. https://doi.org/10.3390/antibiotics11111617