MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives
Abstract
:1. Introduction
1.1. S. aureus Skin Colonization in Psoriatic Patients
1.2. S. aureus and SSSI in Psoriatic Patients
2. Management of S. aureus SSSI
3. New Perspectives on the Treatment of MRSA-Induced SSSI
Treatment | Experimental Model | Advantage/Disadvantage |
---|---|---|
Quorum sensing inhibitors | ||
RIP [56] | Murine model, MRSA infected skin wound Topical RIP (20 mcg), teicoplanin i.p., allevyn, allevyn + teicoplanin i.p., topical RIP + teicoplanin i.p. | Topical RIP enhances teicoplanin effect against MRSA Better wound healing with topical RIP + teicoplanin (epithelial, granulation, collagen scores, microvessel density and VEGF expression) |
RIP [57] | Case 1: 56 y.o. patient with diabetic foot ulcer, MRSA infection. Linezolid 600 mg 2/die + daily topical RIP (1 mg/cc) Case 2: 48 y.o. patient with leg gangrene/diabetic ulcer, MRSA infection. Daptomycin 6 mg/kg daily + topical RIP (1 mg/cc) | Rapid improvement, healing in 12 (Case 1) and 24 (Case 2) weeks, avoiding amputation. Excellent synergy with linezolid and daptomycin First case reports on human patients with severe infections Best candidate for future applications |
FS10 [58] | Murine model, MRSA and MSSA-infected wounds Topical FS10 (20 mcg) + tigecycline i.p. (7 mg/kg) vs. monotherapy vs. untreated vs. uninfected | Better infection control and wound healing with combination FS10 + tigecycline Synergism with tigecycline No data on humans |
Vit. E and derivates | ||
Tocotrienols (T3s) [64] | Murine model, MRSA infected wounds T3s, daptomycin i.p, T3s + daptomycin i.p. | Better bactericidal effect T3s + daptomycin Synergism with daptomycin Well-known and low-cost molecule No data on humans |
Vitamin E (VE) [65] | Murine model, MRSA infected wounds VE, tigecycline i.p, VE + tigecycline i.p. | Bactericidal enhancer action VE + tigecycline Synergism with tigecycline Well-known and low-cost molecule No data on humans Low serum level [70] and intake [69] of VE in psoriatic patients with metabolic comorbidities New possible strategy for reducing MRSA infection risk |
Phototherapy | ||
Combination of 2 wavelengths 460 nm and 405 nm [69] | Murine model, MRSA infected wounds 460 nm (360 J/cm2), 405 nm (342 J/cm2) | Bactericidal MRSA action No apoptosis of skin cells Low-cost therapy Possible skin barrier improvement in psoriatic patients [72] No data on humans Need to evaluate synergism with other MRSA antibiotics |
Nanotechnology | ||
Zinc oxide nanoparticles (ZnO-NPs) [73] | In vitro MRSA strains | Low-cost molecules Need to evaluate synergism with other MRSA antibiotics Lack of human studies Possible risk of increased penetration and skin barrier impairment |
Nickel nanoparticles (NiNPs) [74] | In vitro MRSA strains | Low-cost molecules Need to evaluate synergism with other MRSA antibiotics Lack of human studies Possible risk of increased penetration and skin barrier impairment |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, O.; Lucarini, G.; Campanati, A.; Goteri, G.; Zizzi, A.; Marconi, B.; Ganzetti, G.; Minardi, D.; Di Primio, R.; Offidani, A. VEGF, survivin and NOS overexpression in psoriatic skin: Critical role of nitric oxide synthases. J. Dermatol. Sci. 2009, 54, 205–208. [Google Scholar] [PubMed]
- El Hachem, M.; Gesualdo, F.; Ricci, G.; Diociaiuti, A.; Giraldi, L.; Ametrano, O.; Occella, C.; Fortina, A.B.; Milioto, M.; Arcangeli, F.; et al. Topical corticosteroid phobia in parents of pediatric patients with atopic dermatitis: A multicentre survey. Ital. J. Pediatr. 2017, 43, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisondi, P.; Altomare, G.; Ayala, F.; Bardazzi, F.; Bianchi, L.; Chiricozzi, A.; Costanzo, A.; Conti, A.; Dapavo, P.; De Simone, C.; et al. Italian guidelines on the systemic treatments of moderate-to-severe plaque psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 774–790. [Google Scholar] [PubMed] [Green Version]
- Boyman, O.; Conrad, C.; Tonel, G.; Gilliet, M.; Nestle, F.O. The pathogenic role of tissue-resident immune cells in psoriasis. Trends Immunol. 2007, 28, 51–57. [Google Scholar] [CrossRef]
- Gaspari, A.A. Innate and adaptive immunity and the pathophysiology of psoriasis. J. Am. Acad. Dermatol. 2006, 54, S67–S80. [Google Scholar] [CrossRef]
- Bos, J.D.; De Rie, M.A.; Teunissen, M.B.M.; Piskin, G. Psoriasis: Dysregulation of innate immunity. Br. J. Dermatol. 2005, 152, 1098–1107. [Google Scholar]
- Marani, A.; Rizzetto, G.; Radi, G.; Molinelli, E.; Capodaglio, I.; Offidani, A.; Simonetti, O. Metabolic Comorbidities and Cardiovascular Disease in Pediatric Psoriasis: A Narrative Review. Healthcare 2022, 10, 1190. [Google Scholar] [CrossRef]
- Simonetti, O.; Ferretti, G.; Salvi, A.; Offidani, A.M.; Bossi, G. Plasma Lipid Changes in Psoriatic Children. Dermatology 1992, 185, 96–100. [Google Scholar] [CrossRef]
- Hsu, D.Y.; Gordon, K.; Silverberg, J.I. Serious infections in hospitalized patients with psoriasis in the United States. J. Am. Acad. Dermatol. 2016, 75, 287–296. [Google Scholar]
- Humphreys, H.; Becker, K.; Dohmen, P.; Petrosillo, N.; Spencer, M.; van Rijen, M.; Wechsler-Fördös, A.; Pujol, M.; Dubouix, A.; Garau, J. Staphylococcus aureus and surgical site infections: Benefits of screening and decolonization before surgery. J. Hosp. Infect. 2016, 94, 295–304. [Google Scholar] [CrossRef] [PubMed]
- James, G.A.; Swogger, E.; Wolcott, R.; deLancey Pulcini, E.; Secor, P.; Sestrich, J.; Costerton, J.W.; Stewart, P.S. Biofilms in chronic wounds. Wound Repair Regen. 2008, 16, 37–44. [Google Scholar] [CrossRef]
- Malone, M.; Bjarnsholt, T.; McBain, A.J.; James, G.A.; Stoodley, P.; Leaper, D.; Tachi, M.; Schultz, G.; Swanson, T.; Wolcott, R.D. The prevalence of biofilms in chronic wounds: A systematic review and meta-analysis of published data. J. Wound Care 2017, 26, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, G.R.; Checketts, J.X.; Scott, J.T.; Vassar, M.; Norris, B.L.; Giannoudis, P.V. Prevalence of Deep Surgical Site In-fection After Repair of Periarticular Knee Fractures: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e199951. [Google Scholar] [CrossRef]
- Scheurich, D.; Woeltje, K. Skin and soft tissue infections due to CA-MRSA. Mo. Med. 2009, 106, 274–276. [Google Scholar]
- Roy, S.; Elgharably, H.; Sinha, M.; Ganesh, K.; Chaney, S.; Mann, E.; Miller, C.; Khanna, S.; Bergdall, V.K.; Powell, H.M.; et al. Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J. Pathol. 2014, 233, 331–343.s. [Google Scholar] [CrossRef] [Green Version]
- Balci, D.D.; Duran, N.; Ozer, B.; Gunesacar, R.; Onlen, Y.; Yenin, J.Z. High prevalence of Staphylococcus aureus cultivation and superantigen production in patients with psoriasis. Eur. J. Dermatol. 2009, 19, 238–242. [Google Scholar] [CrossRef]
- Yarwood, J.M.; Leung, D.Y.; Schlievert, P.M. Evidence for the involvement of bacterial superantigens in psoriasis, atopic dermatitis, and Kawasaki syndrome. FEMS Microbiol. Lett. 2000, 192, 1–7. [Google Scholar] [CrossRef]
- El Ferezli, J.; Jenbazian, L.; Rubeiz, N.; Kibbi, A.G.; Zaynoun, S.; Abdelnoor, A.M. Streptococcus sp. and Staphylococcus aureus isolates from patients with psoriasis possess genes that code for toxins (superantigens): Clinical and therapeutic implications. Immunopharmacol. Immunotoxicol. 2008, 30, 195–205. [Google Scholar] [CrossRef]
- Casas, C.; Ribet, V.; Alvarez-Georges, S.; Sibaud, V.; Guerrero, D.; Schmitt, A.-M.; Redoulès, D. Modulation of Interleukin-8 and staphylococcal flora by Avène hydrotherapy in patients suffering from chronic inflammatory dermatoses. J. Eur. Acad. Dermatol. Venereol. 2011, 25, S19–S23. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-W.; Yan, D.; Singh, R.; Liu, J.; Lu, X.; Ucmak, D.; Lee, K.; Afifi, L.; Fadrosh, D.; Leech, J.M.; et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 2018, 6, 154. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Yamasaki, K. Psoriasis and Antimicrobial Peptides. Int. J. Mol. Sci. 2020, 21, 6791. [Google Scholar] [CrossRef]
- Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010, 465, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.Y.; Huang, Y.H.; Chu, C.F.; Wu, T.C.; Liu, S.H. Risks for Staphylococcus aureus colonization in patients with psoriasis: A systematic review and meta-analysis. Br. J. Dermatol. 2017, 177, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Fyhrquist, N.; Muirhead, G.; Prast-Nielsen, S.; Jeanmougin, M.; Olah, P.; Skoog, T.; Jules-Clement, G.; Feld, M.; Barrientos-Somarribas, M.; Sinkko, H.; et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat. Commun. 2019, 10, 4703. [Google Scholar]
- Nestle, F.O.; Di Meglio, P.; Qin, J.-Z.; Nickoloff, B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 2009, 9, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.S.; Cho, J.S. Immunity against Staphylococcus aureus cutaneous infections. Nat. Rev. Immunol. 2011, 11, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.F.; Leech, J.M.; Rogers, T.R.; McLoughlin, R.M. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Front. Immunol. 2014, 4, 507. [Google Scholar] [CrossRef]
- Atefi, N.; Noorbakhsh, S.; Darestani, S.G.; Tabatabaei, A.; Rezaee, M. The Rise of Staphylococcal Super Antigens in Psoriatic Patients, a Case-Control Study. Jundishapur J. Microbiol. 2014, 7, e9912. [Google Scholar]
- Rademaker, M.; Agnew, K.; Anagnostou, N.; Andrews, M.; Armour, K.; Baker, C.; Foley, P.; Gebauer, K.; Gupta, M.; Marshman, G.; et al. Psoriasis and infection. A clinical practice narrative. Australas. J. Dermatol. 2018, 60, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tomi, N.S.; Kränke, B.; Aberer, E. Staphylococcal toxins in patients with psoriasis, atopic dermatitis, and erythroderma, and in healthy control subjects. J. Am. Acad. Dermatol. 2005, 53, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.A.; Griffiths, C.; Gordon, K.; Lebwohl, M.; Szapary, P.O.; Wasfi, Y.; Chan, D.; Hsu, M.-C.; Ho, V.; Ghislain, P.D.; et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: Final results from 5 years of follow-up. Br. J. Dermatol. 2013, 168, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Gordon, K.; Papp, K.; Poulin, Y.; Gu, Y.; Rozzo, S.; Sasso, E.H. Long-term efficacy and safety of adalimumab in patients with moderate to severe psoriasis treated continuously over 3 years: Results from an open-label extension study for patients from REVEAL. J. Am. Acad. Dermatol. 2012, 66, 241–251. [Google Scholar] [CrossRef]
- Penso, L.; Dray-Spira, R.; Weill, A.; Vegas, L.P.; Zureik, M.; Sbidian, E. Association Between Biologics Use and Risk of Serious Infection in Patients With Psoriasis. JAMA Dermatol. 2021, 157, 1056. [Google Scholar] [PubMed]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Infectious Diseases Society of America Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar]
- Golan, Y. Current Treatment Options for Acute Skin and Skin-structure Infections. Clin. Infect. Dis. 2019, 68 (Suppl. 3), S206–S212. [Google Scholar]
- Garau, J.; Ostermann, H.; Medina, J.; Ávila, M.; McBride, K.; Blasi, F. Current management of patients hospitalized with complicated skin and soft tissue infections across Europe (2010–2011): Assessment of clinical practice patterns and real-life effectiveness of antibiotics from the REACH study. Clin. Microbiol. Infect. 2013, 19, E377–E385. [Google Scholar]
- Douros, A.; Grabowski, K.; Stahlmann, R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin. Drug Metab. Toxicol. 2015, 11, 1849–1859. [Google Scholar] [CrossRef]
- Bradley, J.; Glasser, C.; Patino, H.; Arnold, S.R.; Arrieta, A.; Congeni, B.; Daum, R.S.; Kojaoghlanian, T.; Yoon, M.; Anastasiou, D.; et al. Daptomycin for Complicated Skin Infections: A Randomized Trial. Pediatrics 2017, 139, e20162477. [Google Scholar] [CrossRef] [Green Version]
- Iwata, S.; Koyama, H.; Murata, Y. Efficacy and safety of daptomycin in Japanese pediatric participants with complicated skin and soft tissue infections or bacteremia caused by gram-positive cocci. J. Infect. Chemother. 2021, 28, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Rizzetto, G.; Molinelli, E.; Radi, G.; Diotallevi, F.; Cirioni, O.; Brescini, L.; Giacometti, A.; Offidani, A.; Simonetti, O. Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review. Antibiotics 2022, 11, 944. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, O.; Lucarini, G.; Orlando, F.; Pierpaoli, E.; Ghiselli, R.; Provinciali, M.; Castelli, P.; Guerrieri, M.; Di Primio, R.; Offidani, A.; et al. Role of Daptomycin on Burn Wound Healing in an Animal Methicillin-Resistant Staphylococcus aureus Infection Model. Antimicrob. Agents Chemother. 2017, 61, e00606-17. [Google Scholar] [PubMed] [Green Version]
- Akcaer, M.; Karakas, A.; Tok, D.; Coskun, O.; Sari, S. Eosinophilic pneumonia: Daptomycin-induced lung complication. Med. Mal. Infect. 2016, 46, 166–168. [Google Scholar] [CrossRef]
- Silvestri, C.; Cirioni, O.; Arzeni, D.; Ghiselli, R.; Simonetti, O.; Orlando, F.; Ganzetti, G.; Staffolani, S.; Brescini, L.; Provinciali, M.; et al. In vitro activity and in vivo efficacy of tigecycline alone and in combination with daptomycin and rifampin against Gram-positive cocci isolated from surgical wound infection. Eur. J. Clin. Microbiol. 2012, 31, 1759–1764. [Google Scholar] [CrossRef]
- Simonetti, O.; Rizzetto, G.; Molinelli, E.; Cirioni, O.; Offidani, A. Review: A Safety Profile of Dalbavancin for On- and Off-Label Utilization. Ther. Clin. Risk Manag. 2021, 17, 223–232. [Google Scholar]
- Simonetti, O.; Lucarini, G.; Morroni, G.; Orlando, F.; Lazzarini, R.; Zizzi, A.; Brescini, L.; Provinciali, M.; Giacometti, A.; Offidani, A.; et al. New Evidence and Insights on Dalbavancin and Wound Healing in a Mouse Model of Skin Infection. Antimicrob. Agents Chemother. 2020, 64, e02062-19. [Google Scholar] [CrossRef]
- Jame, W.; Basgut, B.; Abdi, A. Efficacy and safety of novel glycopeptides versus vancomycin for the treatment of gram-positive bacterial infections including methicillin resistant Staphylococcus aureus: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0260539. [Google Scholar] [CrossRef]
- Simonetti, O.; Rizzetto, G.; Cirioni, O.; Molinelli, E.; Morroni, G.; Giacometti, A.; Offidani, A. New insight into old and new antimicrobial molecules targeting quorum sensing for MRSA wound infection. Future Microbiol. 2022, 17, 177–183. [Google Scholar] [CrossRef]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Focus: Infectious diseases: Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
- Gardete, S.; Tomasz, A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Investig. 2014, 124, 2836–2840. [Google Scholar] [CrossRef] [PubMed]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarokhalil, D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: A systematic review and meta-analysis. Antimicrob Resist. Infect Control 2020, 9, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M. Multidrug-Resistant Staphylococcus aureus, India, 2013–2015. Emerg. Infect. Dis. 2016, 22, 1666–1667. [Google Scholar] [CrossRef] [Green Version]
- Ciulla, M.; Di Stefano, A.; Marinelli, L.; Cacciatore, I.; Di Biase, G. RNAIII Inhibiting Peptide (RIP) and Derivatives as Potential Tools for the Treatment of S. aureus Biofilm Infections. Curr. Top. Med. Chem. 2018, 18, 2068–2079. [Google Scholar]
- Jenul, C.; Horswill, A.R. Regulation of Staphylococcus aureus Virulence. Microbiol. Spectr. 2019, 7, 1128. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, O.; Cirioni, O.; Ghiselli, R.; Goteri, G.; Scalise, A.; Orlando, F.; Silvestri, C.; Riva, A.; Saba, V. RNAIII-inhibiting peptide enhances healing of wounds infected with methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2205–2211. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Leban, F.; Kiran, M.D.; Wolcott, R.; Balaban, N. Molecular Mechanisms of RIP, an Effective Inhibitor of Chronic Infections. Int. J. Artif. Organs 2010, 33, 582–589. [Google Scholar]
- Simonetti, O.; Cirioni, O.; Cacciatore, I.; Baldassarre, L.; Orlando, F.; Pierpaoli, E.; Lucarini, G.; Orsetti, E.; Provinciali, M.; Fornasari, E.; et al. Efficacy of the Quorum Sensing Inhibitor FS10 Alone and in Combination with Tigecycline in an Animal Model of Staphylococcal Infected Wound. PLoS ONE 2016, 11, e0151956. [Google Scholar] [CrossRef]
- Kuo, D.; Yu, G.; Hoch, W.; Gabay, D.; Long, L.; Ghannoum, M.; Nagy, N.; Harding, C.V.; Viswanathan, R.; Shoham, M. Novel Quorum-Quenching Agents Promote Methicillin-Resistant Staphylococcus aureus (MRSA) Wound Healing and Sensitize MRSA to β-Lactam Antibiotics. Antimicrob. Agents Chemother. 2015, 59, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.M.; Kwiecinski, J.M.; Cruz, L.M.; Shahbandi, A.; Todd, D.A.; Cech, N.B.; Horswill, A.R. Novel Peptide from Commensal Staphylococcus simulans Blocks Methicillin-Resistant Staphylococcus aureus Quorum Sensing and Protects Host Skin from Damage. Antimicrob. Agents Chemother. 2020, 64, e00172-20. [Google Scholar] [CrossRef]
- Muhs, A.; Lyles, J.T.; Parlet, C.P.; Nelson, K.; Kavanaugh, J.S.; Horswill, A.R.; Quave, C.L. Virulence Inhibitors from Brazilian Peppertree Block Quorum Sensing and Abate Dermonecrosis in Skin Infection Models. Sci. Rep. 2017, 10, 42275. [Google Scholar]
- Parlet, C.P.; Kavanaugh, J.S.; Crosby, H.A.; Raja, H.A.; El-Elimat, T.; Todd, D.A.; Pearce, C.J.; Cech, N.B.; Oberlies, N.H.; Horswill, A.R. Apicidin Attenuates MRSA Virulence through Quorum-Sensing Inhibition and Enhanced Host Defense. Cell Rep. 2019, 27, 187–198.e6. [Google Scholar] [PubMed] [Green Version]
- Simonetti, O.; Cirioni, O.; Goteri, G.; Ghiselli, R.; Kamysz, W.; Kamysz, E.; Silvestri, C.; Orlando, F.; Barucca, C.; Scalise, A.; et al. Temporin A is effective in MRSA-infected wounds through bactericidal activity and acceleration of wound repair in a murine model. Peptides 2008, 29, 520–528. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Orlando, F.; Cirioni, O.; Simonetti, O.; Giacometti, A.; Provinciali, M. Supplementation with tocotrienols from Bixa orellana improves the in vivo efficacy of daptomycin against methicillin-resistant Staphylococcus aureus in a mouse model of infected wound. Phytomedicine 2017, 36, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Provinciali, M.; Cirioni, O.; Orlando, F.; Pierpaoli, E.; Barucca, A.; Silvestri, C.; Ghiselli, R.; Scalise, A.; Brescini, L.; Guerrieri, M.; et al. Vitamin E improves the in vivo efficacy of tigecycline and daptomycin in an animal model of wounds infected with meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2011, 60, 1806–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonetti, O.; Cirioni, O.; Lucarini, G.; Orlando, F.; Ghiselli, R.; Silvestri, C.; Brescini, L.; Rocchi, M.; Provinciali, M.; Guerrieri, M.; et al. Tigecycline accelerates staphylococcal-infected burn wound healing through matrix metalloproteinase-9 modulation. J. Antimicrob. Chemother. 2012, 67, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Yazdanpanah, M.J.; Vahabi-Amlashi, S.; Nematy, M.; Shaelaei, N.; Mohajeri, S.A.R.; Tafazzoli, Z. Association of serum lipid profiles and dietary intakes of vitamin E and fiber with psoriasis severity. Caspian J. Intern. Med. 2021, 12, 606–612. [Google Scholar]
- Liu, X.; Yang, G.; Luo, M.; Lan, Q.; Shi, X.; Deng, H.; Wang, N.; Xu, X.; Zhang, C. Serum vitamin E levels and chronic inflammatory skin diseases: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0261259. [Google Scholar] [CrossRef]
- Leanse, L.G.; Goh, X.S.; Cheng, J.X.; Hooper, D.C.; Dai, T. Dual-wavelength photo-killing of methicillin-resistant Staphylococcus aureus. JCI Insight. 2020, 5, e134343. [Google Scholar] [CrossRef]
- Montero-Vilchez, T.; Soler-Góngora, M.; Martínez-López, A.; Ana, F.G.; Buendía-Eisman, A.; Molina-Leyva, A.; Arias-Santiago, S. Epidermal barrier changes in patients with psoriasis: The role of phototherapy. Photodermatol. Photoimmunol. Photomed. 2021, 37, 285–292. [Google Scholar] [CrossRef]
- Orsmond, A.; Bereza-Malcolm, L.; Lynch, T.; March, L.; Xue, M. Skin Barrier Dysregulation in Psoriasis. Int. J. Mol. Sci. 2021, 22, 10841. [Google Scholar] [PubMed]
- Petit, R.; Cano, A.; Ortiz, A.; Espina, M.; Prat, J.; Muñoz, M.; Severino, P.; Souto, E.; García, M.; Pujol, M.; et al. Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. Int. J. Mol. Sci. 2021, 22, 4983. [Google Scholar] [CrossRef]
- Kadiyala, U.; Turali-Emre, E.S.; Bahng, J.H.; Kotov, N.A.; VanEpps, J.S. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale 2018, 10, 4927–4939. [Google Scholar] [CrossRef] [PubMed]
- Zarenezhad, E.; Abdulabbas, H.T.; Marzi, M.; Ghazy, E.; Ekrahi, M.; Pezeshki, B.; Ghasemian, A.; Moawad, A.A. Nickel Nanoparticles: Applications and Antimicrobial Role against Methicillin-Resistant Staphylococcus aureus Infections. Antibiotics 2022, 11, 1208. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzetto, G.; Molinelli, E.; Radi, G.; Cirioni, O.; Brescini, L.; Giacometti, A.; Offidani, A.; Simonetti, O. MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives. Antibiotics 2022, 11, 1504. https://doi.org/10.3390/antibiotics11111504
Rizzetto G, Molinelli E, Radi G, Cirioni O, Brescini L, Giacometti A, Offidani A, Simonetti O. MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives. Antibiotics. 2022; 11(11):1504. https://doi.org/10.3390/antibiotics11111504
Chicago/Turabian StyleRizzetto, Giulio, Elisa Molinelli, Giulia Radi, Oscar Cirioni, Lucia Brescini, Andrea Giacometti, Annamaria Offidani, and Oriana Simonetti. 2022. "MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives" Antibiotics 11, no. 11: 1504. https://doi.org/10.3390/antibiotics11111504
APA StyleRizzetto, G., Molinelli, E., Radi, G., Cirioni, O., Brescini, L., Giacometti, A., Offidani, A., & Simonetti, O. (2022). MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives. Antibiotics, 11(11), 1504. https://doi.org/10.3390/antibiotics11111504