Is Vancomycin More Effective than Taurolidine? Comparative Analysis of Their Preventive Effect against Spinal Infection in 1000 Patients with Spinal Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Preparation and Process of Surgery
2.3. Patient Evaluation
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Surgical Site Infection Evaluation
3.3. Risk Factors for Surgical Site Infections
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leaper, D.; Ousey, K. Evidence update on prevention of surgical site infection. Curr. Opin. Infect. Dis. 2015, 28, 158–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, D.K.; Choi, D.J.; Park, H.S.; Kim, T.W.; Chun, T.H.; Yang, J.H. Precautions Against Infection Following Posterior Spinal Fusion Based on Types of Infection and Risk Factors. J. Korean Soc. Spine Surg. 2009, 16, 274–284. [Google Scholar] [CrossRef]
- Kim, E.-H.; Song, I.-S. Deep wound infection after lumbar spine fusion with pedicular screw fixation. J. Korean Soc. Spine Surg. 2000, 4, 535–543. [Google Scholar]
- Song, K.-j.; Song, K.-H.; Park, Y.-G.; Lee, K.-B.; Kim, S.-R. Risk Factors of Deep Infection after Thoracic and Lumbar Spinal Arthrodesis. J. Korean Soc. Spine Surg. 2008, 15, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.-I.; Kim, T.-S.; Lee, S.-J.; Lee, S.-H.; Lee, D.-K.; Yu, Y.-S.; Kim, Y.-Y. Late Infection of Spinal Instrumentation. J. Korean Soc. Spine Surg. 2000, 1, 29–36. [Google Scholar]
- Thalgott, J.S.; Cotler, H.B.; Sasso, R.C.; LaRocca, H.; Gardner, V. Postoperative infections in spinal implants. Classification and analysis—A multicenter study. Spine 1991, 16, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Hu, S.S.; Endres, N.; Bradford, D.S. Risk Factors for Infection After Spinal Surgery. Spine 2005, 30, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Massie, J.B.; Heller, J.G.; Abitbol, J.J.; McPherson, D.; Garfin, S.R. Postoperative posterior spinal wound infections. Clin. Orthop. Relat. Res. 1992, 284, 99–108. [Google Scholar] [CrossRef]
- Weinstein, M.A.; McCabe, J.P.; Cammisa, F.P. Postoperative Spinal Wound Infection: A Review of 2391 Consecutive Index Procedures. J. Spinal Disord. 2000, 13, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Carver, D.C.; Kuehn, S.B.; Weinlein, J.C. Role of Systemic and Local Antibiotics in the Treatment of Open Fractures. Orthop. Clin. N. Am. 2017, 48, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Busa, A.; Parrini, S.; Chisci, G.; Pozzi, T.; Burgassi, S.; Capuano, A. Local versus systemic antibiotics effectiveness: A comparative study of postoperative oral disability in lower third molar surgery. J. Craniofac. Surg. 2014, 25, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Mirzashahi, B.; Chehrassan, M.; Mortazavi, S.J. Intrawound application of vancomycin changes the responsible germ in elective spine surgery without significant effect on the rate of infection: A randomized prospective study. Musculoskelet. Surg. 2018, 102, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Wakao, N.; Kamiya, M.; Hirasawa, A.; Murotani, K.; Takayasu, M. A double-blind randomized controlled trial of the local application of vancomycin versus ampicillin powder into the operative field for thoracic and/or lumbar fusions. J. Neurosurg. Spine 2018, 29, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Tubaki, V.R.; Rajasekaran, S.; Shetty, A.P. Effects of Using Intravenous Antibiotic Only Versus Local Intrawound Vancomycin Antibiotic Powder Application in Addition to Intravenous Antibiotics on Postoperative Infection in Spine Surgery in 907 Patients. Spine 2013, 38, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Traub, W.H.; Leonhard, B.; Bauer, D. Taurolidine: In vitro Activity against Multiple-Antibiotic-Resistant, Nosocomially Significant Clinical Isolates of Staphylococcus aureus, Enterococcus faecium, and Diverse Enterobacteriaceae. Chemotherapy 1993, 39, 322–330. [Google Scholar] [CrossRef]
- Willatts, S.M.; Radford, S.; Leitermann, M. Effect of the antiendotoxic agent, taurolidine, in the treatment of sepsis syndrome: A placebo-controlled, double-blind trial. Crit. Care Med. 1995, 23, 1033–1039. [Google Scholar] [CrossRef]
- Koldehoff, M.; Zakrzewski, J.L. Taurolidine is effective in the treatment of central venous catheter-related bloodstream infections in cancer patients. Int. J. Antimicrob. Agents 2004, 24, 491–495. [Google Scholar] [CrossRef]
- Protocol for Surgical Site Infection Surveillance with a Focus on Settings with Limited Resources; World Health Organization: Geneva, Switzerland, 2018; Licence: CC BY-NC-SA 3.0 IGO.
- National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 2004, 32, 470–485. [Google Scholar] [CrossRef]
- King, E.A.; Challa, S.; Pharm, P.C.; Bielory, L. Penicillin skin testing in hospitalized patients with β-lactam allergies: Effect on antibiotic selection and cost. Ann. Allergy Asthma Immunol. 2016, 117, 67–71. [Google Scholar] [CrossRef]
- Sweet, F.A.; Roh, M.; Sliva, C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: Efficacy, drug levels, and patient outcomes. Spine 2011, 36, 2084–2088. [Google Scholar] [CrossRef]
- Barber, K.E.; Bell, A.M.; Stover, K.R.; Wagner, J.L. Intravenous Vancomycin Dosing in the Elderly: A Focus on Clinical Issues and Practical Application. Drugs Aging 2016, 33, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariappan, R.; Manninen, P.; Massicotte, E.M.; Bhatia, A. Circulatory collapse after topical application of vancomycin powder during spine surgery. J. Neurosurg. Spine 2013, 19, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Youssef, J.A.; Orndorff, D.G.; Scott, M.A.; Ebner, R.E.; Knewitz, A.P. Sterile Seroma Resulting from Multilevel XLIF Procedure as Possible Adverse Effect of Prophylactic Vancomycin Powder: A Case Report. Evid. Based Spine Care J. 2014, 5, 127–133. [Google Scholar]
- Browne, M.K.; Leslie, G.B.; Pfirrman, R.W.; Brodhage, H. The in vitro and in vivo activity of taurolin against anaerobic pathogenic organisms. Surg. Gynecol. Obstet. 1977, 145, 842–846. [Google Scholar] [PubMed]
- Popović, M.; Dugalni, D.; Milićević, M.; Petrović, M.; Zuvela, M.; Knezević, S.; Janković, Z. Use of taurolin in the prevention of septic complications in emergency abdominal surgery. Acta Chir. Iugosl. 1991, 38, 23–33. [Google Scholar] [PubMed]
- Jacobi, C.A.; Menenakos, C.; Braumann, C. Taurolidine—A new drug with anti-tumor and anti-angiogenic effects. Anti-Cancer Drugs 2005, 16, 917–921. [Google Scholar] [CrossRef]
- Gidley, M.J.; Sanders, J.K.M. Mechanisms of antibacterial formaldehyde delivery from noxythiolin and other ‘masked-formaldehyde’ compounds. J. Pharm. Pharmacol. 1983, 35, 712–717. [Google Scholar] [CrossRef]
- Browne, M.K.; Leslie, G.B.; Pfirrmann, R.W. Taurolin, a new chemotherapeutic agent. J. Appl. Bacteriol. 1976, 41, 363–368. [Google Scholar] [CrossRef]
- Brearley, S.; George, R. The rate of antimicrobial action of noxythiolin and taurolin. J. Hosp. Infect. 1980, 1, 201–209. [Google Scholar] [CrossRef]
- Jones, D.; Gorman, S.; McCafferty, D.; Woolfson, A. The effects of three non-antibiotic, antimicrobial agents on the surface hydrophobicity of certain micro-organisms evaluated by different methods. J. Appl. Bacteriol. 1991, 71, 218–227. [Google Scholar] [CrossRef]
- Zimmermann, M.; Preac-Mursic, V. In vitro activity of taurolidine, chlorophenol-camphor-menthol and chlorhexidine against oral pathogenic microorganisms. Arzneimittelforschung 1992, 42, 1157–1159. [Google Scholar] [PubMed]
- Shin, H.-K.; Park, J.K.; Kim, E.; Park, J.H.; Park, S.-J.; Ha, S.H.; Jeong, H.-J. Risk Factors for Wound Infection in Spinal Surgery: A Focus on Diabetes Mellitus. J. Korean Soc. Spine Surg. 2018, 25, 115–121. [Google Scholar] [CrossRef]
- Oikonomidis, S.; Altenrath, L.; Westermann, L.; Bredow, J.; Eysel, P.; Scheyerer, M.J. Implant-Associated Infection of Long-Segment Spinal Instrumentation: A Retrospective Analysis of 46 Consecutive Patients. Asian Spine J. 2021, 15, 234–243. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; Fiani, B.; Jarrah, R.; Momin, A.A.; Rasouli, J. Surgical Site Infection Prophylaxis and Wound Management in Spine Surgery. Asian Spine J. 2022, 16, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.M.; Silveri, C.P.; A Balderston, R.; A Simeone, F.; An, H.S. The results of operations on the lumbar spine in patients who have diabetes mellitus. J. Bone Jt. Surg. 1993, 75, 1823–1829. [Google Scholar] [CrossRef]
- Stambough, J.L.; Beringer, D. Postoperative Wound Infections Complicating Adult Spine Surgery. J. Spinal Disord. 1992, 5, 277–285. [Google Scholar] [CrossRef]
- Wimmer, C.; Gluch, H.; Franzreb, M.; Ogon, M. Predisposing factors for infection in spine surgery: A survey of 850 spinal procedures. J. Spinal Disord. 1998, 11, 124–128. [Google Scholar] [CrossRef]
- Ter Gunne, A.F.P.; Cohen, D.B. Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine 2009, 34, 1422–1428. [Google Scholar] [CrossRef]
- Kanayama, M.; Hashimoto, T.; Shigenobu, K.; Oha, F.; Togawa, D. Effective prevention of surgical site infection using a Centers for Disease Control and Prevention guideline–based antimicrobial prophylaxis in lumbar spine surgery. J. Neurosurg. Spine 2007, 6, 327–329. [Google Scholar] [CrossRef] [PubMed]
Median (Min–Max) or N(%) | p-Value | ||||
---|---|---|---|---|---|
Total (n = 1081) | Group | ||||
Control (n = 491) | Vancomycin (n = 221) | Taurolidine (n = 369) | |||
Age | 65.00 (20.00–93.00) | 64.00 (40.00–87.00) | 65.00 (22.00–93.00) | 65.00 (20.00–85.00) | 0.294 |
Sex | 0.910 | ||||
Male | 518 (47.92) | 234 (47.66) | 104 (47.06) | 180 (48.78) | |
Female | 563 (52.08) | 257 (52.34) | 117 (52.94) | 189 (51.22) | |
Body mass index (m/kg2) | 0.468 | ||||
<25 | 723 (66.88) | 321 (65.38) | 156 (70.59) | 246 (66.67) | |
25 ≤ < 30 | 283 (26.18) | 139 (28.31) | 51 (23.08) | 93 (25.20) | |
30≤ | 75 (6.94) | 31 (6.31) | 14 (6.33) | 30 (8.13) | |
Infection | 0.019 ** | ||||
NO | 1061 (98.15) | 477 (97.15) | 216 (97.74) | 368 (99.73) | |
YES | 20 (1.85) | 14 (2.85) | 5 (2.26) | 1 (0.27) | |
Smoking | 0.943 | ||||
NO | 998 (92.32) | 452 (92.06) | 204 (92.31) | 342 (92.68) | |
YES | 83 (7.68) | 39 (7.94) | 17 (7.69) | 27 (7.32) | |
Hypertension | 0.104 | ||||
NO | 583 (53.93) | 282 (57.43) | 111 (50.23) | 190 (51.49) | |
YES | 498 (46.07) | 209 (42.57) | 110 (49.77) | 179 (48.51) | |
Diabetes mellitus | 0.371 | ||||
NO | 843 (77.98) | 387 (78.82) | 177 (80.09) | 279 (75.61) | |
YES | 238 (22.02) | 104 (21.18) | 44 (19.91) | 90 (24.39) | |
Pulmonary disease | 0.910 | ||||
NO | 1072 (99.17) | 486 (98.98) | 220 (99.55) | 366 (99.19) | |
YES | 9 (0.83) | 5 (1.02) | 1 (0.45) | 3 (0.81) | |
Renal disease | 1.000 | ||||
NO | 1076 (99.54) | 489 (99.59) | 220 (99.55) | 367 (99.46) | |
YES | 5 (0.46) | 2 (0.41) | 1 (0.45) | 2 (0.54) | |
History of spinal surgeries | 0.612 | ||||
NO | 1035 (95.74) | 471 (95.93) | 209 (94.57) | 355 (96.21) | |
YES | 46 (4.26) | 20 (4.07) | 12 (5.43) | 14 (3.79) | |
History of spinal infection | 0.789 | ||||
NO | 1078 (99.72) | 490 (99.80) | 220 (99.55) | 368 (99.73) | |
YES | 3 (0.28) | 1 (0.20) | 1 (0.45) | 1 (0.27) | |
Surgical site | 0.017 ** | ||||
Cervical | 343 (31.73) | 142 (28.92) | 71 (32.13) | 130 (35.23) | |
Thoracic | 33 (3.05) | 12 (2.44) | 2 (0.90) | 19 (5.15) | |
Thoraco-lumbar | 52 (4.81) | 30 (6.11) | 10 (4.52) | 12 (3.25) | |
Lumbar | 550 (50.88) | 256 (52.14) | 121 (54.75) | 173 (46.88) | |
Lumbo sacral | 103 (9.53) | 51 (10.39) | 17 (7.69) | 35 (9.49) | |
Bone graft | 0.409 | ||||
Autobone | 952 (88.07) | 434 (88.39) | 199 (90.05) | 319 (86.45) | |
Autobone + allobone | 129 (11.93) | 57 (11.61) | 22 (9.95) | 50 (13.55) | |
Transfusion (packed RBC) | 0.089 | ||||
No | 881 (81.50) | 392 (79.84) | 175 (79.19) | 314 (85.09) | |
Yes | 200 (18.50) | 99 (20.16) | 46 (20.81) | 55 (14.91) | |
Instrumented fusion level | 2.00 (1.00–7.00) | 2.00 (1.00–5.00) | 2.00 (1.00–6.00) | 2.00 (1.00–7.00) | 0.381 |
Preoperative WBC count (103/μL) | 6.89 (2.29–13.62) | 6.92 (2.29–13.62) | 6.69 (2.90–11.98) | 6.95 (3.48–10.99) | 0.989 |
Preoperative absolute neutrophil count (N/μL) | 4416.40 (1178.52–8748.29) | 4653.39 (1178.52–8748.29) | 4619.83 (1399.65–8415.68) | 4031.04 (1831.38–8337.85) | <0.001 ** |
Estimated blood loss (cc) | 350.00 (10.00–2500.00) | 300.00 (10.00–1890.00) | 400.00 (10.00–1900.00) | 350.00 (10.00–2500.00) | 0.081 |
Postoperative Hemovac removal (POD) | 3.00 (1.00–11.00) | 3.00 (1.00–9.00) | 3.00 (1.00–8.00) | 3.00 (1.00–11.00) | 0.271 |
Accumulated volume ofHemovac (cc) | 380.40 (10.00–2697.80) | 370.80 (10.00–2697.80) | 415.80 (20.00–2118.00) | 321.00 (10.00–2810.00) | 0.115 |
Postoperative serum glucose | 128.50 (53.00–304.00) | 128.00 (53.00–291.00) | 130.00 (83.00–254.00) | 128.00 (78.00–304.00) | 0.754 |
Postoperative serum albumin (g/dL) | 3.50 (1.70–5.00) | 3.50 (2.00–4.70) | 3.60 (1.80–4.80) | 3.50 (1.70–5.00) | 0.201 |
Isolated Microbes | Superficial Infections (n) | Deep Infections (n) |
---|---|---|
Staphylococcus epidermidis | 3 | 1 |
Staphylococcus aureus | 2 | 1 |
Methicillin-Resistant Coagulase Negative Staphylococcus | 3 | 1 |
Methicillin-Resistant Staphylococcus aureus | 1 | 1 |
Escherichia coli | 3 | 2 |
Klebsiella pneumonia | 1 | 0 |
Pseudomonas aeruginosa | 1 | 0 |
Total number | 14 | 6 |
Isolated Microbes * | Total (n = 20) | Control (n = 14) | Vancomycin (n = 5) | Taurolidine (n = 1) | |||
---|---|---|---|---|---|---|---|
Suferficial Infections (n) | Deep Infections (n) | Suferficial Infections (n) | Deep Infections (n) | Suferficial Infections (n) | Deep Infections (n) | ||
S. epidermidis | 4 | 2 (50%) | 1 (25%) | 1 (25%) | |||
S. aureus | 3 | 1 (33%) | 1 (33%) | 1 (33%) | |||
MRCNS | 4 | 2 (50%) | 1 (75%) | 1 (25%) | |||
MRSA | 2 | 1 (50%) | 1 (50%) | ||||
E. coli | 5 | 2 (40%) | 1 (20%) | 1 (20%) | 1 (20%) | ||
K. pneumoniae | 1 | 1 (100%) | |||||
P. aeruginosa | 1 | 1 (100%) | |||||
Total number | 20 | 10 (50%) | 4 (20%) | 3 (15%) | 2 (10%) | 1 (5%) | 0 (0%) |
Univariable | Multivariable | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age | 1.07 (1.02–1.12) | 0.004 ** | 1.07 (1.02–1.12) | 0.007 ** |
Sex | ||||
Male | Ref | |||
Female | 1.39 (0.563–3.42) | 0.476 | ||
Body mass index (m/kg2) | ||||
<25 | Ref | |||
25 ≤ < 30 | 0.68 (0.22–2.06) | 0.491 | ||
30≤ | 0.64 (0.08–4.90) | 0.666 | ||
Infection | ||||
Control | Ref | Ref | ||
Vancomycin | 0.79 (0.21–2.22) | 0.653 | 0.83 (0.27–2.55) | 0.739 |
Taurolidine | 0.09 (0.01–0.71) | 0.022 ** | 0.09 (0.01–0.68) | 0.020 ** |
Smoking | ||||
NO | Ref | Ref | ||
YES | 6.98 (2.71–18.01) | <0.001 ** | 11.23 (3.92–32.20) | <0.001 ** |
Hypertension | ||||
NO | Ref | |||
YES | 0.63 (0.25–1.58) | 0.320 | ||
Diabetes mellitus | ||||
NO | Ref | |||
YES | 2.41 (0.97–5.96) | 0.057 | ||
Pulmonary disease | ||||
NO | Ref | |||
YES | 2.70 (0.13–55.88) | 0.520 | ||
Renal disease | ||||
NO | Ref | |||
YES | 4.68 (0.19–115.10) | 0.345 | ||
Past history of spinal surgeries | ||||
NO | Ref | |||
YES | 0.53 (0.03–9.21) | 0.665 | ||
Past history of spinal infection | ||||
NO | Ref | |||
YES | 7.37 (0.23–232.26) | 0.256 | ||
Surgical site | ||||
Cervical | Ref | |||
Thoracic | 1.45 (0.07–29.80) | 0.809 | ||
Thoraco-lumbar | 6.88 (1.50–31.44) | 0.013 ** | ||
Lumbar | 2.26 (0.68–7.46) | 0.181 | ||
Lumboscral | 2.40 (0.46–12.40) | 0.297 | ||
Bone graft | ||||
Autobone | Ref | |||
Autobone + allobone | 0.18 (0.010–2.952) | 0.227 | ||
Transfusion (packed RBC) | ||||
No | Ref | |||
Yes | 3.02 (1.22–7.48) | 0.017 ** | ||
Instrumented fusion level | 1.08 (0.86–1.36) | 0.492 | ||
Preoperative WBC count (103/μL) | 0.86 (0.67–1.09) | 0.205 | ||
Preoperative absolute neutrophil count (N/μL) | 1.00 (1.00–1.000) | 0.085 | ||
Estimated blood loss during surgery (cc) | 1.00 (1.00–1.00) | 0.090 | ||
Postoperative Hemovac removal (POD) | 1.41 (1.13–1.76) | 0.002 ** | 1.38 (1.08–1.77) | 0.010 ** |
Accumulated volume of Hemovac (cc) | 1.00 (1.00–1.00) | 0.054 | ||
Postoperative serum glucose | 1.00 (0.99–1.02) | 0.526 | ||
Postoperative serum albumin (g/dL) | 0.56 (0.23–1.36) | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eun, D.-C.; Suk, K.-S.; Kim, H.-S.; Kwon, J.-W.; Moon, S.-H.; Lee, Y.-H.; Lee, B.-H. Is Vancomycin More Effective than Taurolidine? Comparative Analysis of Their Preventive Effect against Spinal Infection in 1000 Patients with Spinal Fusion. Antibiotics 2022, 11, 1388. https://doi.org/10.3390/antibiotics11101388
Eun D-C, Suk K-S, Kim H-S, Kwon J-W, Moon S-H, Lee Y-H, Lee B-H. Is Vancomycin More Effective than Taurolidine? Comparative Analysis of Their Preventive Effect against Spinal Infection in 1000 Patients with Spinal Fusion. Antibiotics. 2022; 11(10):1388. https://doi.org/10.3390/antibiotics11101388
Chicago/Turabian StyleEun, Dong-Chan, Kyung-Soo Suk, Hak-Sun Kim, Ji-Won Kwon, Seong-Hwan Moon, Yong-Ho Lee, and Byung-Ho Lee. 2022. "Is Vancomycin More Effective than Taurolidine? Comparative Analysis of Their Preventive Effect against Spinal Infection in 1000 Patients with Spinal Fusion" Antibiotics 11, no. 10: 1388. https://doi.org/10.3390/antibiotics11101388
APA StyleEun, D. -C., Suk, K. -S., Kim, H. -S., Kwon, J. -W., Moon, S. -H., Lee, Y. -H., & Lee, B. -H. (2022). Is Vancomycin More Effective than Taurolidine? Comparative Analysis of Their Preventive Effect against Spinal Infection in 1000 Patients with Spinal Fusion. Antibiotics, 11(10), 1388. https://doi.org/10.3390/antibiotics11101388