Incidence and Clinical Characteristics of Anaerobic Bacteremia at a University Hospital in Hungary: A 5-Year Retrospective Observational Study
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Study Design, Collection of Data
4.2. Sample Processing, Microbiological Identification
4.3. Statistical and Comparative Analysis
4.4. Ethical Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finegold, S.M. Overview of clinically important anaerobes. Clin. Infect. Dis. 1995, 20, S205–S207. [Google Scholar] [CrossRef] [PubMed]
- Finegold, S.M. Anaerobic Infections: General Concepts. In Principles and Practice of Infectious Diseases; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone: London, UK, 2000; Volume 2. [Google Scholar]
- La Scola, B.; Fournier, P.E.; Raoult, D. Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 2011, 17, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Hecht, D.W. Anaerobes: Antibiotic resistance, clinical significance and the role of susceptibility testing. Anaerobe 2006, 12, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Cobo, F.; Guillot, V.; Navarro-Marí, J.M. Breast Abscesses Caused by Anaerobic Microorganisms: Clinical and Microbiological Characteristics. Antibiotics 2020, 9, e341. [Google Scholar] [CrossRef] [PubMed]
- Woerther, P.L.; d’Humiéres, C.; Lescure, X.; Dubreuil, L.; Rodriguez, C.; Barbier, F.; Fihmann, V.; Ruppé, E. Is the term “anti-anaerobic” still relevant? Int. J. Infect. Dis. 2021, 102, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Urban, E.; Nord, C.E.; ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin. Microbiol. Infect. 2011, 17, 371–379. [Google Scholar] [CrossRef]
- Brook, I. Antimicrobial treatment of anaerobic infections. Expert Opin. Pharmacother. 2011, 12, 1691–1707. [Google Scholar] [CrossRef]
- Nagy, E.; Boyanova, L.; Justesen, U.S. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories? Clin. Microbiol. Infect. 2018, 24, 1139–1148. [Google Scholar] [CrossRef]
- Shafiq, N.; Kumar, M.P.; Gautam, V.; Negi, H.; Roat, R.; Malhotra, S.; Ray, P.; Agarwal, R.; Bhalla, A.; Sharma, N.; et al. Antibiotic stewardship in a tertiary care hospital of a developing country: Establishment of a system and its application in a unit—GASP Initiative. Infection 2016, 44, 651–659. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E. Relevance of anaerobic bacteremia in adult patients: A never-ending story? Eur. J. Microbiol. Immunol. 2020, 10, 64–75. [Google Scholar] [CrossRef]
- Grohs, P.; Mainardi, J.L.; Podglajen, I.; Hanras, X.; Eckert, C.; Buu-Hoi, A.; Varon, E.; Gutmann, L. Relevance of Routine Use of the Anaerobic Blood Culture Bottle. J. Clin. Microbiol. 2007, 45, 2711–2715. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. The role of anaerobic bacteria in bacteremia. Anaerobe 2010, 16, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Vena, A.; Munoz, P.; Alcala, L.; Fernandez-Cruz, A.; Sanchez, C.; Valerio, M.; Bouza, E. Are incidence and epidemiology of anaerobic bacteremia really changing? Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Terhes, G.; Urbán, E. Anaerobic blood culture positivity at a University Hospital in Hungary: A 5-year comparative retrospective study. Anaerobe 2020, 63, e102200. [Google Scholar] [CrossRef]
- Shenoy, P.A.; Vishwanath, S.; Gawda, A.; Shetty, S.; Anegundi, R.; Varma, M.; Mukhopadhyay, C.; Chawla, K.J. Anaerobic bacteria in clinical specimens–frequent, but a neglected lot: A five year experience at a tertiary care hospital. Clin. Diagn. Res. 2017, 11, DC44–DC48. [Google Scholar]
- Garg, R.; Kaistha, N.; Gupta, V.; Chander, J. Isolation, identification and antimicrobial susceptibility of anaerobic bacteria: A study reemphasizing its role. J. Clin. Diag. Res. 2014, 8, DL01–DL02. [Google Scholar] [CrossRef]
- Wilson, J.R.; Limaye, A.P. Risk Factors For Mortality In Patients With Anaerobic Bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 310–316. [Google Scholar]
- Badri, M.; Nilson, B.; Ragnarsson, S.; Senneby, E.; Rasmussen, M. Clinical and microbiological features of bacteraemia with Gram-positive anaerobic cocci: A population-based retrospective study. Clin. Microbiol. Infect. 2019, 25, 760.e1–760.e6. [Google Scholar] [CrossRef]
- Gajdács, M.; Urbán, E. Epidemiology and species distribution of anaerobic Gram-negative cocci: A 10-year retrospective survey (2008-2017). Acta Pharm. Hung. 2019, 89, 84–87. [Google Scholar] [CrossRef]
- Goldstein, E.J. Anaerobic bacteremia. Clin. Infect. Dis. 1996, 23, S97–S101. [Google Scholar] [CrossRef]
- Gransden, W.R.; Eykyn, S.J.; Phillips, I. Anaerobic bacteremia: Declining rate over a 15-year period. Rev. Infect. Dis. 1991, 13, 1255–1256. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.G.; Dick, J. The controversy regarding routine anaerobic blood cultures. Am. J. Med. 2000, 108, 505–506. [Google Scholar] [CrossRef]
- Fenner, F.; Widmer, A.D.; Straub, C.; Frei, R. Is the incidence of anaerobic bacteremia decreasing? Analysis of 114,000 blood cultures over a ten-year period. J. Clin. Microbiol. 2008, 46, 2432–2434. [Google Scholar] [CrossRef] [PubMed]
- De Keukeleire, S.; Wybo, I.; Naessens, A.; Echahidi, F.; Van der Beken, M.; Vandoorslaer, K. Anaerobic bacteremia: A 10-year retrospective epidemiological survey. Anaerobe 2016, 39, 54–59. [Google Scholar] [CrossRef]
- Morris, A.J.; Wilson, M.L.; Mirrett, S.; Reller, B.L. Rationale for selective use of anaerobic blood cultures. J. Clin. Microbiol. 1991, 31, 2110–2113. [Google Scholar] [CrossRef]
- Strohaker, J.; Bareiss, S.; Nadalin, S.; Königsrainer, A.; Ladurner, R.; Meier, A. The Prevalence and Clinical Significance of Anaerobic Bacteria in Major Liver Resection. Antibiotics 2021, 10, e139. [Google Scholar] [CrossRef]
- Giorgio, A.; Merola, M.G.; Montesarchio, L.; Merola, F.; Gatti, P.; Coppola, C.; Calisti, G. Percutaneous radiofrequency ablation of hepatocellular carcinoma in cirrhosis: Analysis of complications in a single centre over 20 years. Br. J. Radiol. 2017, 90, e20160804. [Google Scholar] [CrossRef]
- Salonen, J.H.; Eerola, E.; Meurman, O. Clinical significance and outcome of anaerobic bacteremia. Clin. Infect. Dis. 1998, 26, 1413–1417. [Google Scholar] [CrossRef]
- Boiten, K.E.; Jean-Pierre, H.; Veloo, A.C.M. Assessing the clinical relevance of Fenollaria massiliensis in human infections, using MALDI-TOF MS. Anaerobe 2018, 54, 240–245. [Google Scholar] [CrossRef]
- Boyanova, L.; Kolarov, R.; Mitov, I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 2015, 31, 4–10. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Park, Y.; Kim, M.; Choi, J.Y.; Yong, D. Anaerobic bacteremia: Impact of inappropriate therapy on mortality. Infect. Chemother. 2016, 48, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Blairon, L.; De Gheldre, Y.; Delaere, B.; Sonet, A.; Bosly, A.; Glupczynski, Y. A 62-month retrospective epidemiological survey of anaerobic bacteremia in a university hospital. Clin. Microbiol. Infect. 2006, 12, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, J.M.; García-Corbeira, P.; Fernández-Roblas, R.; Soriano, F. Bacteremia caused by anaerobes: Analysis of 131 episodes. Enferm. Infec. Microbiol. Clin. 1994, 12, 9–16. [Google Scholar]
- Cobo, F.; Boorego, J.; Gómez, E.; Casanovas, I.; Calatrava, E.; Foronda, C.; Navarro-Marí, J.M. Clinical Findings and Antimicrobial Susceptibility of Anaerobic Bacteria Isolated in Bloodstream Infections. Antibiotics 2020, 9, e345. [Google Scholar] [CrossRef] [PubMed]
- Hospital Bed Count and Patient Turnover Report. National Health Insurance Fund of Hungary. Available online: http://www.neak.gov.hu/felso_menu/szakmai_oldalak/publikus_forgalmi_adatok/gyogyito_megelozo_forgalmi_adat/fekvobeteg_szakellatas/korhazi_agyszam.html (accessed on 16 July 2022).
- Hungarian Central Statistical Office. Regional Statistical Yearbook of Hungary; Demográfiai Évkönyv; Központi Statisztikai Hivatal: Budapest, Hungary, 2020. (In Hungarian) [Google Scholar]
- Hungarian Professional Committee of Medical Microbiology: Guidelines for the Microbiological Diagnosis of Bloodstream Infections. [Orvosi Mikrobiológiai Szakmai Kollégium. Módszertani Ajánlás: A Véráram Infekciók Mikrobiológiai Diagnosztikájára]. Available online: http://infektologia.hu/upload/infektologia/document/hemokultura_modszertani_ajanlas_2018_december.pdf?web_id= (accessed on 16 July 2022). (In Hungarian).
- Opota, O.; Croxatto, A.; Prod’hom, G.; Greub, G. Blood culture-based diagnosis of bacteraemia: State of the art. Clin. Microbiol. Infect. 2015, 21, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Jousimies-Somer, H.; Summanen, P.; Citron, D.M.; Baron, E.J.; Wexler, H.M.; Finegold, S.M. (Eds.) Wadsworth-KTL Anaerobic Bacteriology Manual, 6th ed.; Star Publishing Company: Belmont, CA, USA, 2003. [Google Scholar]
- Urbán, E.; Gajdács, M.; Torkos, A. The incidence of anaerobic bacteria in adult patients with chronic sinusitis: A prospective, single-centre microbiological study. Eur. J. Microbiol. Immunol. 2020, 10, 107–114. [Google Scholar] [CrossRef]
Present Study | Gajdács et al. [15] | |
---|---|---|
Study location | University of Pécs (PTE) Clinical Centre (Pécs, Hungary) | Albert Szent-Györgyi Clinical Center, University of Szeged (Szeged, Hungary) |
Study period | 2016–2020 | 2013–2017 |
Hospital bed count | Acute: 1705 Chronic: 20 | Acute: 1465 Chronic: 355 |
Population served | ~800,000 patients | ~600,000 patients |
Number of hospitalized patients/year (Average ± SD) | 100,461 ± 9623 | 84,438 ± 1866 |
Number of blood culture bottles processed during the study period | 57,743 | 116,371 |
Percentage of positive blood culture bottles for aerobic and anaerobic bacteria overall (including contaminants) | 18.6 ± 2.1% | 10.5 ± 0.3% |
Percentage of positive blood culture bottles for clinically relevant anaerobes (Percentage of positive blood culture bottles for all anaerobes) | 0.1 ± 0.03% (0.3 ± 0.03%) | 0.2 ± 0.02% (0.4 ± 0.1%) |
Number of clinically relevant anaerobic isolates in bacteremia (Number of all anaerobic isolates in bacteremia) | 71 (160) | 176 (423) |
Number of clinically relevant anaerobic isolates/1000 hospitalizations (Number of all anaerobic isolates/1000 hospitalizations) | 0.1 (0.3) | 0.4 (1.0) |
Number of clinically relevant anaerobic isolates/100,000 patient days (Number of all anaerobic isolates/100,000 patient days) | 3.3 (7.4) | 8.5 (20.6) |
Methods used for microbial identification | MALDI-TOF MS (Bruker Daltonics), extraction with formic acid before measurements | |
Blood culture detection system | BD BactecTM (Becton Dickinson) | BacT/Alert 3D (bioMérieux) |
Study Year | Present Study | Gajdács et al. [15] |
---|---|---|
Number of affected patients | 71 | 187 |
Male-to-female ratio | 1.45 | 0.60 |
Mean age [year ± SD] | 67.1 ± 14.1 | 71.9 ± 16.7 |
Age range [years] | 25–97 | 18–102 |
Study Year | 2016 | 2017 | 2018 | 2019 | 2020 | Overall |
---|---|---|---|---|---|---|
Number of Affected Patients | 15 | 10 | 19 | 12 | 15 | 71 (100%) |
Gram-positive, spore-forming anaerobic rods | 3 | 3 | 6 | 0 | 4 | 16 (22.5%) |
Clostridium sp. (genus level) | 1 | 1 | ||||
C. baratii | 1 | 1 | ||||
C. hathewayi (Hungatella hathewayi) | 1 | 1 | ||||
C. paraputrificum | 1 | 1 | ||||
C. perfringens | 1 | 4 | 1 | 6 | ||
C. ramosum | 1 | 1 | 1 | 3 | ||
Paeniclostridium sordellii | 2 | 2 | ||||
C. septicum | 1 | 1 | ||||
Gram-positive, non-spore-forming anaerobic rods | 0 | 1 | 1 | 5 | 1 | 8 (11.3%) |
Actinotignum schaali | 2 | 2 | ||||
Actinomyces naeslundii | 1 | 1 | ||||
A. neuii | 1 | 1 | ||||
A. odontolyticus (Schaalia odontolytica) | 2 | 1 | 3 | |||
A. turicensis (Schaalia turicensis) | 1 | 1 | ||||
Eggerthella lenta | 2 | 2 | ||||
Lactobacillus fermentum | 1 | 1 | ||||
Weissella viridescens | 1 | 1 | ||||
Gram-positive anaerobic cocci (GPAC) | 5 | 1 | 3 | 0 | 2 | 11 (15.5%) |
Anaerococcus octavius | 1 | 1 | ||||
A. tetradius | 1 | 1 | ||||
Parvimonas micra | 1 | 2 | 3 | |||
Peptinophilus harei | 1 | 1 | ||||
Peptococcus niger | 2 | 2 | ||||
Peptostreptococcus sp. (genus level) | 3 | 3 | ||||
Gram-negative anaerobic rods | 7 | 5 | 8 | 6 | 8 | 34 (47.9%) |
Bacteroides sp. (genus level) | 5 | 1 | 6 | |||
B. caccae | 1 | 1 | ||||
B. fragilis | 1 | 3 | 2 | 2 | 4 | 12 |
B. faecis | 1 | 1 | ||||
B. thetaiotaomicron | 1 | 1 | 2 | |||
Fusobacterium sp. (genus level) | 1 | 1 | ||||
F. nucleatum | 2 | 3 | 5 | |||
F. periodonticum | 1 | 1 | ||||
Parabacteroides distasonis | 1 | 1 | ||||
Prevotella sp. (genus level) | 1 | 1 | ||||
P. bivia | 1 | 1 | ||||
P. intermedia | 1 | 1 | ||||
P. melaninogenica | 1 | 1 | ||||
Gram-negative anaerobic cocci | 0 | 0 | 1 | 1 | 0 | 2 (2.8%) |
Veillonella parvula | 1 | 1 | 2 |
Anaerobic Isolates | Percentage of Anaerobes According to Literature Data [11,13] | Present Study | Gajdács et al. [15] |
---|---|---|---|
Cutibacteriumspp. * | 30–80% (of anaerobes isolated) | 55.6% (n = 89) | 54.0% (n = 247) |
All other isolates excluding Cutibacterium spp.: | |||
Gram-negative anaerobes | 50.7% (n = 36) | 38.9% (n = 69) | |
Bacteroides/Parabacteroides spp. | 26–75% | 32.4% (n = 23) | 34.2% (n = 54) |
Fusobacterium spp. | 4–15% | 9.9% (n = 7) | 1.2% (n = 2) |
Prevotella and Porphyromonas spp. | 0.5–10% | 5.6% (n = 4) | 1.2% (n = 2) |
Veillonella spp. | 0.5–2% | 2.8% (n = 2) | 2.3% (n = 4) |
Gram-positive anaerobes | 49.3% (n = 35) | 61.1% (n = 107) | |
Clostridium spp. | 8–46% | 22.5% (n = 16) | 33.3% (n = 59) |
Gram-positive anaerobic cocci (GPAC) | 8–20% | 15.5% (n = 11) | 12.0% (n = 21) |
Gram-positive non-spore-forming rods (excluding: Cutibacterium spp.) | 0.5–14% | 11.3% (n = 8) | 15.8% (n = 27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, K.; Nyul, A.; Lutz, Z.; Mestyán, G.; Gajdács, M.; Urbán, E.; Sonnevend, Á. Incidence and Clinical Characteristics of Anaerobic Bacteremia at a University Hospital in Hungary: A 5-Year Retrospective Observational Study. Antibiotics 2022, 11, 1326. https://doi.org/10.3390/antibiotics11101326
Kovács K, Nyul A, Lutz Z, Mestyán G, Gajdács M, Urbán E, Sonnevend Á. Incidence and Clinical Characteristics of Anaerobic Bacteremia at a University Hospital in Hungary: A 5-Year Retrospective Observational Study. Antibiotics. 2022; 11(10):1326. https://doi.org/10.3390/antibiotics11101326
Chicago/Turabian StyleKovács, Krisztina, Adrienn Nyul, Zsolt Lutz, Gyula Mestyán, Márió Gajdács, Edit Urbán, and Ágnes Sonnevend. 2022. "Incidence and Clinical Characteristics of Anaerobic Bacteremia at a University Hospital in Hungary: A 5-Year Retrospective Observational Study" Antibiotics 11, no. 10: 1326. https://doi.org/10.3390/antibiotics11101326
APA StyleKovács, K., Nyul, A., Lutz, Z., Mestyán, G., Gajdács, M., Urbán, E., & Sonnevend, Á. (2022). Incidence and Clinical Characteristics of Anaerobic Bacteremia at a University Hospital in Hungary: A 5-Year Retrospective Observational Study. Antibiotics, 11(10), 1326. https://doi.org/10.3390/antibiotics11101326