Surveillance and Genomic Analysis of Third-Generation Cephalosporin-Resistant and Carbapenem-Resistant Klebsiella pneumoniae Complex in Germany
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility and Species Distribution
2.2. MLST, HiR Clones, and cgMLST Analysis
2.3. Acquired Beta-Lactamases
2.4. Virulence Genes
3. Discussion
4. Materials and Methods
4.1. Study Participants and Design
4.2. Species Identification and Antimicrobial Susceptibility Testing
4.3. Whole-Genome Sequencing (WGS)
4.4. Molecular Species Identification, Molecular Epidemiology, and High-Risk Clones
4.5. Antimicrobial Resistance and Virulence Genes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae Population Genomics and Antimicrobial-Resistant Clones. Trends Microbiol. 2016, 24, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef]
- Blin, C.; Passet, V.; Touchon, M.; Rocha, E.P.C.; Brisse, S. Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae. Environ. Microbiol. 2017, 19, 1881–1898. [Google Scholar] [CrossRef] [PubMed]
- Rosenblueth, M.; Martínez, L.; Silva, J.; Martinez-Romero, E. Klebsiella variicola, A Novel Species with Clinical and Plant-Associated Isolates. Syst. Appl. Microbiol. 2004, 27, 27–35. [Google Scholar] [CrossRef]
- Brisse, S.; Passet, V.; Grimont, P.A.D. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. Int. J. Syst. Evol. Microbiol. 2014, 64, 3146–3152. [Google Scholar] [CrossRef]
- Long, S.W.; Linson, S.E.; Saavedra, M.O.; Cantu, C.; Davis, J.J.; Brettin, T.; Olsen, R.J. Whole-Genome Sequencing of a Human Clinical Isolate of the Novel Species Klebsiella quasivariicola sp. nov. Genome Announc. 2017, 5, e01057-17. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe and European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe, 2020 data. In Executive Summary; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Hamprecht, A.; Rohde, A.M.; Behnke, M.; Feihl, S.; Gastmeier, P.; Gebhardt, F.; Kern, W.V.; Knobloch, J.K.; Mischnik, A.; Obermann, B.; et al. Colonization with third-generation cephalosporin-resistant Enterobacteriaceae on hospital admission: Prevalence and risk factors. J. Antimicrob. Chemother. 2019, 71, 2957–2963. [Google Scholar] [CrossRef]
- Peirano, G.; Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef]
- Petit, A.; Ben Yaghlane-Bouslama, H.; Sofer, L.; Labia, R. Does high level production of SHV-type penicillinase confer resistance to ceftazidime in enterobacteriaceae? FEMS Microbiol. Lett. 1992, 92, 89–94. [Google Scholar] [CrossRef]
- Paterson, D.L. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. Am. J. Med. 2006, 119, S20–S28. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S521–S528. [Google Scholar] [CrossRef] [PubMed]
- Breurec, S.; Melot, B.; Hoen, B.; Passet, V.; Schepers, K.; Bastian, S.; Brisse, S. Liver Abscess Caused by Infection with Community-Acquired Klebsiella quasipneumoniae subsp. quasipneumoniae. Emerg. Infect. Dis. 2016, 22, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Maatallah, M.; Vading, M.; Kabir, M.H.; Bakhrouf, A.; Kalin, M.; Nauclér, P.; Brisse, S.; Giske, C.G. Klebsiella variicola Is a Frequent Cause of Bloodstream Infection in the Stockholm Area, and Associated with Higher Mortality Compared to K. pneumoniae. PLoS ONE 2014, 9, e113539. [Google Scholar] [CrossRef]
- Zurfluh, K.; Poirel, L.; Nordmann, P.; Klumpp, J.; Stephan, R. First detection of Klebsiella variicola producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland. Antimicrob. Resist. Infect. Control 2015, 4, 3. [Google Scholar] [CrossRef]
- Di, D.Y.W.; Jang, J.; Unno, T.; Hur, H.-G. Emergence of Klebsiella variicola positive for NDM-9, a variant of New Delhi metallo-β-lactamase, in an urban river in South Korea. J. Antimicrob. Chemother. 2017, 72, 1063–1067. [Google Scholar] [CrossRef]
- Woodford, N.; Turton, J.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 2011, 35, 736–755. [Google Scholar] [CrossRef]
- Chmelnitsky, I.; Shklyar, M.; Hermesh, O.; Navon-Venezia, S.; Edgar, R.; Carmeli, Y. Unique genes identified in the epidemic extremely drug-resistant KPC-producing Klebsiella pneumoniae sequence type 258. J. Antimicrob. Chemother. 2013, 68, 2178. [Google Scholar] [CrossRef]
- Peirano, G.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Emerging Antimicrobial-Resistant High-Risk Klebsiella pneumoniae Clones ST307 and ST147. Antimicrob. Agents Chemother. 2020, 64, e01148-20. [Google Scholar] [CrossRef]
- Bowers, J.R.; Kitchel, B.; Driebe, E.M.; MacCannell, D.R.; Roe, C.; Lemmer, D.; De Man, T.; Rasheed, J.K.; Engelthaler, D.M.; Keim, P.; et al. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic. PLoS ONE 2015, 10, e0133727. [Google Scholar] [CrossRef] [PubMed]
- Turton, J.; Davies, F.; Turton, J.; Perry, C.; Payne, Z.; Pike, R. Hybrid Resistance and Virulence Plasmids in “High-Risk” Clones of Klebsiella pneumoniae, Including Those Carrying blaNDM-5. Microorganisms 2019, 7, 326. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef]
- Shon, A.S.; Bajwa, R.P.S.; Russo, T.A. Hypervirulent (hypermucoviscous)Klebsiella pneumoniae: A new and dangerous breed. Virulence 2013, 4, 107–118. [Google Scholar] [CrossRef]
- Cortés, G.; Borrell, N.; de Astorza, B.; Gómez, C.; Sauleda, J.; Albertí, S. Molecular Analysis of the Contribution of the Capsular Polysaccharide and the Lipopolysaccharide O Side Chain to the Virulence of Klebsiella pneumoniae in a Murine Model of Pneumonia. Infect. Immun. 2002, 70, 2583–2590. [Google Scholar] [CrossRef]
- Favre-Bonté, S.; Licht, T.R.; Forestier, C.; Krogfelt, K.A. Klebsiella pneumoniae Capsule Expression Is Necessary for Colonization of Large Intestines of Streptomycin-Treated Mice. Infect. Immun. 1999, 67, 6152–6156. [Google Scholar] [CrossRef]
- Bachman, M.A.; Miller, V.L.; Weiser, J.N. Mucosal Lipocalin 2 Has Pro-Inflammatory and Iron-Sequestering Effects in Response to Bacterial Enterobactin. PLOS Pathog. 2009, 5, e1000622. [Google Scholar] [CrossRef]
- Russo, T.A.; Olson, R.; MacDonald, U.; Metzger, D.; Maltese, L.M.; Drake, E.J.; Gulick, A. Aerobactin Mediates Virulence and Accounts for Increased Siderophore Production under Iron-Limiting Conditions by Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae. Infect. Immun. 2014, 82, 2356–2367. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Esteban-Cantos, A.; Aracil, B.; Bautista, V.; Ortega, A.; Lara, N.; Saez, D.; Fernández-Romero, S.; Perez-Vazquez, M.; Navarro, F.; Grundmann, H.; et al. The Carbapenemase-Producing Klebsiella pneumoniae Population Is Distinct and More Clonal than the Carbapenem-Susceptible Population. Antimicrob. Agents Chemother. 2017, 61, e02520-16. [Google Scholar] [CrossRef] [PubMed]
- Villa, L.; Feudi, C.; Fortini, D.; Brisse, S.; Passet, V.; Bonura, C.; Endimiani, A.; Mammina, C.; Ocampo, A.M.; Jiménez, J.N.; et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 2017, 3, e000110. [Google Scholar] [CrossRef]
- Haller, S.; Kramer, R.; Becker, K.; A Bohnert, J.; Eckmanns, T.; Hans, J.B.; Hecht, J.; Heidecke, C.-D.; Hübner, N.-O.; Kramer, A.; et al. Extensively drug-resistant Klebsiella pneumoniae ST307 outbreak, north-eastern Germany, June to October 2019. Eurosurveillance 2019, 24, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Heiden, S.E.; Hübner, N.-O.; Bohnert, J.A.; Heidecke, C.-D.; Kramer, A.; Balau, V.; Gierer, W.; Schaefer, S.; Eckmanns, T.; Gatermann, S.; et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med. 2020, 12, 113. [Google Scholar] [CrossRef]
- Becker, L.; Kaase, M.; Pfeifer, Y.; Fuchs, S.; Reuss, A.; Von Laer, A.; Abu Sin, M.; Korte-Berwanger, M.; Gatermann, S.; Werner, G. Genome-based analysis of Carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008-2014. Antimicrob. Resist. Infect. Control 2018, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, K.; Carattoli, A.; Wille, J.; Biehl, L.M.; Rohde, H.; Farowski, F.; Krut, O.; Villa, L.; Feudi, C.; Seifert, H.; et al. Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella pneumoniae Sequence Type 147 Recovered from Germany. Antibiotics 2020, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- E Zautner, A.; Bunk, B.; Pfeifer, Y.; Spröer, C.; Reichard, U.; Eiffert, H.; Scheithauer, S.; Groß, U.; Overmann, J.; Bohne, W. Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing. J. Antimicrob. Chemother. 2017, 72, 2737–2744. [Google Scholar] [CrossRef]
- Mugnaioli, C.; Luzzaro, F.; De Luca, F.; Brigante, G.; Perilli, M.; Amicosante, G.; Stefani, S.; Toniolo, A.; Rossolini, G.M. CTX-M-Type Extended-Spectrum β-Lactamases in Italy: Molecular Epidemiology of an Emerging Countrywide Problem. Antimicrob. Agents Chemother. 2006, 50, 2700–2706. [Google Scholar] [CrossRef]
- Eckert, C.; Gautier, V.; Saladin-Allard, M.; Hidri, N.; Verdet, C.; Ould-Hocine, Z.; Barnaud, G.; Delisle, F.; Rossier, A.; Lambert, T.; et al. Dissemination of CTX-M-Type β-Lactamases among Clinical Isolates of Enterobacteriaceae in Paris, France. Antimicrob. Agents Chemother. 2004, 48, 1249–1255. [Google Scholar] [CrossRef]
- Pfennigwerth, N.; Schauer, J. Bericht des Nationalen Referenzzentrums für gramnegative Krankenhauserreger–Zeitraum 1. Januar 2020 bis 31. Dezember 2020. Epid Bull. 2021, 36, 4–11. [Google Scholar]
- Koppe, U.; Von Laer, A.; Kroll, L.E.; Noll, I.; Feig, M.; Schneider, M.; Claus, H.; Eckmanns, T.; Abu Sin, M. Carbapenem non-susceptibility of Klebsiella pneumoniae isolates in hospitals from 2011 to 2016, data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob. Resist. Infect. Control 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Wang, B.; Pan, F.; Wang, C.; Zhao, W.; Sun, Y.; Zhang, T.; Shi, Y.; Zhang, H. Molecular epidemiology of Carbapenem-resistant Klebsiella pneumoniae in a paediatric hospital in China. Int. J. Infect. Dis. 2020, 93, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Jünemann, S.; Sedlazeck, F.J.; Prior, K.; Albersmeier, A.; John, U.; Kalinowski, J.; Mellmann, A.; Goesmann, A.; von Haeseler, A.; Stoye, J.; et al. Updating benchtop sequencing performance comparison. Nat. Biotechnol. 2013, 31, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.O.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.E.; Pietsch, M.; Frühauf, A.; Pfeifer, Y.; Martin, M.; Luft, D.; Gatermann, S.; Pfennigwerth, N.; Kaase, M.; Werner, G.; et al. IS26-Mediated Transfer of blaNDM–1 as the Main Route of Resistance Transmission During a Polyclonal, Multispecies Outbreak in a German Hospital. Front. Microbiol. 2019, 10, 2817. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jousset, A.B.; Chiarelli, A.; Emeraud, C.; Glaser, P.; Naas, T.; Dortet, L. Emergence of New Non–Clonal Group 258 High-Risk Clones among Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae Isolates, France. Emerg. Infect. Dis. 2020, 26, 1212–1220. [Google Scholar] [CrossRef]
- Palmieri, M.; Wyres, K.L.; Mirande, C.; Qiang, Z.; Liyan, Y.; Gang, C.; Goossens, H.; van Belkum, A.; Ping, L.Y. Genomic evolution and local epidemiology of Klebsiella pneumoniae from a major hospital in Beijing, China, over a 15 year period: Dissemination of known and novel high-risk clones. Microb. Genom. 2021, 7, 14. [Google Scholar] [CrossRef]
- Di Pilato, V.; Errico, G.; Monaco, M.; Giani, T.; Del Grosso, M.; Antonelli, A.; David, S.; Lindh, E.; Camilli, R.; Aanensen, D.M.; et al. The changing epidemiology of carbapenemase-producingKlebsiella pneumoniaein Italy: Toward polyclonal evolution with emergence of high-risk lineages. J. Antimicrob. Chemother. 2021, 76, 355–361. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Wick, R.R.; Heinz, E.; Holt, K.E.; Wyres, K.L. Kaptive web: User-Friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J. Clin. Microbiol. 2018, 56, e00197-18. [Google Scholar] [CrossRef] [Green Version]
Centre | 3GCR/CR Colonising Isolates | 3GCR/CR Bloodstream Isolates | 3GCS/CS Bloodstream Isolates | 3GC-Intermediate Bloodstream Isolates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Isolates by Year of Study | No. of Isolates by Year of Study | No. of Isolates by Year of Study | No. of Isolates | |||||||||||
2016 | 2017 | 2018 | 2019 | Total | 2016 | 2017 | 2018 | Total | 2016 | 2017 | 2018 | Total | Total * | |
A | 4 (4) | 10 (10) | 13 (13) | 10 (10) | 37 (37) | 7 (2) | 32 (5) | 29 (10) | 68 (17) | 26 (0) | 91 (0) | 120 (0) | 237 (0) | 7 (0) |
B | 5 (5) | 1 (1) | 5 (5) | 5 (5) | 16 (16) | 5 (5) | 12 (12) | 7 (7) | 24 (24) | 12 (0) | 64 (10) | 74 (15) | 150 (25) | 4 (0) |
C | 6 (6) | 4 (4) | 5 (5) | 4 (4) | 19 (19) | 0 (0) | 13 (12) | 7 (7) | 20 (19) | 12 (0) | 57 (12) | 62 (20) | 131 (32) | 6 (0) |
D | 1 (1) | 0 (0) | 1 (1) | 1 (1) | 3 (3) | 0 (0) | 11 (11) | 4 (3) | 15 (14) | 4 (0) | 32 (11) | 38 (11) | 74 (22) | 2 (0) |
E | 1 (1) | 0 (0) | 0 (0) | 5 (5) | 6 (6) | 0 (0) | 1 (1) | 0 (0) | 1 (1) | 2 (0) | 22 (1) | 41 (4) | 65 (5) | 4 (0) |
F | nd | 4 (4) | 5 (4) | 2 (2) | 11 (10) | 0 (0) | 2 (2) | 3 (3) | 5 (5) | 4 (0) | 27 (5) | 33 (6) | 64 (11) | 2 (0) |
Total | 17 (17) | 19 (19) | 29 (28) | 27 (27) | 92 (91) | 12 (7) | 71 (43) | 50 (30) | 133 (80) | 60 (0) | 293 (39) | 368 (56) | 721 (95) | 26 (0) |
Colonising Isolates | Bloodstream Isolates | Bloodstream Isolates | |||
---|---|---|---|---|---|
3GCR/CR (n = 91) | 3GCR/CR (n = 80) | 3GCS/CS (n = 95) | |||
ST | No. (%) of Isolates | ST | No. (%) of Isolates | ST | No. (%) of Isolates |
ST307 * | 10 (11) | ST307 * | 13 (16.2) | ST37 * | 7 (7.4) |
ST45 | 5 (5.5) | ST15 * | 7 (8.8) | ST14 * | 3 (3.2) |
ST219 | 5 (5.5) | ST48 * | 7 (8.8) | ST17 * | 3 (3.2) |
ST14 * | 4 (4.4) | ST219 | 5 (6.3) | ST160 | 2 (2.1) |
ST17 * | 4 (4.4) | ST147 * | 4 (5.0) | ST23 | 2 (2.1) |
ST405 | 4 (4.4) | ST13 | 3 (3.8) | ST2599 | 2 (2.1) |
ST15 * | 3 (3.3) | ST101 * | 3 (3.8) | ST35 | 2 (2.1) |
ST1653 | 3 (3.3) | ST4 | 2 (2.5) | ST3640 | 2 (2.1) |
ST20 * | 2 (2.2) | ST25 | 2 (2.5) | ST39 | 2 (2.1) |
ST29 | 2 (2.2) | ST392 | 2 (2.5) | ST6069 | 2 (2.1) |
ST37 * | 2 (2.2) | ST1825 | 2 (2.5) | ST641 | 2 (2.1) |
ST48 * | 1 (1.1) | ST405 | 2 (2.5) | ST20 * | 1 (1.1) |
ST147 * | 1 (1.1) | ST607 | 2 (2.5) | ST101 * | 1 (1.1) |
ST17 * | 1 (1.3) | ||||
ST37 * | 1 (1.3) | ||||
ST258 * | 1 (1.3) | ||||
ST383 * | 1 (1.3) | ||||
ST395 * | 1 (1.3) | ||||
Other Singletons | 45 (49.5) | Other Singletons | 21 (26.3) | Singletons | 64 (67.4) |
Total HiR | 27 (29.7) | Total HiR | 39 (48.8) | Total HiR | 15 (15.8) |
Acquired Beta-Lactamase | No. of 3GCR/CR Colonising Isolates | No. of 3GCR/CR Bloodstream Isolates | No. of 3GCS/CS Bloodstream Isolates | |
---|---|---|---|---|
Extended-spectrum | blaCTX-M-1 | 2 | 1 | 0 |
blaCTX-M-3 | 0 | 1 | 0 | |
blaCTX-M-14 | 10 | 2 | 0 | |
blaCTX-M-14b | 1 | 1 | 0 | |
blaCTX-M-15 | 68 | 59 | 0 | |
blaCTX-M-27 | 1 | 1 | 0 | |
blaCTX-M-55 | 1 | 0 | 0 | |
blaCTX-M-65 | 1 | 0 | 0 | |
blaOXA-1 | 24 | 30 | 0 | |
Broad-spectrum | blaTEM-1A | 1 | 3 | 1 |
blaTEM-1B | 46 | 35 | 2 | |
Narrow-spectrum | blaOXA-9 | 0 | 4 | 1 |
Carbapenemases | blaKPC-2 | 0 | 1 | 0 |
blaOXA-48 | 0 | 2 | 0 | |
blaVIM-19 | 0 | 1 | 0 | |
AmpC | blaCMY-4 | 0 | 1 | 0 |
blaDHA-1 | 2 | 5 | 0 | |
Total | 157 | 147 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xanthopoulou, K.; Imirzalioglu, C.; Walker, S.V.; Behnke, M.; Dinkelacker, A.G.; Eisenbeis, S.; Gastmeier, P.; Gölz, H.; Käding, N.; Kern, W.V.; et al. Surveillance and Genomic Analysis of Third-Generation Cephalosporin-Resistant and Carbapenem-Resistant Klebsiella pneumoniae Complex in Germany. Antibiotics 2022, 11, 1286. https://doi.org/10.3390/antibiotics11101286
Xanthopoulou K, Imirzalioglu C, Walker SV, Behnke M, Dinkelacker AG, Eisenbeis S, Gastmeier P, Gölz H, Käding N, Kern WV, et al. Surveillance and Genomic Analysis of Third-Generation Cephalosporin-Resistant and Carbapenem-Resistant Klebsiella pneumoniae Complex in Germany. Antibiotics. 2022; 11(10):1286. https://doi.org/10.3390/antibiotics11101286
Chicago/Turabian StyleXanthopoulou, Kyriaki, Can Imirzalioglu, Sarah V. Walker, Michael Behnke, Ariane G. Dinkelacker, Simone Eisenbeis, Petra Gastmeier, Hanna Gölz, Nadja Käding, Winfried V. Kern, and et al. 2022. "Surveillance and Genomic Analysis of Third-Generation Cephalosporin-Resistant and Carbapenem-Resistant Klebsiella pneumoniae Complex in Germany" Antibiotics 11, no. 10: 1286. https://doi.org/10.3390/antibiotics11101286
APA StyleXanthopoulou, K., Imirzalioglu, C., Walker, S. V., Behnke, M., Dinkelacker, A. G., Eisenbeis, S., Gastmeier, P., Gölz, H., Käding, N., Kern, W. V., Kola, A., Kramme, E., Lucassen, K., Mischnik, A., Peter, S., Rohde, A. M., Rupp, J., Tacconelli, E., Tobys, D., ... on behalf of the DZIF R-Net Study Group. (2022). Surveillance and Genomic Analysis of Third-Generation Cephalosporin-Resistant and Carbapenem-Resistant Klebsiella pneumoniae Complex in Germany. Antibiotics, 11(10), 1286. https://doi.org/10.3390/antibiotics11101286