In vitro Activity of Cefiderocol and Comparators against Carbapenem-Resistant Gram-Negative Pathogens from France and Belgium
Abstract
:1. Introduction
2. Results
2.1. Activity of Cefiderocol
2.2. Cefiderocol Activity among Enterobacterales Isolates
2.3. Cefiderocol Activity against Meropenem-Resistant Non-Fermenters
2.4. Cefiderocol Activity against Intrinsically Meropenem-Resistant Non-Fermenters
3. Discussion
4. Materials and Methods
4.1. Bacteria
4.2. Antimicrobial Susceptibility Testing
4.3. Ethics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Limbago, B.M.; Patel, J.B.; Kallen, A.J. Carbapenem-resistant Enterobacteriaceae: Epidemiology and prevention. Clin. Infect. Dis. 2011, 53, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buehrle, D.J.; Shields, R.K.; Clarke, L.G.; Potoski, B.A.; Clancy, C.J.; Hong Nguyen, M. Carbapenem-resistant Pseudomonas aeruginosa bacteremia: Risk factors for mortality and microbiologic treatment failure. Antimicrob. Agents Chemother. 2016, 61, e01243-16. [Google Scholar] [CrossRef] [Green Version]
- Higgins, P.G.; Dammhayn, C.; Hackel, M.; Seifert, H. Global spread of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2009, 65, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Colomb-Cotinat, M.; Soing-Altrach, S.; Leon, A.; Savitch, Y.; Poujol, I.; Naas, T.; Cattoir, V.; Berger-Carbonne, A.; Dortet, L.; CPIAS Network. Emerging extensively drug-resistant bacteria (eXDR) in France in 2018. Med. Mal. Infect. 2020, 50, 715–722. [Google Scholar] [CrossRef]
- Jousset, A.B.; Emeraud, C.; Bonnin, R.A.; Naas, T.; Dortet, L. Caractéristiques et Évolution des Souches d’Entérobactéries Productrices de Carbapénémases (EPC) Isolées en France, 2012–2020//Characteristics and Evolution of Carbapenemase-Producing Enterobacterales in France, 2012–2020. BEH 18–19|16 Novembre 2021. 2012, pp. 351–358. Available online: http://beh.santepubliquefrance.fr/beh/2021/18-19/2021_18-19_4.html (accessed on 1 September 2022).
- Brolund, A.; Lagerqvist, N.; Byfors, S.; Struelens, M.J.; Monnet, D.L.; Albiger, B.; Kohlenberg, A.; European Antimicrobial Resistance Genes Surveillance Network EURGen-Net Capacity Survey Group. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. Euro Surveill. 2019, 24, 1900123. [Google Scholar] [CrossRef] [Green Version]
- Plésiat, P.; Bonnet, R.; Naas, T.; Dortet, L. Rapport d’Activite 2019–2020. Centre Nationale de Reference de la Resistance aux Antibiotiques. Available online: https://online.fliphtml5.com/kcktq/vxnt/?1623677121389#p=1 (accessed on 1 September 2022).
- Emeraud, C.; Girlich, D.; Bonnin, R.A.; Jousset, A.B.; Naas, T.; Dortet, L. Emergence and Polyclonal Dissemination of OXA-244-Producing Escherichia coli, France. Emerg. Infect. Dis. 2021, 27, 1206–1210. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, K.G.; Snelling, A.M. Pseudomonas aeruginosa: A formidable and ever-present adversary. J. Hosp. Infect. 2009, 73, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections caused by carbapenem-resistant Enterobacteriaceae: An update on therapeutic options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Oueslati, S.; Iorga, B.I.; Tlili, L.; Exilie, C.; Zavala, A.; Dortet, L.; Jousset, A.B.; Bernabeu, S.; Bonnin, R.A.; Naas, T. Unravelling ceftazidime/avibactam resistance of KPC-28, a KPC-2 variant lacking carbapenemase activity. J. Antimicrob. Chemother. 2019, 74, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.B.; Oueslati, S.; Emeraud, C.; Bonnin, R.A.; Dortet, L.; Iorga, B.I.; Naas, T. KPC-39-Mediated Resistance to Ceftazidime-Avibactam in a Klebsiella pneumoniae ST307 Clinical Isolate. Antimicrob. Agents Chemother. 2021, 65, e0116021. [Google Scholar] [CrossRef]
- Shionogi & Co., Ltd. Fetroja (Cefiderocol) Prescribing Information. 2020. Available online: https://www.shionogi.com/content/dam/shionogi/si/products/pdf/fetroja.pdf (accessed on 1 September 2022).
- Shionogi & Co., Ltd. Fetcroja. Summary of Product Characteristics. 2020. Available online: https://www.ema.europa.eu/en/documents/product-information/fetcroja-epar-product-information_en.pdf (accessed on 1 September 2022).
- Ito, A.; Nishikawa, T.; Matsumoto, S.; Yoshizawa, H.; Sato, T.; Nakamura, R.; Tsuji, M.; Yamano, Y. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 60, 7396–7401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, A.; Kohira, N.; Bouchillon, S.K.; West, J.; Rittenhouse, S.; Sader, H.S.; Rhomberg, P.R.; Jones, R.N.; Yoshizawa, H.; Nakamura, R.; et al. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J. Antimicrob. Chemother. 2016, 71, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother. 2017, 62, e01454-17. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Nishikawa, T.; Ota, M.; Ito-Horiyama, T.; Ishibashi, N.; Sato, T.; Tsuji, M.; Yamano, Y. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J. Antimicrob. Chemother. 2018, 73, 3049–3052. [Google Scholar] [CrossRef] [Green Version]
- Longshaw, C.; Manissero, D.; Tsuji, M.; Echols, R.; Yamano, Y. In vitro activity of the siderophore cephalosporin, cefiderocol, against molecularly characterised, carbapenem-non-susceptible Gram-negative bacteria from Europe. JAC—Antimicrob. Resist. 2020, 2, dlaa060. [Google Scholar] [CrossRef]
- Kohira, N.; West, J.; Ito, A.; Ito-Horiyama, T.; Nakamura, R.; Sato, T.; Rittenhouse, S.; Tsuji, M.; Yamano, Y. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother. 2016, 60, 729–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito-Horiyama, T.; Ishii, Y.; Ito, A.; Sato, T.; Nakamura, R.; Fukuhara, N.; Tsuji, M.; Yamano, Y.; Yamaguchi, K.; Tateda, K. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob. Agents Chemother. 2016, 60, 4384–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 2017, 61, e00093-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlowsky, J.A.; Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against Gram-negative bacilli isolated by clinical laboratories in North America and Europe in 2015–2016: SIDERO-WT-2015. Int. J. Antimicrob. Agents 2019, 53, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Lina, G.; Santerre-Henriksen, A.; Longshaw, C.; Jehl, F. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014-2018 studies in France. JAC Antimicrob. Resist. 2021, 3, dlab081. [Google Scholar] [CrossRef]
- Ballesté-Delpierre, C.; Ramírez, Á.; Muñoz, L.; Longshaw, C.; Roca, I.; Vila, J. Assessment of In Vitro Cefiderocol Susceptibility and Comparators against an Epidemiologically Diverse Collection of Acinetobacter baumannii Clinical Isolates. Antibiotics 2022, 11, 187. [Google Scholar] [CrossRef]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 10.0, 2020. 2020. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 1 September 2022).
- Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In M07 Standard, 11th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Simner, P.J.; Patel, R. Cefiderocol antimicrobial susceptibility testing considerations: The Achilles’ heel of the Trojanhorse? J. Clin. Microbiol. 2021, 59, e00951-20. [Google Scholar] [CrossRef]
- Fröhlich, C.; Sørum, V.; Thomassen, A.M.; Johnsen, P.J.; Leiros, H.-K.S.; Samuelsen, Ø. OXA-48-mediated ceftazidime-avibactam resistance is associated with evolutionary trade-offs. mSphere 2019, 4, e00024-19. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; Biedenbach, D.J.; Hackel, M.; Rabine, S.; de Jonge, B.L.; Bouchillon, S.K.; Sahm, D.F.; Bradford, P.A. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and aztreonam-avibactam. Antimicrob. Agents Chemother. 2016, 60, 4490–4500. [Google Scholar] [CrossRef] [Green Version]
- De Jonge, B.L.; Karlowsky, J.A.; Kazmierczak, K.M.; Biedenbach, D.J.; Sahm, D.F.; Nichols, W.W. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012 to 2014). Antimicrob. Agents Chemother. 2016, 60, 3163–3169. [Google Scholar] [CrossRef]
- Kazmierczak, K.M.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. Longitudinal analysis of ESBL and carbapenemase carriage among Enterobacterales and Pseudomonas aeruginosa isolates collected in Europe as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme, 2013–2017. J. Antimicrob. Chemother. 2020, 75, 1165–1173. [Google Scholar] [CrossRef]
- Mushtaq, S.; Sadouki, Z.; Vickers, A.; Livermore, D.M.; Woodford, N. In vitro activity of cefiderocol, a siderophore cephalosporin, against multidrug-resistant Gram-negative bacteria. Antimicrob. Agents Chemother. 2020, 64, e01582-20. [Google Scholar] [CrossRef]
- Lan, P.; Lu, Y.; Chen, Z.; Wu, X.; Hua, X.; Jiang, Y.; Zhou, J.; Yu, Y. Emergence of high-level cefiderocol resistance in carbapenem-resistant Klebsiella pneumoniae from bloodstream infections in patients with hematologic malignancies in China. Microbiol. Spectr. 2022, 10, e00084-22. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.A.; Cointe, A.; Jacquier, H.; Choudhury, A.; Magnan, M.; Courroux, C.; Tenaillon, O.; Bonacorsi, S.; Birgy, A. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect. Clin. Microbiol. Infect. 2021, 27, 1172.e7–1172.e10. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: An Evolutionary Overview. Antimicrob. Agents Chemother. 2022, 66, e00447-22. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.A.; Bonacorsi, S.; Hocquet, D.; Baruchel, A.; Fahd, M.; Storme, T.; Tang, R.; Doit, C.; Tenaillon, O.; Birgy, A. Impact of anticancer chemotherapy on the extension of beta-lactamase spectrum: An example with KPC-type carbapenemase activity towards ceftazidime-avibactam. Sci. Rep. 2020, 10, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isler, B.; Doi, Y.; Bonomo, R.A.; Paterson, D.L. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 2019, 63, e01110-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobias, J.; Dénervaud-Tendon, V.; Poirel, L.; Nordmann, P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2319–2327. [Google Scholar] [CrossRef] [Green Version]
- Ordooei, J.A.; Shokouhi, S.; Sahraei, Z. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 71, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Bassetti, M.; Ferrer, R.; Naas, T.; Niki, Y.; Paterson, D.L.; Zeitlinger, M.; Echols, R. All-cause mortality rates in adults with carbapenem-resistant Gram-negative bacterial infections: A comprehensive review of pathogen-focused, prospective, randomized, interventional clinical studies. Expert Rev. Anti Infect. Ther. 2022, 20, 707–719. [Google Scholar] [CrossRef]
- Paterson, D.L.; Kinoshita, M.; Baba, T.; Echols, R.; Portsmouth, S. Outcomes with Cefiderocol Treatment in Patients with Bacteraemia Enrolled into Prospective Phase 2 and Phase 3 Randomised Clinical Studies. Infect. Dis. Ther. 2022, 11, 853–870. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.F.; Paul, M.; Shields, R.K.; Echols, R.; Baba, T.; Yamano, Y.; Portsmouth, S. Cefiderocol for the Treatment of Infections Due To Metallo-Beta-Lactamase-Producing Pathogens in the CREDIBLE-CR And APEKS-NP Phase 3 Randomized Studies. Clin. Infect. Dis. 2022, ciac078. [Google Scholar] [CrossRef]
- Rose, L.; Lai, L.; Byrne, D. Successful prolonged treatment of a carbapenem-resistant Acinetobacter baumannii hip infection with cefiderocol: A case report. Pharmacotherapy 2022, 42, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; Barnini, S.; et al. Cefiderocol as rescue therapy for Acinetobacter baumannii and other carbapenem-resistant Gram-negative infections in intensive care unit patients. Clin. Infect. Dis. 2021, 72, 2021–2024. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Ceccarelli, G.; De Angelis, M.; Sacco, F.; Miele, M.C.; Mastroianni, C.M.; Venditti, M. Cefiderocol for compassionate use in the treatment of complicated infections caused by extensively and pan-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2020, 23, 292–296. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; De Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, ciac268. [Google Scholar] [CrossRef]
- Banerjee, R.; Humphries, R. Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence 2017, 8, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Bradley, N.; Lee, Y. Practical implications of new antibiotic agents for the treatment of carbapenem-resistant Enterobacteriaceae. Microbiol. Insights 2019, 12, 1178636119840367. [Google Scholar] [CrossRef] [PubMed]
ß-lactam Resistant Mechanism | Carbapenemase-Producers | Impermeability | ESC Resistant 1 | WT | IR2 | Total | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genus/Species | NDM | VIM | IMP | GIM | AIM | SPM | DIM | SIM | LMB | TMB | KPC | GES | IMI | SME | FRI | OXA- 48 like | OXA-372 | OXA-198 | OXA- 23 | OXA- 24/40 | hyper OXA- 51 | OXA-58 | OXA-143 | OXA-48/NDM | OXA-48/VIM | NDM/VIM | NDM/KPC | NDM/OXA-23 | ESBL + Dporin | AMPC + Dporin | ESBL/AmpC/Dporin | Efflux | OprD | AmpC/Efflux | AmpC/Efflux/OprD | Hyper K1 | pAmpC | CTX-M | VEB | BEL | PER | SCO/RTG/Carb | PME | ESBL-OXA | |||
E. coli | 10 | 3 | 3 | 4 | 21 | 4 | 1 | 1 | 1 | 2 | 6 | 1 | 2 | 59 | |||||||||||||||||||||||||||||||||
Klebsiella | 8 | 10 | 7 | 12 | 1 | 21 | 7 | 12 | 2 | 1 | 3 | 1 | 1 | 2 | 88 | ||||||||||||||||||||||||||||||||
Enterobacter | 2 | 2 | 1 | 1 | 5 | 1 | 4 | 1 | 3 | 1 | 18 | 3 | 1 | 1 | 1 | 45 | |||||||||||||||||||||||||||||||
Serratia | 1 | 2 | 3 | 3 | 1 | 1 | 11 | ||||||||||||||||||||||||||||||||||||||||
Citrobacter | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 12 | ||||||||||||||||||||||||||||||||||||||
Morganella | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||
Providencia | 2 | 2 | |||||||||||||||||||||||||||||||||||||||||||||
Salmonella enterica | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||
Proteus | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||
Hafnia alvei | 2 | 2 | |||||||||||||||||||||||||||||||||||||||||||||
P. aeruginosa | 4 | 52 | 9 | 2 | 1 | 1 | 1 | 4 | 8 | 3 | 3 | 1 | 2 | 12 | 5 | 2 | 1 | 1 | 1 | 113 | |||||||||||||||||||||||||||
P. putida | 2 | 1 | 3 | ||||||||||||||||||||||||||||||||||||||||||||
P. stutzeri | 1 | 1 | 1 | 3 | |||||||||||||||||||||||||||||||||||||||||||
P. fluorescens | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||
A. xylosoxydans | 1 | 11 | 12 | ||||||||||||||||||||||||||||||||||||||||||||
A. baumannii | 9 | 2 | 3 | 1 | 8 | 19 | 9 | 9 | 8 | 2 | 3 | 2 | 1 | 3 | 1 | 2 | 82 | ||||||||||||||||||||||||||||||
B. cepacia | 13 | 13 | |||||||||||||||||||||||||||||||||||||||||||||
S. maltophilia | 25 | 25 | |||||||||||||||||||||||||||||||||||||||||||||
E. miricola | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||
E.meningoseptica | 1 | 1 | |||||||||||||||||||||||||||||||||||||||||||||
Total | 34 | 76 | 27 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 28 | 18 | 4 | 3 | 1 | 50 | 1 | 3 | 19 | 9 | 9 | 8 | 2 | 13 | 2 | 1 | 1 | 3 | 13 | 23 | 4 | 3 | 1 | 2 | 12 | 2 | 4 | 9 | 9 | 2 | 6 | 3 | 1 | 5 | 4 | 51 | 476 |
Mechanism | Total # of Isolates | # of Isolates per MIC (mg/L) | % Susceptible Isolates at Breakpoints of (mg/L) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | >64 | ≤2 1 | ≤4 2 | ||
Enterobacterales | 222 | 6 | 5 | 13 | 18 | 31 | 67 | 39 | 27 | 5 | 5 | 1 | 2 | 3 | 81 | 93 |
Non CPE | 67 | 2 | 1 | 2 | 10 | 10 | 17 | 15 | 8 | 0 | 0 | 1 | 1 | 0 | 85 | 97 |
KPC | 24 | 0 | 0 | 1 | 0 | 5 | 11 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 92 | 96 |
other class A GES, IMI, SME, fri… | 9 | 0 | 0 | 2 | 1 | 2 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 78 | 89 |
MBLs | 54 | 1 | 1 | 3 | 3 | 3 | 15 | 11 | 11 | 1 | 3 | 1 | 0 | 1 | 69 | 89 |
NDM | 21 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | 7 | 1 | 2 | 0 | 0 | 1 | 48 | 81 |
VIM | 17 | 0 | 0 | 0 | 1 | 0 | 6 | 6 | 2 | 0 | 1 | 1 | 0 | 0 | 76 | 88 |
IMP | 13 | 1 | 1 | 3 | 2 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 85 | 100 |
other MBLs (LMB, GIM, TMB) | 3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
OXA-48 | 51 | 3 | 2 | 5 | 4 | 11 | 16 | 5 | 3 | 2 | 0 | 0 | 0 | 0 | 90 | 96 |
Multi-Carbas | 17 | 0 | 1 | 0 | 0 | 0 | 6 | 3 | 3 | 0 | 1 | 0 | 1 | 2 | 59 | 76 |
P. aeruginosa | 120 | 2 | 10 | 22 | 29 | 30 | 17 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 99 | 100 |
Non-CP, ESBLs | 31 | 0 | 1 | 7 | 8 | 7 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 97 | 100 |
MBLS | 77 | 2 | 8 | 13 | 19 | 18 | 12 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
VIM | 56 | 1 | 7 | 12 | 14 | 11 | 8 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
IMP | 11 | 0 | 0 | 1 | 4 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
NDM, GIM, DIM, SPM, AIM | 10 | 1 | 1 | 0 | 1 | 2 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
OXA-198, GES, KPC | 12 | 0 | 1 | 2 | 2 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
A. baumannii | 82 | 1 | 7 | 11 | 6 | 15 | 16 | 13 | 3 | 3 | 1 | 0 | 0 | 6 | 84 | 88 |
ESBL, Non CP | 26 | 0 | 0 | 4 | 1 | 6 | 5 | 7 | 0 | 0 | 1 | 0 | 0 | 2 | 88 | 88 |
OXA-23, 40, 58, 143 | 40 | 1 | 7 | 7 | 5 | 5 | 10 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 93 | 95 |
NDM-like | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 3 | 30 | 50 |
VIM, IMP | 6 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
S. maltophilia | 25 | 22 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
B. cepacia | 13 | 10 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 92.3 | 92.3 |
A. xylosoxidans | 12 | 0 | 0 | 1 | 4 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
Elizabethkingia sp | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
Species | Resistance Mechanism (# of Isolates) | Antimicrobial Agent | MIC (mg/L) | S/I/R | |||||
---|---|---|---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | S (%) | I (%) 1 | R (%) | ||||
Enterobacterales | |||||||||
Total (222) | Cefiderocol | ≤0.03–>64 | 1 | 4 | 81 | / | 19 | ||
Ceftolozane–tazobactam | ≤0.03–>64 | 64 | >64 | 19 | / | 81 | |||
Cefepime | ≤0.5–>16 | >16 | >16 | 14 | 10 | 76 | |||
Ceftazidime | 0.12–>64 | >64 | >64 | 9 | 8 | 83 | |||
Ceftazidime–avibactam | 0.06–>64 | 4 | >64 | 63 | / | 37 | |||
Aztreonam | ≤0.5–>32 | >32 | >32 | 14 | 4 | 82 | |||
Meropenem | 0.06–>64 | 8 | >64 | 36 | 20 | 44 | |||
Amikacin | ≤4–>64 | ≤4 | >64 | 70 | / | 30 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 30 | 5 | 65 | |||
Colistin | ≤0.5–>8 | ≤0.5 | >8 | 84 | / | 16 | |||
Tigecycline | ≤0.25–>4 | ≤0.25 | 2 | 73 | / | 27 | |||
Non-CPE (67) | Cefiderocol | 0.12–64 | 1 | 4 | 85 | / | 15 | ||
Ceftolozane–tazobactam | 0.12–>64 | 16 | >64 | 30 | / | 70 | |||
Cefepime | ≤0.5–>16 | 16 | >16 | 16 | 16 | 68 | |||
Ceftazidime | 0.25–>64 | >64 | >64 | 7 | 9 | 84 | |||
Ceftazidime–avibactam | 0.06–>64 | 2 | 12 | 90 | / | 10 | |||
Aztreonam | ≤0.5–>32 | >32 | >32 | 10 | 4 | 85 | |||
Meropenem | 0.06–>64 | 0.5 | 32 | 73 | 6 | 21 | |||
Amikacin | ≤4–>64 | ≤4 | 32 | 81 | 9 | 19 | |||
Ciprofloxacin | ≤0.25–>4 | 1 | >4 | 34 | 6 | 60 | |||
Colistin | ≤0.5–>8 | ≤0.5 | >8 | 79 | / | 21 | |||
Tigecycline | ≤0.25–>4 | 0.5 | 2 | 69 | / | 31 | |||
Class A, KPC producers (24) | Cefiderocol | 0.12–8 | 1 | 4 | 92 | / | 8 | ||
Ceftolozane–tazobactam | 0.25–>64 | 32 | >64 | 29 | / | 71 | |||
Cefepime | 2–>16 | 16 | >16 | 26 | 9 | 65 | |||
Ceftazidime | 0.25–>64 | 64 | >64 | 21 | 3 | 76 | |||
Ceftazidime–avibactam | 0.12–>64 | 2 | 8 | 94 | / | 6 | |||
Aztreonam | 2–>32 | >32 | >32 | 6 | 9 | 85 | |||
Meropenem | 0.25–>64 | 32 | >64 | 15 | 20 | 65 | |||
Amikacin | ≤4–>64 | 4 | 32 | 76 | / | 24 | |||
Ciprofloxacin | ≤0.25–>4 | 1 | >4 | 41 | 6 | 53 | |||
Colistin | ≤0.5–>8 | 1 | >8 | 62 | / | 38 | |||
Tigecycline | ≤0.25–>4 | 0.5 | 1 | 76 | / | 24 | |||
Class A, other carbapenemase (IMI, NMC-A, SME, GES, FRI-1) producers (10) | Cefiderocol | 0.12–8 | 0.5 | 4 | 78 | / | 22 | ||
Ceftolozane–tazobactam | 0.25–32 | 0.5 | 32 | 78 | / | 22 | |||
Cefepime | ≤0.5–>16 | ≤0.5 | 16 | 78 | 11 | 11 | |||
Ceftazidime | 0.25–>64 | 0.5 | >64 | 78 | 0 | 22 | |||
Ceftazidime–avibactam | 0.25–4 | 0.5 | 8 | 100 | / | 0 | |||
Aztreonam | 1–>32 | 4 | >32 | 11 | 33 | 56 | |||
Meropenem | 8–>64 | 64 | >64 | 0 | 11 | 89 | |||
Amikacin | ≤4–8 | ≤4 | 8 | 100 | / | 0 | |||
Ciprofloxacin | ≤0.25–>4 | ≤0.25 | >4 | 89 | 0 | 11 | |||
Colistin | 1–>8 | >8 | >8 | 11 | / | 89 | |||
Tigecycline | ≤0.25–2 | ≤0.25 | 2 | 67 | / | 33 | |||
Class B, MBLs total (54) | Cefiderocol | 0.03–>64 | 2 | 8 | 69 | / | 31 | ||
Ceftolozane–tazobactam | 64–>64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 2 | 98 | |||
Ceftazidime | 64–>64 | >64 | >64 | 0 | 0 | 100 | |||
Ceftazidime–avibactam | 32–>64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam | ≤0.5–>32 | >32 | >32 | 20 | 0 | 80 | |||
Meropenem | 0.5–>64 | 32 | >64 | 7 | 24 | 69 | |||
Amikacin | ≤4–>64 | 16 | >64 | 46 | / | 54 | |||
Ciprofloxacin | 0.25–>4 | >4 | >4 | 22 | 6 | 72 | |||
Colistin | ≤0.5–>8 | ≤0.5 | 1 | 91 | / | 9 | |||
Tigecycline | ≤0.25–>4 | ≤0.25 | 2 | 70 | / | 30 | |||
Class B, NDM producers (21) | Cefiderocol | 0.5–>64 | 2 | 16 | 48 | / | 52 | ||
Ceftolozane–tazobactam | >64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | 16–>16 | >16 | >16 | 0 | / | 100 | |||
Ceftazidime | >64 | >64 | >64 | 0 | 0 | 100 | |||
Ceftazidime–avibactam | >64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam | ≤0.5–>32 | >32 | >32 | 14 | 0 | 86 | |||
Meropenem | 16–>64 | 32 | >64 | 0 | 0 | 100 | |||
Amikacin | ≤4–>64 | 16 | >64 | 33 | 0 | 67 | |||
Ciprofloxacin | 2–>4 | >4 | >4 | 0 | 0 | 100 | |||
Colistin | ≤0.5–>8 | ≤0.5 | 1 | 48 | / | 52 | |||
Tigecycline | ≤0.25–4 | ≤0.25 | 2 | 52 | / | 48 | |||
Class B, VIM producers (17) | Cefiderocol | 0.25–>64 | 2 | 16 | 76 | / | 24 | ||
Ceftolozane–tazobactam | >64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | 16–>16 | >16 | >16 | 0 | 0 | 100 | |||
Ceftazidime | >64 | >64 | >64 | 0 | 0 | 100 | |||
Ceftazidime–avibactam | 32–>64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam | ≤0.5–>32 | >32 | >32 | 18 | 0 | 82 | |||
Meropenem | 1–>64 | 32 | >64 | 6 | 29 | 65 | |||
Amikacin | ≤4–>32 | 16 | 32 | 24 | / | 76 | |||
Ciprofloxacin | 0.25–>4 | >4 | >4 | 24 | 0 | 76 | |||
Colistin | ≤0.5–>8 | ≤0.5 | 1 | 94 | / | 6 | |||
Tigecycline | ≤0.25–>4 | 0.5 | 1 | 76 | / | 24 | |||
Class B, IMP producers (13) | Cefiderocol | 0.03–4 | 0.25 | 4 | 85 | / | 15 | ||
Ceftolozane–tazobactam | 64–>64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | 2–>16 | 8 | >16 | 0 | 0 | 100 | |||
Ceftazidime | 64–>64 | >64 | >64 | 0 | 0 | 100 | |||
Ceftazidime–avibactam | 32–>64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam | ≤0.5–>32 | 16 | >32 | 38 | 0 | 62 | |||
Meropenem | 1–64 | 4 | 32 | 15 | 62 | 23 | |||
Amikacin | ≤4–16 | ≤4 | 16 | 85 | / | 15 | |||
Ciprofloxacin | ≤0.25–>4 | ≤0.25 | >4 | 46 | 23 | 31 | |||
Colistin | ≤0.5–>8 | ≤0.5 | 1 | 92 | / | 8 | |||
Tigecycline | ≤0.25–>4 | ≤0.25 | 1 | 92 | / | 8 | |||
Other class B producers (GIM, LMB, TMB) (3) | Cefiderocol | 0.5–2 | 1 | 2 | 100 | / | 0 | ||
Ceftolozane–tazobactam | 64–>64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | 2–8 | 8 | 8 | 33 | 0 | 67 | |||
Ceftazidime | >64 | >64 | >64 | 0 | 0 | 100 | |||
Ceftazidime–avibactam | 32–>64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam | 0.5–32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | 0.5–32 | 32 | >64 | 33 | 0 | 67 | |||
Amikacin | 4 | 4 | 4 | 100 | / | 0 | |||
Ciprofloxacin | ≤0.25–>4 | ≤0.25 | >4 | 67 | 0 | 33 | |||
Colistin | ≤0.5–>8 | ≤0.5 | 1 | 100 | / | 0 | |||
Tigecycline | ≤0.25–>1 | ≤0.25 | 1 | 67 | / | 33 | |||
Class D, OXA-48 producers (50) + OXA-372 (1) | Cefiderocol | ≤0.03–8 | 1 | 2 | 90 | / | 10 | ||
Ceftolozane–tazobactam | ≤0.03–>64 | 8 | >64 | 37 | / | 73 | |||
Cefepime | 1–>16 | 16 | >16 | 25 | 14 | 61 | |||
Ceftazidime | 0.12–>64 | >64 | >64 | 15 | 20 | 65 | |||
Ceftazidime–avibactam | 0.12–>64 | 1 | 8 | 94 | / | 6 | |||
Aztreonam | 1–>32 | >32 | >32 | 24 | 4 | 73 | |||
Meropenem | 0.06–>64 | 4 | 32 | 45 | 33 | 22 | |||
Amikacin | ≤4–>64 | 4 | 8 | 90 | / | 10 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 35 | 4 | 61 | |||
Colistin | ≤0.5–>8 | 1 | 2 | 94 | / | 6 | |||
Tigecycline | ≤0.25–>4 | ≤0.25 | 2 | 75 | / | 25 | |||
Multiple Carbapenemase producers (17) | Cefiderocol | 0.06–>64 | 2 | >64 | 76 | / | 24 | ||
Ceftolozane–tazobactam | >64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | 4–>64 | >64 | >64 | 0 | 6 | 94 | |||
Ceftazidime | 32–>64 | >64 | >64 | 0 | 100 | ||||
Ceftazidime–avibactam | 16–>64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam | 2–>16 | >16 | >16 | 0 | 100 | ||||
Meropenem | ≤4–>32 | >32 | >32 | 18 | 82 | ||||
Amikacin | ≤0.5–1 | ≤0.5 | 1 | 29 | / | 71 | |||
Ciprofloxacin | ≤4–>64 | >64 | >64 | 0 | 100 | ||||
Colistin | 4–>8 | >4 | >4 | 94 | / | 6 | |||
Tigecycline | ≤0.25–4 | ≤0.25 | 4 | 76 | / | 24 | |||
Acinetobacter spp. | |||||||||
Total (n = 82) | Cefiderocol | 0.03–>64 | 1 | 8 | 84 | / | 16 | ||
Ceftolozane–tazobactam | 1–>64 | 64 | >64 | 13 | / | 87 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 7 | 93 | |||
Ceftazidime | 8–>64 | >64 | >64 | 0 | 2 | 98 | |||
Ceftazidime–avibactam | 8–>64 | >64 | >64 | 5 | / | 95 | |||
Aztreonam2 | 8–>32 | >32 | >32 | 0 | 5 | 95 | |||
Meropenem | 2–>64 | >64 | >64 | 2 | 11 | 87 | |||
Amikacin | 4–>64 | 64 | >64 | 28 | / | 72 | |||
Ciprofloxacin | 0.5–>4 | >4 | >4 | 0 | 9 | 91 | |||
Colistin | 0.5–8 | 1 | 4 | 88 | / | 12 | |||
Tigecycline | 0.25–>4 | 1 | 2 | 48 | / | 52 | |||
Non-CP (n = 26) | Cefiderocol | 0.12–>64 | 1 | 4 | 88 | / | 12 | ||
Ceftolozane–tazobactam | 2–>64 | >64 | >64 | 15 | / | 85 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 12 | 88 | |||
Ceftazidime | 8–>64 | >64 | >64 | 0 | 4 | 96 | |||
Ceftazidime–avibactam | 8–>64 | >64 | >64 | 4 | / | 96 | |||
Aztreonam2 | >32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | 2–>64 | 32 | >64 | 8 | 27 | 65 | |||
Amikacin | ≤4–>64 | 64 | >64 | 23 | / | 77 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 0 | 15 | 85 | |||
Colistin | ≤0.5–4 | 1 | 2 | 96 | / | 4 | |||
Tigecycline | ≤0.25–>4 | 1 | 2 | 46 | / | 54 | |||
Class D, OXA carbapenemase (n = 40) | Cefiderocol | 0.03–>64 | 0.25 | 2 | 93 | / | 7 | ||
Ceftolozane–tazobactam | 2–>64 | >64 | >64 | 12 | / | 88 | |||
Cefepime | 8–>16 | >16 | >16 | 0 | 5 | 95 | |||
Ceftazidime | 8–>64 | >64 | >64 | 0 | 3 | 97 | |||
Ceftazidime–avibactam | 8–>64 | 64 | >64 | 8 | / | 92 | |||
Aztreonam2 | 8–>32 | >32 | >32 | 0 | 5 | 95 | |||
Meropenem | 8–>64 | >64 | >64 | 0 | 5 | 95 | |||
Amikacin | 4–>64 | 64 | >64 | 25 | / | 75 | |||
Ciprofloxacin | 4–>4 | >4 | >4 | 0 | 0 | 100 | |||
Colistin | <0.5–4 | 1 | 4 | 85 | / | 15 | |||
Tigecycline | 0.25–>4 | 1 | 2 | 42 | / | 57 | |||
Class B, NDM (n = 10) | Cefiderocol | 2–>64 | 4 | >64 | 30 | / | 70 | ||
Ceftolozane–tazobactam | >64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | >16 | >16 | >16 | 0 | 0 | 100 | |||
Ceftazidime | >64 | >64 | >64 | 0 | 100 | ||||
Ceftazidime–avibactam | >64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam2 | >32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | >64 | 32 | >64 | 0 | 0 | 100 | |||
Amikacin | 4–>64 | 4 | >64 | 50 | / | 50 | |||
Ciprofloxacin | >4 | >4 | >4 | 0 | 0 | 100 | |||
Colistin | 0.5–4 | 1 | 2 | 90 | / | 10 | |||
Tigecycline | 0.25–2 | 0.5 | 2 | 60 | / | 40 | |||
Class B, other MBLS (n = 6) | Cefiderocol | 0.5–1 | 0.5 | 1 | 100 | / | 0 | ||
Ceftolozane–tazobactam | 1–>64 | >64 | >64 | 34 | / | 66 | |||
Cefepime | 8–>16 | 16 | >16 | 0 | 16 | 84 | |||
Ceftazidime | 32–>64 | >64 | >64 | 0 | 100 | ||||
Ceftazidime–avibactam | 32–>64 | >64 | >64 | 0 | / | 100 | |||
Aztreonam2 | 16–>32 | 32 | >32 | 0 | 34 | 66 | |||
Meropenem | 16–>64 | 64 | >64 | 0 | 0 | 100 | |||
Amikacin | ≤4–>64 | 64 | >64 | 34 | / | 66 | |||
Ciprofloxacin | 0.25–>4 | 0.25 | >4 | 0 | 50 | 50 | |||
Colistin | 1–4 | 2 | 4 | 66 | / | 34 | |||
Tigecycline | 0.25–1 | 0.25 | 1 | 16 | / | 84 | |||
Pseudomonas spp. | |||||||||
Total (n = 120) | Cefiderocol | 0.03–4 | 0.25 | 1 | 99 | / | 1 | ||
Ceftolozane–tazobactam | 0.5–>64 | >64 | >64 | 17 | / | 83 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 15 | 85 | |||
Ceftazidime | 2–>64 | 64 | >64 | 0 | 5 | 95 | |||
Ceftazidime–avibactam | 2–>64 | 32 | >64 | 22 | / | 78 | |||
Aztreonam | 2–>32 | 32 | >32 | 0 | 11 | 89 | |||
Meropenem | 1–>64 | 64 | >64 | 3 | 13 | 84 | |||
Amikacin | 4–>64 | 32 | >64 | 34 | / | 66 | |||
Ciprofloxacin | 0.25–>4 | >4 | >4 | 0 | 14 | 86 | |||
Colistin | 0.5–>8 | 1 | 2 | 97 | / | 3 | |||
Tigecycline3 | 1–>4 | >4 | >4 | 0 | / | 100 | |||
Non-CP-CR (n = 31) | Cefiderocol | 0.06–4 | 0.25 | 2 | 97 | / | 3 | ||
Ceftolozane–tazobactam | 0.5–>64 | 4 | >64 | 52 | / | 48 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 23 | 77 | |||
Ceftazidime | 2–>64 | >64 | >64 | 0 | 6 | 94 | |||
Ceftazidime–avibactam | 2–>64 | 16 | >64 | 48 | / | 52 | |||
Aztreonam | 8–>32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | 1–>64 | 16 | >64 | 6 | 29 | 65 | |||
Amikacin | ≤4–>64 | 16 | >64 | 58 | / | 42 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 0 | 16 | 84 | |||
Colistin | ≤0.5–>8 | 1 | 2 | 97 | / | 3 | |||
Tigecycline3 | 2–>4 | >4 | >4 | 0 | / | 100 | |||
OXA-198, GES, KPC (n = 12) | Cefiderocol | 0.06–2 | 0.5 | 1 | 100 | / | 0 | ||
Ceftolozane–tazobactam | 4–>64 | 16 | >64 | 25 | / | 75 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 17 | 83 | |||
Ceftazidime | 4–>64 | >64 | >64 | 0 | 17 | 83 | |||
Ceftazidime–avibactam | 2–>64 | 8 | >64 | 67 | / | 33 | |||
Aztreonam | 8–>32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | 16–>64 | >64 | >64 | 0 | 0 | 100 | |||
Amikacin | ≤4–>64 | 64 | >64 | 42 | / | 58 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 0 | 8 | 92 | |||
Colistin | ≤0.5–2 | 1 | 2 | 100 | / | 0 | |||
Tigecycline3 | 2–>4 | >4 | >4 | 0 | / | 100 | |||
Class B, MBL (n = 77) | Cefiderocol | 0.03–4 | 0.25 | 1 | 100 | / | 0 | ||
Ceftolozane–tazobactam | 0.5–>64 | >64 | >64 | 3 | / | 97 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 12 | 88 | |||
Ceftazidime | 2–>64 | 64 | >64 | 0 | 3 | 97 | |||
Ceftazidime–avibactam | 2–>64 | 64 | >64 | 5 | / | 95 | |||
Aztreonam | 2–>32 | 16 | >32 | 0 | 17 | 83 | |||
Meropenem | 1–>64 | 64 | >64 | 1 | 8 | 91 | |||
Amikacin | ≤4–>64 | 32 | >64 | 23 | / | 77 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 0 | 14 | 86 | |||
Colistin | ≤0.5–>8 | 1 | 2 | 97 | / | 3 | |||
Tigecycline3 | 1–>4 | >4 | >4 | 0 | / | 100 | |||
VIM (n = 56) | Cefiderocol | ≤0.06–2 | 0.25 | 1 | 100 | / | 0 | ||
Ceftolozane–tazobactam | 2–>64 | >64 | >64 | 2 | / | 98 | |||
Cefepime | 8–>16 | >16 | >16 | 0 | 13 | 88 | |||
Ceftazidime | 4–>64 | 64 | >64 | 0 | 2 | 98 | |||
Ceftazidime–avibactam | 4–>64 | 64 | >64 | 5 | / | 95 | |||
Aztreonam | 2–>32 | 8 | >32 | 0 | 20 | 80 | |||
Meropenem | 4–>64 | 64 | >64 | 0 | 7 | 93 | |||
Amikacin | 8–>64 | 64 | >64 | 16 | / | 84 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 0 | 16 | 84 | |||
Colistin | ≤0.5–4 | 1 | 2 | 98 | / | 2 | |||
Tigecycline3 | 1–>4 | >4 | >4 | 0 | / | 100 | |||
IMP (n = 11) | Cefiderocol | 0.12–1 | 0.25 | 2 | 100 | / | 0 | ||
Ceftolozane–tazobactam | 64–>64 | 4 | >64 | 0 | / | 100 | |||
Cefepime | >16 | >16 | >16 | 0 | 0 | 100 | |||
Ceftazidime | >64 | >64 | >64 | 0 | 0 | 100 | |||
Ceftazidime–avibactam | >64 | 16 | >64 | 0 | / | 100 | |||
Aztreonam | 2–>32 | >32 | >32 | 0 | 18 | 82 | |||
Meropenem | 8–>64 | 16 | >64 | 0 | 9 | 91 | |||
Amikacin | ≤4–>64 | 16 | >64 | 36 | / | 64 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 0 | 9 | 91 | |||
Colistin | ≤0.5–>4 | 1 | 2 | 91 | / | 9 | |||
Tigecycline3 | 1–>4 | 4 | >4 | 0 | / | 100 | |||
Other MBLs (NDM, GIM, DIM, SPM, AIM) (n = 10) | Cefiderocol | ≤0.06–2 | 0.5 | 2 | 100 | / | 0 | ||
Ceftolozane–tazobactam | 0.5–>64 | >64 | >64 | 10 | / | 90 | |||
Cefepime | 2–>16 | >16 | >16 | 0 | 20 | 80 | |||
Ceftazidime | 4–>64 | >64 | >64 | 0 | 10 | 90 | |||
Ceftazidime–avibactam | 2–>64 | >64 | >64 | 10 | / | 90 | |||
Aztreonam | 8–>32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | 2–>64 | 16 | >64 | 10 | 10 | 80 | |||
Amikacin | ≤4–>64 | 16 | >64 | 50 | / | 50 | |||
Ciprofloxacin | ≤0.25–>4 | >4 | >4 | 0 | 10 | 90 | |||
Colistin | ≤0.5–2 | 1 | 2 | 100 | / | 0 | |||
Tigecycline3 | 2–>4 | >4 | >4 | 0 | / | 100 |
Species | # of Isolates | Antimicrobial Agent | MIC (mg/L) | S/I/R | |||||
---|---|---|---|---|---|---|---|---|---|
Range | MIC50 | MIC90 | S (%) | I (%) | R (%) | ||||
S. maltophilia | (n = 25) | Cefiderocol | ≤0.03–0.12 | ≤0.03 | 0.06 | 100 | / | 0 | |
Ceftolozane–tazobactam | ≤0.03–>64 | 32 | >64 | 24 | / | 76 | |||
Ceftazidime | 0.5–>64 | 64 | >64 | 0 | 16 | 84 | |||
Ceftazidime–avibactam | 0.12–>64 | 64 | >64 | 20 | / | 80 | |||
Meropenem | 2–>64 | >64 | >64 | 4 | 0 | 96 | |||
SXT | ≤0.25–>16 | 0.5 | >16 | 0 | 72 | 0 | |||
Amikacin | ≤4–>64 | >64 | >64 | 16 | / | 84 | |||
Levofloxacin | ≤1–8 | ≤1 | 8 | 0 | 60 | 40 | |||
Colistin | ≤0.5–>8 | 4 | >8 | 32 | / | 32 | |||
Minocycline | ≤2 | ≤2 | ≤2 | 100 | 0 | 0 | |||
Tigecycline | ≤0.25–2 | ≤0.25 | 1 | 76 | / | 24 | |||
B. cepacia | (n = 13) | Cefiderocol | ≤0.03–8 | ≤0.03 | 0.5 | 92.3 | / | 7.7 | |
Ceftolozane–tazobactam | 1–>64 | 4 | >64 | 61.5 | / | 38.5 | |||
Cefepime | 8–>16 | >16 | >16 | 0 | 15.4 | 84.6 | |||
Ceftazidime | 4–>64 | 8 | >64 | 0 | 61.5 | 38.5 | |||
Ceftazidime–avibactam | 4–64 | 4 | 32 | 69.2 | / | 30.8 | |||
Aztreonam | >32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | 16–64 | 32 | 64 | 0 | 0 | 100 | |||
Amikacin | 64–>64 | >64 | >64 | 0 | / | 100 | |||
Ciprofloxacin | 0.5–>4 | 1 | >4 | 0 | 7.7 | 92.3 | |||
Colistin 1 | >8 | >8 | >8 | 0 | / | 100 | |||
Tigecycline | 1–>4 | 4 | >4 | 0 | / | 100 | |||
A. xylosoxidans | (n = 12) | Cefiderocol | 0.25–2 | 0.5 | 1 | 100 | / | 0 | |
Ceftolozane–tazobactam | 16–>64 | >64 | >64 | 0 | / | 100 | |||
Cefepime | >16 | >16 | >16 | 0 | 0 | 100 | |||
Ceftazidime | 16–>64 | >64 | >64 | 0 | 0 | 100 | |||
Ceftazidime–avibactam | 8–64 | 64 | >64 | 16.6 | / | 83.3 | |||
Aztreonam | >32 | >32 | >32 | 0 | 0 | 100 | |||
Meropenem | 0.5–32 | 32 | 32 | 16.7 | 16.7 | 66.7 | |||
Amikacin | 64–>64 | >64 | >64 | 0 | / | 100 | |||
Ciprofloxacin | 2–>8 | 2 | >4 | 0 | 0 | 100 | |||
Colistin | 0.5–>8 | 4 | >8 | 33.3 | / | 66.7 | |||
Tigecycline | 0.25–4 | 1 | 2 | 25 | 0 | 75 | |||
Elizabethkingia sp. | (n = 2) | Cefiderocol | 0.12–1 | ||||||
Ceftolozane–tazobactam | 16–32 | ||||||||
Cefepime | 8–32 | ||||||||
Ceftazidime | 16–>64 | ||||||||
Ceftazidime–avibactam | >64 | ||||||||
Aztreonam | >32 | ||||||||
Meropenem | 32 | ||||||||
Amikacin | 4>64 | ||||||||
Ciprofloxacin | 0.25–0.5 | ||||||||
Colistin | 16 | ||||||||
Tigecycline | 0.5–4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueslati, S.; Bogaerts, P.; Dortet, L.; Bernabeu, S.; Ben Lakhal, H.; Longshaw, C.; Glupczynski, Y.; Naas, T. In vitro Activity of Cefiderocol and Comparators against Carbapenem-Resistant Gram-Negative Pathogens from France and Belgium. Antibiotics 2022, 11, 1352. https://doi.org/10.3390/antibiotics11101352
Oueslati S, Bogaerts P, Dortet L, Bernabeu S, Ben Lakhal H, Longshaw C, Glupczynski Y, Naas T. In vitro Activity of Cefiderocol and Comparators against Carbapenem-Resistant Gram-Negative Pathogens from France and Belgium. Antibiotics. 2022; 11(10):1352. https://doi.org/10.3390/antibiotics11101352
Chicago/Turabian StyleOueslati, Saoussen, Pierre Bogaerts, Laurent Dortet, Sandrine Bernabeu, Hend Ben Lakhal, Christopher Longshaw, Youri Glupczynski, and Thierry Naas. 2022. "In vitro Activity of Cefiderocol and Comparators against Carbapenem-Resistant Gram-Negative Pathogens from France and Belgium" Antibiotics 11, no. 10: 1352. https://doi.org/10.3390/antibiotics11101352
APA StyleOueslati, S., Bogaerts, P., Dortet, L., Bernabeu, S., Ben Lakhal, H., Longshaw, C., Glupczynski, Y., & Naas, T. (2022). In vitro Activity of Cefiderocol and Comparators against Carbapenem-Resistant Gram-Negative Pathogens from France and Belgium. Antibiotics, 11(10), 1352. https://doi.org/10.3390/antibiotics11101352