Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance Genes: Indicators of Contamination in Mangroves?
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Possible Paths of Emerging Contaminants (ABs, ARB, and ARGs) in the Environment
3.1.1. Urban Wastewater
Activity | Source | Antibiotic, ARG, or ARB | Reference |
---|---|---|---|
Wastewater treatment | Water and sediment | ARB: E. coli tested to gentamicin, kanamycin, streptomycin, neomycin, amoxicillin/clavulanic acid, ampicillin, ceftriaxone, ceftiofur, nalidixic acid, oxolinic acid, enrofloxacin, ciprofloxacin, tetracycline, chloramphenicol and sulfamethoxazole/trimethoprim ARG: Integrase genes class 1, 2, and 3 | [34] |
Sediment | ARG: mtrA, rpoB, rpoC, rpsL, ef-Tu, par-Y | [24] | |
Aquaculture | Water and sediment | Antibiotic compounds: sulfonamides, fluoroquinolones, tetracyclines and chloramphenicol | [23] |
Sediment and plant | Antibiotic compounds: norfloxacin, ciprofloxacin and enrofloxacin | [35] | |
Water and sediment | Antibiotic compounds: chloramphenicol ARG: cata1, cata2, cml_e1, and cml_e3 | [36] | |
Livestock breeding | Sediment | Antibiotic compounds: quinolone | [37] |
Urbanization | Sediment | blaTEM gene; ARB to ampicillin, kanamycin, vancomycin, and tetracycline | [21] |
Sediment | ARB to ampicillin, gentamicin, chloramphenicol, ciprofloxacin, tetracycline, vancomycin, methicillin | [38] |
3.1.2. Aquaculture
3.1.3. Livestock Breeding
3.1.4. Urbanization and Tourism
3.2. Direct Effect of ECs in Mangrove Ecosystems—A Natural Biofilter for EC?
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spalding, M.; Kaimura, M.; Collins, L. World Atlas of Mangroves, 2nd ed.; Routledge: London, UK, 2010. [Google Scholar]
- Adame, M.F.; Brown, C.J.; Bejarano, M.; Herrera-Silveira, J.A.; Ezcurra, P.; Kauffman, J.B.; Birdsey, R. The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conserv. Lett. 2018, 11, e12445. [Google Scholar] [CrossRef] [Green Version]
- Adame, M.F.; Najera, E.; Lovelock, C.E.; Brown, C.J. Avoided emissions and conservation of scrub mangroves: Potential for a Blue Carbon project in the Gulf of California, Mexico. Biol. Lett. 2018, 14, 20180400. [Google Scholar] [CrossRef] [PubMed]
- Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; The, S.Y.; Barizan, R.S.R.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Aburto-Oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fisheries yields. Proc. Natl. Acad. Sci. USA 2008, 105, 10456–10459. [Google Scholar] [CrossRef] [Green Version]
- Al-Khayat, J.A.; Abdulla, M.A.; Alatalo, J.M. Diversity of benthic macrofauna and physical parameters of sediments in natural mangroves and in afforested mangroves three decades after compensatory planting. Aquat. Sci. 2019, 84, 4. [Google Scholar] [CrossRef]
- Barbier, E.B. The protective service of mangrove ecosystems: A review of valuation methods. Mar. Pollut. Bull. 2016, 109, 676–681. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, N.M.; Lana, P. Present and past uses of mangrove wood in the subtropical bay of Paranaguá (Paraná, Brazil). Ocean Coast. Manag. 2017, 148, 97–103. [Google Scholar] [CrossRef]
- Spalding, M.; Parrett, C.L. Global patterns in mangrove recreation and tourism. Mar. Policy 2019, 110, 103540. [Google Scholar] [CrossRef]
- Jerath, M.; Bhat, M.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Simard, M.; Twilley, R.R. The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA. Environ. Sci. Policy 2016, 66, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Dittmar, T.; Hertkorn, N.; Kattner, G.; Lara, R.J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. 2006, 20, GB1012. [Google Scholar] [CrossRef]
- Reis, C.R.G.; Nardoto, G.; Oliveira, R. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant Soil 2016, 410, 1–19. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Huang, L.; Gu, B.; Lu, Q.; Gao, Z. A review of methodologies and success indicators for coastal wetland restoration. Ecol. Indic. 2016, 60, 442–452. [Google Scholar] [CrossRef]
- Maldonado-López, Y.; Vaca-Sánchez, M.S.; Canché-Delgado, A.; García-Jaín, S.E.; González-Rodríguez, A.; Cornelissen, T.; Cuevas-Reyes, P. Leaf herbivory and fluctuating asymetry as indicators of mangrove stress. Wetl. Ecol. Manag. 2019, 27, 571–580. [Google Scholar] [CrossRef]
- Delabie, J.H.; Paim, V.R.; Do Nascimento, I.C.; Campiolo, S.; Mariano Cdos, S. Ants as biological indicators of human impact in mangroves of the Southeastern coast of Bahia, Brazil. Neotrop. Entomol. 2006, 35, 602–615. [Google Scholar] [CrossRef] [Green Version]
- Freeman, O.E.; Ovie, O.J. Heavy metal bioaccumulation in periwinkle (Tympanostomus sp.) and blue crap (Callinectes amnicolla) harvested from a perturbed tropical mangrove forest in the Niger Delta, Nigeria. J. Agric. Ecol. Res. Int. 2017, 11, 1–12. [Google Scholar] [CrossRef]
- Hilaluddin, F.; Yusoff, F.M.; Natrah, F.M.I.; Lim, P.T. Disturbance of mangrove forests causes alterations in estuarine phytoplankton community structure in Malaysian Matang mangrove forests. Mar. Environ. Res. 2020, 158, 104935. [Google Scholar] [CrossRef]
- Vovides, A.G.; Bashan, Y.; López-Portillo, J.A.; Guevara, R. Nitrogen fixation in preserved, reforested, naturally regenetared and impaired mangroves as an indicator of functional restoration in Mangroves in an Arid Region of Mexico. Restor. Ecol. 2011, 19, 236–244. [Google Scholar] [CrossRef]
- Philip, J.M.; Aravind, U.K.; Aravindakumar, C.T. Emerging contaminants in Indian environmental matrices—A review. Chemosphere 2018, 190, 307–326. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Haldar, A.; Bhattacharyya, M.; Ghosh, A. Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. Sci. Total Environ. 2019, 647, 1626–1639. [Google Scholar] [CrossRef]
- Wu, Y.; Chung, A.; Tam, N.F.Y.; Pi, N.; Wong, M.H. Constructed mangrove wetland as secondary treatment system for municipal wastewater. Ecol. Eng. 2008, 34, 137–146. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Zhou, K.; Sun, X.-L.; Zhao, L.-R.; Zhang, Y.-B. Occurrence and distribution of environmental pollutant antibiotics in Gaoqiao mangrove area, China. Chemosphere 2016, 147, 25–35. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, B.; Mo, X.; Li, P.; Li, B.; Li, Q.; Li, N.; Mo, S.; Ou, Q.; Shen, P.; et al. Prevalence and proliferation of antibiotic resistance genes in the subtropical mangrove wetland ecosystem of South China Sea. Microbiol. Open 2019, 8, e871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.; Chen, H.; Goh, S.G.; Haller, L.; Wu, Z.; Charles, F.R.; Trottet, A.; Gin, K. Microbial water quality and the detection of multidrug resistant E. coli and antibiotic resistance genes in aquaculture sites of Singapore. Mar. Pollut. Bull. 2018, 135, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Osinska, A.; Korzeniewska, E.; Harnisz, M.; Felis, E.; Bajkacs, S.; Jachimowics, P.; Niestepski, J.; Konopka, I. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environments. J. Hazard. Mater. 2020, 381, 121221. [Google Scholar] [CrossRef]
- Le, T.-H.; Ng, C.; Tran, N.H.; Chen, H.; Gin, K.Y.-H. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res. 2018, 145, 498–508. [Google Scholar] [CrossRef]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J.J. Prevalence and proliferation of antibiotic resistant genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef]
- Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y.; Qiang, Z. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 2017, 172, 392–398. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.; Chen, H.; Bond, P.L.; Yuan, Z. Metagenomics analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017, 123, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Par, D. Antibiotic resistance and wastewater: Correlation, impact and human health challenges. J. Environ. Chem. Engin. 2018, 6, 52–58. [Google Scholar] [CrossRef]
- Santos, F.; Almeida, C.M.R.; Ribeiro, I.; Mucha, A.P. Potential of constructed wetland for the removal of antibiotic and antibiotic resistant bacteria from livestock wastewater. Ecol. Eng. 2019, 129, 45–53. [Google Scholar] [CrossRef]
- Christofilopoulos, S.; Kaliakatsos, A.; Triantafyllou, K.; Gounaki, I.; Venieri, D.; Kalogerakis, N. Evaluation of a constructed wetland for wastewater treatment: Adressing emerging organic contaminants and antibiotic resistant bacteria. New Biotechnol. 2019, 52, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Ghaderpour, A.; Ho, W.S.; Chew, L.-L.; Bong, C.W.; Chong, V.C.; Thong, K.-L.; Chai, L.C. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia. Front. Microbiol. 2015, 6, 977. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Lun, J.; Zheng, P.; Feng, J.; Meng, S.; Peng, T.; Hu, Z. Diversity and distribution of antibiotics and antibiotic resistance genes in seven national mangrove nature reserves, South China. Int. Biodeter. Biodegrad. 2020, 153, 105000. [Google Scholar] [CrossRef]
- Ruan, S.; Luo, J.; Zhang, T.; Nordhaus, I.; Diao, X.; Zhao, H. Spatial and seasonal variations of chloramphenicol resistance genes and their co-occurring analysis with bacteria in a typical mangrove area Hainan island, China. Estuar. Coast. Shelf Sci. 2020, 233, 106541. [Google Scholar] [CrossRef]
- Liu, K.; Yin, X.; Zhang, D.; Yan, D.; Cui, L.; Zhu, Z.; Wen, L. Distribution, source, and ecological risk assessment of quinotone antibiotics in the surface sediment from Jiaozhou Bay wetland, China. Mar. Pollut. Bull. 2018, 129, 859–865. [Google Scholar] [CrossRef]
- Imchem, M.; Vennapu, R.K.; Ghosh, P.; Kumavath, R. Insights into antagonistic interactions of multidrug resistant bacteria in mangrove sediments from the South Indian state of Kerala. Microorganisms 2019, 7, 678. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Ramos, F. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends Food Sci. Technol. 2016, 52, 16–30. [Google Scholar] [CrossRef]
- Pham, T.T.H.; Rossi, P.; Dinh, H.D.K.; Pham, N.T.A.; Tran, P.A.; Ho, T.T.K.M.; Dinh, Q.T.; De Alencastro, L.F. Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietman). J. Environ. Manag. 2018, 214, 149–156. [Google Scholar] [CrossRef]
- Yuan, J.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China. Mar. Pollut. Bull. 2019, 138, 376–384. [Google Scholar] [CrossRef]
- Kautsky, N.; Rönnbäck, P.; Tedengren, M.; Troell, M. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture 2000, 191, 145–161. [Google Scholar] [CrossRef]
- Zheng, X.; Jiang, B.; Lang, H.; Zhang, R.; Li, Y.; Bian, Y.; Guan, X. Effect of antibiotics on microbial communities responsible for perchlorate degradation. Water Air Soil Pollut. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Chang, B.-V.; Chang, Y.-T.; Chao, W.-L.; Yeh, S.-L.; Kuo, D.-L.; Yang, C.-W. Effect of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds. Environ. Pollut. 2019, 252, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, V.; Rodríguez, Y.; Albaigés, J. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities. Water Res. 2016, 88, 777–785. [Google Scholar] [CrossRef]
- Matamoros, V.; Rodríguez, Y.; Bayona, J.M. Mitigation of emerging contaminants by full-scale horizontal flow constructed wetlands fed with secondary treated wastewater. Ecol. Eng. 2017, 99, 222–227. [Google Scholar] [CrossRef]
- Kim, Y.B.; Jeon, J.H.; Choi, S.; Shin, J.; Lee, Y.; Kim, Y.M. Use of a filtering process to remove solid waste and antibiotic resistance genes from effluent of a flow-through fish farm. Sci. Total Environ. 2018, 615, 289–296. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Gomes, C.R.; Almeida, C.M.R.; Silva, A.M.T. Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents. Sci. Total Environ. 2018, 644, 1171–1180. [Google Scholar] [CrossRef]
- Huang, X.-F.; Yi, G.-Y.; Yi, N.-K.; Lu, L.-J.; Zhang, L.; Yang, L.-Y.; Xiao, L.; Liu, J. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands. Ecol. Eng. 2019, 135, 45–53. [Google Scholar] [CrossRef]
- Gunawardena, M.; Rowan, J.S. Economic valuation of a mangrove ecosystem threatened by shrimp aquaculture in Sri Lanka. Environ. Manag. 2005, 36, 535–550. [Google Scholar] [CrossRef]
- Ahmed, N.; Glaser, M. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD + a solution. Mar. Policy 2016, 66, 58–66. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S. The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ. 2019, 652, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, B.; Greko, C. Antibiotic resistance–consequences for animal health, welfare, and food production. Upsala J. Med. Sci. 2014, 119, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef] [PubMed]
- Stahl, J.; Zessel, K.; Schulz, J.; Finke, J.H.; Müller-Goymann, C.C.; Kietzman, M. The effect of miscellaneous oral dosage forms on the environmental pollution of sulfonamides in pig holdings. BMC Vet. Res. 2016, 12, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groot, M.J.; van’t Hooft, K.E. The hidden effects of dairy farming on public and environmental health in the Netherlands, India, Ethiopia, and Uganda, considering the uses of antibiotics and other agro-chemicals. Public Health Front. 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Crozat, K.; Georgel, P.; Rutschmann, S.; Mann, S.; Du, X.; Hoebe, K.; Beutler, B. Analysis of the MCMV resistome by ENU mutagenesis. Mamm. Genome 2006, 17, 398–406. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, X.-X.; Miao, Y.; Zhao, Y.; Ye, L.; Li, B.; Zhang, T. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water Res. 2017, 124, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, J.; Zhu, L.; Ge, W.; Wang, J. Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Sci. Total Environ. 2017, 593-594, 10–17. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Leaching behavior of veterinary antibiotics in animal manure-applied soils. Sci. Total Environ. 2017, 579, 466–473. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, X.; Wu, G.; Wang, C.; Yuan, X. Analysis of antibiotic resistance of Escherichia coli isolate from the Yiton river in North-East China. FESE 2019, 13, 39. [Google Scholar] [CrossRef]
- Pan, C.; Bao, Y.; Xu, B. Seasonal variation of antibiotics in surface water of Pudong New Area of Shanghai, China and the occurrence in typical wastewater source. Chemosphere 2020, 239, 124816. [Google Scholar] [CrossRef]
- Imchen, M.; Kumavath, R. Metagemonic insights into the antibiotic resistome of mangrove sediments and their association to socioecomonic status. Environ. Pollut. 2021, 268, 115795. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Furberg, D.; Ban, Y.; Nascetti, A. Monitoring of urbanization and analysis of environmental impact in Stockholm with sentinel-2A and SPOT-5 multispectral data. Remote Sens. 2019, 11, 2408. [Google Scholar] [CrossRef] [Green Version]
- Sheng, P.; Guo, X. The long-run and short-run impacts of urbanization on carbon dioxide emissions. Econ. Model. 2016, 53, 208–215. [Google Scholar] [CrossRef]
- Riva, F.; Zuccato, E.; Davoli, E.; Fattore, E.; Castiglioni, S. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 2019, 631, 103–110. [Google Scholar] [CrossRef]
- Burak, S.; Dogan, E.; Gazioglu, C. Impact of urbanization and tourism in coastal environment. Ocean Coast. Manag. 2004, 47, 515–527. [Google Scholar] [CrossRef]
- Rönnbäck, P.; Crona, B.; Ingwall, L. To return of ecosystem goods and services in replanted mangrove forests: Perspectives from local communities in Kenya. Environ. Conserv. 2007, 34, 313–324. [Google Scholar] [CrossRef]
- Islam, S.M.D.-U.; Bhuiyan, M.A.H. Sundarbans mangrove forest of Bangladesh: Causes of degradation and sustainable management options. Environ. Sustain. 2018, 1, 113–131. [Google Scholar] [CrossRef]
- Mandaric, L.; Diamantini, E.; Stella, E.; Cano-Paoli, K.; Valle-Sistac, J.; Molins-Delgado, D.; Bellin, A.; Chiogna, G.; Majone, B.; Cruz, S.D.; et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Sci. Total Environ. 2017, 590, 484–494. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Song, W.; Du, L.; Ye, C.; Zhao, B.; Liu, W.; Deng, D.; Pan, Y.; Lin, H.; et al. Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: Influence of stratification and geography. Environ. Int. 2019, 127, 371–380. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, C.; Cao, X.; Lin, H.; Wang, J. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology 2017, 26, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Lenczewski, M.; Leal-Bautista, R.M.; Duvall, M. Groundwater microbial diversity and antibiotic resistance linked to human population density in Yucatan Peninsula, Mexico. Can. J. Microbiol. 2020, 66, 46–58. [Google Scholar] [CrossRef]
- Bremmer, L.; Engelbauer, M.; Job, H. Mitigating tourism-driven impacts on mangroves in Cancún and the Riviera Maya, Mexico: And evaluation of conservation policy strategies and environmental planning instruments. J. Coast. Conserv. 2018, 22, 755–767. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Araújo, J.L.; Mucha, A.P.; Basto, M.C.P.; Almeida, C.M.R. Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Biores. Technol. 2013, 134, 412–416. [Google Scholar] [CrossRef]
- Nõlvak, H.; Truu, M.; Tiirik, K.; Oopkaup, K.; Sildvee, T.; Kaasik, A.; Mander, Ü.; Truu, J. Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland. Sci. Total Environ. 2013, 461, 636–644. [Google Scholar] [CrossRef]
- Yang, L.; Chang, H.-T.; Huang, M.-N.L. Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation. Ecol. Engin. 2001, 18, 91–105. [Google Scholar] [CrossRef]
- Vaiphasa, C.; de Boer, W.F.; Skidmore, A.K.; Panitchart, S.; Vaiphasa, T.; Bamrongrugsa, N.; Santitamnont, P. Impact of solid shrimp pond waste materials on mangrove growth and mortality: A case study from Pak Phanang, Thailand. Hydrobiologia 2007, 591, 47–57. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Xu, J.-R.; Ren, K.-J.; Meng, X.-Z. Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China. Environ. Pollut. 2016, 219, 916–923. [Google Scholar] [CrossRef]
- Andreote, F.D.; Jiménez, D.J.; Chaves, D.; Dias, A.C.F.; Luvizotto, D.M.; Dini-Andreote, F.; Fasanella, C.C.; Lopez, M.V.; Baena, S.; Taketani, R.G.; et al. The microbiome of brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 2012, 7, e38600. [Google Scholar] [CrossRef]
- Cabral, L.; Júnior, G.V.L.; de Sousa, S.T.P.; Días, A.C.F.; Cadete, L.L.; Andreote, F.D.; Hess, M.; de Oliveira, V.M. Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. Environ. Pollut. 2016, 216, 460–469. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios, O.A.; Adame-Gallegos, J.R.; Rivera-Chavira, B.E.; Nevarez-Moorillon, G.V. Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance Genes: Indicators of Contamination in Mangroves? Antibiotics 2021, 10, 1103. https://doi.org/10.3390/antibiotics10091103
Palacios OA, Adame-Gallegos JR, Rivera-Chavira BE, Nevarez-Moorillon GV. Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance Genes: Indicators of Contamination in Mangroves? Antibiotics. 2021; 10(9):1103. https://doi.org/10.3390/antibiotics10091103
Chicago/Turabian StylePalacios, Oskar A., Jaime Raúl Adame-Gallegos, Blanca Estela Rivera-Chavira, and Guadalupe Virginia Nevarez-Moorillon. 2021. "Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance Genes: Indicators of Contamination in Mangroves?" Antibiotics 10, no. 9: 1103. https://doi.org/10.3390/antibiotics10091103
APA StylePalacios, O. A., Adame-Gallegos, J. R., Rivera-Chavira, B. E., & Nevarez-Moorillon, G. V. (2021). Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance Genes: Indicators of Contamination in Mangroves? Antibiotics, 10(9), 1103. https://doi.org/10.3390/antibiotics10091103