Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Results
Distribution of Isolates
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Study Description
5.2. Sample Processing and Isolate Identification
5.3. BSI Confirmation
5.4. Antimicrobial Susceptibility Testing
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Wang, Q.; Zhang, H.; Cui, L.; Shen, F.; Chen, Y.; Sun, J.; Gan, L.; Sun, J.; Wang, J.; et al. Viral sepsis is a complication in patients with Novel Corona Virus Disease (COVID-19). Med. Drug Discov. 2020, 8, 100057. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Jieming, Q.; Gong, F.; Han, Y.; Qiu, Y.; Wang, Y.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Rezasoltani, S.; Hatami, B.; Yadegar, A.; AsadzadehAghdaei, H.; Zali, M.R. How patients with chronic liver diseases succeed to deal with COVID19? Front. Med. 2020, 7, 398. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.P.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lsiboa, T.; et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate COVID19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- vanHengel, A.J.; Marin, L. Research, innovation, and policy: An alliance combating antimicrobial resistance. Trends Microbiol. 2019, 27, 287–289. [Google Scholar] [CrossRef]
- Murray, A.K. The novel coronavirus COVID-19 outbreak: Global implications for antimicrobial resistance. Front. Microbiol. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Castro-Sanchez, E.; Charani, E.; Davies, F.; Satta, G.; Ellington, M.J.; Holmes, A.H. COVID-19 and the potential long-term impact on antimicrobial resistance. J. Antimicrob. Chemother. 2020, 75, 1681–1684. [Google Scholar] [CrossRef]
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J. Infect. Dis. 2008, 198, 962–970. [Google Scholar] [CrossRef]
- Morris, D.E.; Cleary, D.W.; Clarke, S.C. Secondary bacterial infections associated with influenza pandemics. Front. Microbiol. 2017, 8, 1041. [Google Scholar] [CrossRef] [Green Version]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar]
- Clancy, C.J.; Nguyen, M.H. COVID-19, superinfections and antimicrobial development: What can we expect? Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Treatment Guidelines for Antimicrobial Use in Common Syndromes 2019. Indian Council of Medical Research (ICMR). Available online: https://main.icmr.nic.in/sites/default/files/guidelines/Treatment_Guidelines_2019_Final.pdf (accessed on 28 July 2021).
- Rhee, C.; Kadri, S.S.; Dekker, J.P.; Danner, R.L.; Chen, H.C.; Fram, D.; Zhang, F.; Wang, R.; Klompas, M.; CDC Prevention Epicenters Program. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw. Open 2020, 3, e202899. [Google Scholar] [CrossRef]
- Hsu Freelance, J. How COVID-19 is accelerating the threat of antimicrobial resistance. BMJ 2020, 369, m1983. [Google Scholar] [CrossRef]
- World Health Organization. Strategic Preparedness and Response Plan for the New Coronavirus. 2020. Available online: https://www.who.int/publicationsdetail/COVID-19-strategy-update-13-april-2020 (accessed on 15 April 2020).
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents 2012, 39. [Google Scholar] [CrossRef]
- Nair, G.B.; Niederman, M.S. Updates on community acquired pneumonia management in the ICU. Pharmacol. Ther. 2020, 217, 107663. [Google Scholar] [CrossRef] [PubMed]
- Mędrzycka-Dąbrowska, W.; Lange, S.; Zorena, K.; Dąbrowski, S.; Ozga, D.; Tomaszek, L. Carbapenem-resistant Klebsiella pneumoniae infections in ICU COVID-19 patients—A scoping review. J. Clin. Med. 2021, 10, 2067. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Carvalho, A.; Nguyen, M.H.; Hedayati, M.T.; Netea, M.G.; Perlin, D.S.; Hoenigl, M. COVID-19-associated candidiasis (CAC): An underestimated complication in the absence of immunological predispositions? J. Fungi 2020, 6, 211. [Google Scholar] [CrossRef]
- Vijay, S.; Bansal, N.; Rao, B.K.; Veeraraghavan, B.; Rodrigues, C.; Wattal, C.; Goyal, J.P.; Tadepalli, K.; Mathur, P.; Venkateswaran, R.; et al. Secondary infections in hospitalized COVID-19 patients: Indian experience. Infect. Drug Resist. 2021, 14, 1893. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Singh, P.; Sharad, N.; Kiro, V.V.; Rastogi, N.; Lathwal, A.; Malhotra, R.; Trikha, A.; Mathur, P. Profile of co-infections & secondary infections in COVID-19 patients at a dedicated COVID-19 facility of a tertiary care Indian hospital: Implication on antimicrobial resistance. Indian J. Med. Microbiol. 2021, 39, 147–153. [Google Scholar] [PubMed]
- Strathdee, S.A.; Davies, S.C.; Marcelin, J.R. Confronting antimicrobial resistance beyond the COVID-19 pandemic and the 2020 US election. Lancet 2020, 396, 1050–1053. [Google Scholar] [CrossRef]
- Sepulveda, J.; Westblade, L.F.; Whittier, S.; Satlin, M.J.; Greendyke, W.G.; Aaron, J.G.; Zucker, J.; Dietz, D.; Sobieszczyk, M.; Choi, J.J.; et al. Bacteremia and blood culture utilization during COVID-19 surge in New York City. J. Clin. Microbiol. 2020, 58, e00875-20. [Google Scholar] [CrossRef] [PubMed]
- Leong, H.N.; Earnest, A.; Lim, H.H.; Chin, C.F.; Tan, C.S.; Puhaindran, M.E.; Tan, A.C.; Chen, M.I.; Leo, Y.S. SARS in Singapore—Predictors of disease severity. Ann. Acad. Med. Singap. 2006, 35, 326. [Google Scholar]
- Peiris, J.S.; Chu, C.M.; Cheng, V.C.; Chan, K.S.; Hung, I.F.; Poon, L.L.; Law, K.I.; Tang, B.S.; Hon, T.Y.; Chan, C.S.; et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 2003, 361, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Levine, D.A.; Platt, S.L.; Dayan, P.S.; Macias, C.G.; Zorc, J.J.; Krief, W.; Schor, J.; Bank, D.; Fefferman, N.; Shaw, K.N.; et al. Risk of serious bacterial infection in young febrile infants with respiratory syncytial virus infections. Pediatrics 2004, 113, 1728–1734. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Ininbergs, K.; Hedman, K.; Giske, C.G.; Strålin, K.; Özenci, V. Low prevalence of bloodstream infection and high blood culture contamination rates in patients with COVID-19. PLoS ONE 2020, 15, e0242533. [Google Scholar] [CrossRef]
- Cultrera, R.; Barozzi, A.; Libanore, M.; Marangoni, E.; Pora, R.; Quarta, B.; Spadaro, S.; Ragazzi, R.; Marra, A.; Segala, D.; et al. Co-infections in critically ill patients with or without COVID-19: A comparison of clinical microbial culture findings. Int. J. Environ. Res. Public Health 2021, 18, 4358. [Google Scholar] [CrossRef]
- Rosenthal, V.D.; Maki, D.G.; Jamulitrat, S.; Medeiros, E.A.; Todi, S.K.; Gomez, D.Y.; Leblebicioglu, H.; Khader, I.A.; Novales, M.G.; Berba, R.; et al. International nosocomial infection control consortium (INICC) report, data summary for 2003–2008, issued June 2009. Am. J. Infect. Control 2010, 38, 95–104. [Google Scholar] [CrossRef]
- Wisplinghoff, H.; Seifert, H.; Tallent, S.M.; Bischoff, T.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in pediatric patients in United States hospitals: Epidemiology, clinical features and susceptibilities. Pediatric Infect. Dis. J. 2003, 22, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.; Aujard, Y.; European Study Group. Nosocomial infections in pediatric patients a European, multicenter prospective study. Infect. Control Hosp. Epidemiol. 2000, 21, 260–263. [Google Scholar] [CrossRef]
- Rajni, E.; Garg, V.K.; Bacchani, D.; Sharma, R.; Vohra, R.; Mamoria, V.; Malhotra, H. Prevalence of bloodstream infections and their etiology in COVID-19 patients admitted in a Tertiary Care Hospital in Jaipur. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2021, 25, 369–373. [Google Scholar]
- Otto, M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Palewar, M.; Mudshingkar, S.; Dohe, V.; Kagal, A.; Karyakarte, R. Bacteriological profile and antibiogram of blood culture isolates from a tertiary care hospital of Western India. J. DattaMeghe Inst. Med Sci. Univ. 2020, 15, 261. [Google Scholar]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate point-prevalence survey of health care–associated infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.M.; Kutsogiannis, J.; Muscedere, J.; Cook, D.; Dodek, P.; Day, A.G.; Heyland, D.K.; Canadian Critical Care Trials Group. Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: Prevalence, incidence, risk factors, and outcomes. J. Crit. Care 2008, 23, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.D.; Somayaji, R.; Greysson-Wong, J.; Izydorczyk, C.; Waddell, B.; Storey, D.G.; Rabin, H.R.; Surette, M.G.; Parkins, M.D. Clinical outcomes associated with Escherichia coli infections in adults with cystic fibrosis: A cohort study. Open Forum Infect. Dis. 2020, 7, ofz476. [Google Scholar] [CrossRef]
- Banik, A.; Bhat, S.H.; Kumar, A.; Palit, A.; Snehaa, K. Bloodstream infections and trends of antimicrobial sensitivity patterns at Port Blair. J. Lab. Physicians 2018, 10, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Vanitha, R.N.; Kannan, G.; Venkata, N.M.; Vishwakanth, D.; Nagesh, V.R.; Yogitha, M.; Venkata, S.M.; Palani, T. A retrospective study on blood stream infections and antibiotic susceptibility patterns in a tertiary care teaching hospital. Int. J. Pharm. Pharm. Sci. 2012, 4, 543–548. [Google Scholar]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of infections due to MDR Gram-negative bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ling, Y.; Bai, T.; Xie, Y.; Huang, J.; Li, J.; Xiong, W.; Yang, D.; Chen, R.; Lu, F.; et al. COVID-19 with different severities: A multicenter study of clinical features. Am. J. Respir. Crit. Care Med. 2020, 201, 1380–1388. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Wang, Z.; Chen, H.; Tian, L.; Liu, D. Nosocomial infection among patients with COVID-19: A retrospective data analysis of 918 cases from a single center in Wuhan, China. Infect. Control Hosp. Epidemiol. 2020, 41, 982–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xu, S.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Shi, J.; Zhou, M.; Wu, B.; Yang, Z.; et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020, 146, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef]
- Kaya, Y.; Kaya, C.; Kartal, T.; Tahta, T.; Tokgöz, V.Y. Could LUTS be early symptoms of COVID-19. Int. J. Clin. Pract. 2020, 29, e13850. [Google Scholar]
- Can, O.; Erkoç, M.; Ozer, M.; Karakanli, M.U.; Otunctemur, A. The effect of COVID-19 on lower urinary tract symptoms in elderly men. Int. J. Clin. Pract. 2021, 75, e14110. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Guihur, A.; Rebeaud, M.E.; Mulot, M.; Peiffer-Smadja, N.; Mahamat-Saleh, Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of COVID-19 patients: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 27, 19–27. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Li, Q.; Wen, L.; Zhang, R. Clinical features of 69 cases with Coronavirus disease 2019 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.K.; Wu, T.C.; Chan, W.M.; Leung, Y.S.; Li, C.K.; Tsang, D.N.; Leung, G.M. Clinical and economic impact of an antibiotics stewardship programme in a regional hospital in Hong Kong. Qual. Saf. Health Care 2008, 17, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Ombelet, S.; Natale, A.; Ronat, J.B.; Vandenberg, O.; Hardy, L.; Jacobs, J. Evaluation of MicroScan bacterial identification panels for low-resource settings. Diagnostics 2021, 11, 349. [Google Scholar] [CrossRef]
- Elzi, L.; Babouee, B.; Vögeli, N.; Laffer, R.; Dangel, M.; Frei, R.; Battegay, M.; Widmer, A.F. How to discriminate contamination from bloodstream infection due to coagulase-negative staphylococci: A prospective study with 654 patients. Clin. Microbiol. Infect. 2012, 18, E355–E361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
Distribution of Samples | Pre-COVID-19 Period March 2019 to December 2019 | COVID-19 Period March 2020 to December, 2020 | p-Value |
---|---|---|---|
Total samples received | 7309 | 4968 | |
Total bacterial isolates | 844 (11.54%) | 494 (9.94%) | |
Gender | |||
Female | 523 (61.96%) | 252 (51.01%) | 0.0001 |
Male | 321 (38.03%) | 242 (48.98%) | 0.0001 |
Age group | |||
Infants (<1 year) | 91 (10.78%) | 32 (6.47%) | 0.0081 |
1–18 year | 248 (29.38%) | 132 (26.72%) | 0.3151 |
>18 year | 505 (59.83%) | 330 (66.80%) | 0.0119 |
Hospital /location | |||
Intensive care unit (ICU) | 48 (5.68%) | 313 (63.36%) | 0.0001 |
Ward | 796 (94.31%) | 181 (36.63%) | 0.0001 |
Blood Culture received | 3312 (45.31%) | 3372 (67.87%) | |
Isolates from Blood culture
| 512 (15.45%) 331/2153 (15.37%) 181/1159 (15.61%) | 254 (7.53%) 189/2510 (7.53%) 65/862 (7.54%) | 0.0067 0.0067 |
Urine culture received | 3997 (54.68%) | 1596 (32.12%) | |
Isolates from Urine culture
| 332 (8.30%) 311/3751(8.29%) 21/246 (8.53%) | 240 (15.03%) 228/1516 (15.03%) 12/80 (15.00%) | 0.5874 0.5874 |
Bacteria | Blood | Urine | ||||
---|---|---|---|---|---|---|
2019 (512) | 2020 (254) | p-Value | 2019 (332) | 2020 (240) | p-Value | |
Gram positive | 345 (67.38%) | 177 (69.68%) | - | 102 (30.72%) | 43 (17.91%) | - |
Staphylococcus aureus | 82 (16.01%) | 46 (18.11%) | 0.5921 | 26 (7.83%) | 17 (7.08%) | 0.8726 |
Coagulase negative Staphylococcus | 246 (48.04%) | 118 (46.45%) | 0.3143 | 2 (0.60%) | 5 (2.08%) | 0.1366 |
Enterococcus spp. | 17 (3.32%) | 13 (5.11%) | 0.3203 | 74 (22.28%) | 21 (8.75%) | 0.0001 |
Gram negative | 167 (32.61%) | 77 (30.31%) | - | 230 (69.27%) | 197 (82.08%) | - |
Klebsiella pneumoniae | 81 (15.82%) | 13 (5.11%) | 0.0001 | 10 (3.01%) | 15 (6.25%) | 0.2141 |
Acinetobacter baumannii | 53 (10.35%) | 31 (12.20%) | 0.1961 | 36 (10.84%) | 8 (3.33%) | 0.0001 |
Pseudomonas aeruginosa | 6 (1.17%) | 10 (3.94%) | 0.0102 | 30 (9.03%) | 6 (2.5%) | 0.0002 |
Escherichia coli | 27 (5.27%) | 23 (9.05%) | 0.0170 | 154 (46.38%) | 168 (70%) | 0.0001 |
Blood | Escherichia Coli | Klebsiella pneumoniae | Pseudomonas aeruginosa | Acinetobacter baumannii | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-COVID-19 Period (27) | COVID-19 Period (23) | p-Value | Pre-COVID-19 Period (81) | COVID-19 Period (31) | p-Value | Pre-COVID-19 Period (6) | COVID-19 Period (10) | p-Value | Pre-COVID-19 Period (53) | COVID-19 Period (13) | p-Value | |
Gentamicin | 70 | 66.6 | 0.7609 | 32.3 | 25 | 0.3474 | 65 | 75 | 0.1646 | 29 | 20 | 0.1881 |
Amikacin | 76 | 100 | 0.0001 | 31 | 16.6 | 0.0307 | 66 | 100 | 0.0001 | 23 | 20 | 0.7310 |
Cefotaxime | 36 | 11.1 | 0.0001 | 3.5 | 8.3 | 0.3727 | NR | NR | - | 10 | 20 | 0.0734 |
Ciprofloxacin | 36 | 33.3 | 0.3801 | 36 | 16.6 | 0.0037 | 60 | 50 | 0.2007 | 26 | 20 | 0.4010 |
Imipenem | 80 | 88.8 | 0.1170 | 52 | 25 | 0.0001 | 83 | 75 | 0.2240 | 7 | 20 | 0.0119 |
Cotrimoxazole | 36 | 22.2 | 0.0423 | 25 | 16.6 | 0.2240 | NR | NR | - | 31 | 20 | 0.1042 |
Piperacillin + Tazobactam | 59 | 55.5 | 0.6684 | 11 | 16.6 | 0.3083 | 100 | 100 | 1.00 | 33 | 20 | 0.0539 |
Ceftazidime | NR | NR | - | NR | NR | - | 66 | 25 | 0.0001 | NR | NR | - |
Blood | Staphylococcus aureus | Coagulase Negative Staphylococcus | Enterococcus sp. | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre-COVID-19 Period (82) | COVID-19 Period (46) | p-Value | Pre- COVID-19 Period (246) | COVID-19 Period (118) | p-Value | Pre-COVID-19 Period (17) | COVID-19 Period (13) | p-Value | |
Tetracycline | 79 | 55.5 | 0.0008 | 57 | 81.8 | 0.0004 | 26 | 20 | 0.4010 |
Linezolid | 97 | 77.7 | 0.0001 | 100 | 100 | 1.00 | 96 | 80 | 0.0008 |
Clindamycin | 53 | 38.8 | 0.0649 | 43 | 40 | 0.7742 | NR | NR | - |
Cefoxitin | 46 | 33.3 | 0.0223 | 15 | 30 | 0.0171 | NR | NR | - |
Erythromycin | 35 | 22.2 | 0.0596 | 24 | 15.4 | 0.0006 | ND | ND | - |
Cotrimoxazole | 75 | 55.5 | 0.0072 | 59 | 30.8 | 0.0001 | NR | NR | - |
High level gentamicin | NR | NR | NR | NR | 100 | 80 | 0.0001 | ||
Ciprofloxacin | 29 | 22.2 | 0.3304 | 25 | 33.3 | 0.4432 | 40 | 20 | 0.0032 |
Antibiotics | Escherichia Coli | Klebsiella pnemoniae | Pseudomonas aeruginosa | Acinetobacter baumannii | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-COVID-19 Period (154) | COVID-19 Period (168) | p-Value | Pre-COVID-19 Period (10) | COVID-19 Period (15) | p-Value | Pre-COVID-19 Period (30) | COVID-19 Period (6) | p-Value | Pre-COVID-19 Period (36) | COVID-19 Period (8) | p-Value | |
Gentamicin | 72.3 | 64.1 | 0.2886 | 65 | 57.1 | 0.3102 | 70 | 70 | 1.00 | 60 | 53.3 | 0.3922 |
Amikacin | 60 | 53.8 | 0.4752 | 76 | 82.1 | 0.3856 | 100 | 100 | 1.00 | 39.5 | 20 | 0.0320 |
Cefotaxime | 14 | 7.3 | 0.1652 | 23 | 7.1 | 0.0025 | NR | NR | - | 9.5 | 6.6 | 0.6133 |
Ciprofloxacin | 27.3 | 14.4 | 0.0347 | 37.5 | 39.2 | 1.00 | 50 | 50 | 1.00 | 20 | 20 | 1.00 |
Imipenem | 92 | 89.7 | 0.8056 | 46 | 67.8 | 0.0026 | 80 | 70 | 0.1412 | 100 | 88.6 | 0.0007 |
Tetracycline | ND | ND | - | ND | ND | - | NR | NR | - | 36 | 13.3 | 0.0001 |
Cotrimoxazole | 35 | 28.6 | 0.4486 | 32 | 32.1 | 1.00 | NR | NR | - | 34 | 13.3 | 0.0007 |
Nitrofurantoin | 67.6 | 67.6 | 1.00 | 23 | 25 | 0.8686 | 23 | 30 | 0.3364 | 9.1 | 6.6 | 0.7953 |
Fosfomycin | 98 | 96.5 | 1.00 | 56.7 | 46.4 | 0.2029 | NR | NR | - | NR | NR | - |
Piperacillin-Tazobactam | 46 | 37.8 | 0.3159 | 61 | 67.8 | 0.3753 | 33.3 | 10 | 0.0003 | 16 | 6.6 | 0.0744 |
Ceftazidime | NR | NR | - | NR | NR | - | 18 | 40 | 0.0010 | NR | NR | - |
Urinary Gram Positive Bacteria | |||||||||
---|---|---|---|---|---|---|---|---|---|
Antibiotics | Staphylococcus aureus | Enterococcus sp. | Coagulase Negative Staphylococcus | ||||||
Pre-COVID-19 Period (26) | COVID-19 Period (17) | p-Value | Pre-COVID-19 Period (74) | COVID-19 Period (21) | p-Value | Pre-COVID-19 Period (2) | COVID-19 Period (5) | p-Value | |
Tetracycline | 65 | 80 | 0.0261 | 60 | 100 | 0.0001 | 50 | 60 | 0.2007 |
Linezolid | 100 | 100 | 1.00 | 100 | 100 | 1.00 | 100 | 100 | 1.00 |
Clindamycin | 80 | 68.5 | 0.1042 | NR | NR | - | 50 | 80 | 0.0001 |
Cefoxitin | 60 | 40 | 0.0071 | NR | NR | - | 50 | 60 | 0.2007 |
Erythromycin | 43 | 25.7 | 0.0170 | ND | ND | - | 50 | 80 | 0.0001 |
Cotrimoxazole | 17 | 20 | 0.7161 | NR | NR | 50 | 40 | 0.2007 | |
Nitrofurantoin | 100 | 100 | 1.00 | 70 | 48.8 | 0.0038 | 100 | 80 | 0.0001 |
High level gentamicin | NR | NR | - | 54 | 48.8 | 0.5715 | NR | NR | - |
Ciprofloxacin | 54.5 | 48.5 | 0.4792 | 50 | 48.8 | 1.00 | 50 | 80 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, V.; Jain, C.; Singh, N.P.; Alsulimani, A.; Gupta, C.; Dar, S.A.; Haque, S.; Das, S. Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic. Antibiotics 2021, 10, 954. https://doi.org/10.3390/antibiotics10080954
Saini V, Jain C, Singh NP, Alsulimani A, Gupta C, Dar SA, Haque S, Das S. Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic. Antibiotics. 2021; 10(8):954. https://doi.org/10.3390/antibiotics10080954
Chicago/Turabian StyleSaini, Vikas, Charu Jain, Narendra Pal Singh, Ahmad Alsulimani, Chhavi Gupta, Sajad Ahmad Dar, Shafiul Haque, and Shukla Das. 2021. "Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic" Antibiotics 10, no. 8: 954. https://doi.org/10.3390/antibiotics10080954
APA StyleSaini, V., Jain, C., Singh, N. P., Alsulimani, A., Gupta, C., Dar, S. A., Haque, S., & Das, S. (2021). Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic. Antibiotics, 10(8), 954. https://doi.org/10.3390/antibiotics10080954