Therapeutic Approach of Chronic Pseudomonas Infection in Cystic Fibrosis—A Network Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Search, Selection, and Study Characteristics
2.2. Characteristics of Included Studies
2.3. Results of NMA
2.3.1. Change in FEV1% Predicted from Baseline to Four Weeks
2.3.2. Change in Pseudomonas Sputum Density
2.3.3. Change in CFQR-RSS
2.3.4. Adverse Events
2.3.5. Risk-of-Bias Assessment and Quality of Evidence
Authors (Year of Publication) | Countries and No. of Centers | Inclusion Period | Intervention/Comparator | Mean Age (Years) | % of Females | No of Randomized Patients | Study Duration (Weeks) | Adverse Events | Treatment Schedule | Baseline FEV1% | FEV1% Change at 4 Weeks |
---|---|---|---|---|---|---|---|---|---|---|---|
Ramsey et al. (1993) [18] | USA, 7 centers | March 1989–June 1991 | 3 × 600 mg tobramycin | 17.7 | 42% | 71 | 24 | Not reported | Intervention 3 times a day or comparator | 55% | 3.72% |
Placebo | 16.6 | 54% | 60% | −5.97% | |||||||
Ramsey et al. (1999) [19] | USA, 69 centers | August 1995–October 1996 | 2 × 300 mg tobramycin inhalation solution | 20.8 | 42% | 520 | 24 | Tin: 3.1% Hpt: 26.7% | 3 cycles of 28 days on treatment and 28 days off treatment for a total of 24 weeks | 49.9% | 11.98% |
Placebo | 20.6 | 50% | Tin: 0% Hpt: 30.9% | 51.2% | 0.057% | ||||||
Hodson et al. (2002) [20] | UK, Ireland, 16 centers | Not reported | 2 × 300 mg tobramycin inhalation solution | 21.3 | 62.3% | 126 | 8 | AE: 64.2% c: 9.4% | Intervention twice a day or comparator for 4 weeks and 4 weeks of follow-up | 55.4% | 6.7% |
2 × 80 mg colistin sulfomethate | 20.1 | 48.4% | AE: 50.0%c: 17.7% | 59.4% | 0.37% | ||||||
Lenoir et al. (2007) [21] | France, Italy, Ukraine, Moldova, 13 centers | Not reported | 2 × 300 mg tobramycin inhalation solution | 11 | 48.3% | 59 | 8 | Drug-related: 10.3% | Intervention twice a day or comparator for 4 weeks and 4 weeks of follow-up | 57.7% | 16.11% |
Placebo | 14.2 | 44.3% | 23.3% | 59.8% | 2.53% | ||||||
Chuchalin et al. (2007) [22] | Hungary, Poland, Russia, 21 centers | Not reported | 2 × 300 mg tobramycin inhalation solution | 14.8 | 44.7% | 247 | 24 | Drug-related: AE: 15.5% c (not detailed): 2.2% | 3 cycles of 28 days on treatment and 28 days off treatment for a total of 24 weeks | 60.7% | 7.81% |
Placebo | 14.7 | 45.2% | AE: 15.3% c (not detailed): 69.4% | 63.6% | 0.55% | ||||||
Retsch-Bogart et al. (2008) [23] | USA, 20 centers | November 2003–August 2004 | 2 × 75 mg aztreonam lysine | 27.2 | 43.2% | 105 | 5 | Drug-related: AE: 27% c: 13.5% AE: 37.8% c: 18.9% AE: 19.4% c: 9.7% | Twice a day for 14 days | 74.27% | 0.59% |
2 × 225 mg aztreonam lysine | 23.9 | 48.6% | 81.23% | 0.86% | |||||||
Placebo | 27 | 54.8% | 76.84% | 0.49% | |||||||
McCoy et al. (2008) [24] | USA, 56 centers | February 2005–September 2006 | 2 × 75 mg aztreonam lysine | 26.5 | 44.9% | 246 | 12 | (not drug-related) c: 27.5% | 28-day run in tobramycin phase. 4 weeks of intervention or comparator and 8-week follow-up phase | 56.3% | 3.78% |
3 × 75 mg aztreonam lysine | 24.1 | 42.4% | 36.4% | 55.4% | 4.09% | ||||||
Placebo | 27.9 | 40.8% | 34.2% | 53.9% | −2.42% | ||||||
Retsch-Bogart et al. (2009) [25] | USA, Canada, Australia, New Zealand, 53 centers | June 2005–April 2007 | 3 × 75 mg aztreonam lysine | 27.4 | 40% | 164 | 6 | c (not drug-related): 35% | Intervention for 28 days or comparator 3 times a day | NA * | NA * |
Placebo | 31.7 | 46.4% | 29.8% | ||||||||
Wainwright et al. (2011) [26] | Australia, Canada, USA, 40 centers | June 2008–June 2009 | 3 × 75 mg aztreonam lysine | 19.5 | 39.5% | 157 | 6 | c related to study drug: 9.2% | Intervention for 28 days or comparator 3 times a day | 95.5% | 0.29% |
Placebo | 18.9 | 45.7% | 4.9% | 94.7% | −2.5% | ||||||
Konstan et al. (2010) [27] | 15 countries, 127 centers | Not reported | 2 × 112 mg tobramycin inhalation powder | 25 | 45% | 517 | 24 | c related to study drug: 25.3% 4.3% | 3 cycles of 28 days on treatment and 28 days off treatment for a total of 24 weeks | 53% | 2.76% |
2 × 300 mg tobramycin inhalation solution | 26 | 44.5% | 53% | 3.55% | |||||||
Konstan et al. (2011) [28] | Bulgaria, Lithuania, Serbia, Argentina, Brazil, Chile, Mexico, USA, 38 centers | September 2005–February 2007 | 2 × 112 mg tobramycin inhalation powder | 13.4 | 58.7% | 93 | 4 + 12 | c (not drug-related): 13% | 3 cycles of 28 days on intervention or comparator and 2 cycles of 28 days on treatment for a total of 24 weeks | 54.7% | 12.96% |
Placebo | 13.2 | 53.1% | 26.5% | 58.5% | −0.59% | ||||||
Geller et al. (2011) [29] | USA, Europe, 51 centers | June 2008–June 2009 | 1 × 120 mg levofloxacin inhalation solution | 28 | 47.4% | 151 | 8 | c (not detailed): 15.8% | 28 days on treatment and 28 days off treatment, 1 cycle | 52.9% | |
1 × 240 mg levofloxacin inhalation solution | 27.5 | 43.2% | 16.2% | 55.4% | |||||||
2 × 240 mg levofloxacin inhalation solution | 29.2 | 35.9% | 15.4% | 48.8% | |||||||
Placebo | 30.1 | 48.6% | 10.8% | 52.4% | |||||||
Trapnel et al. (2012) [30] | USA, 33 centers | June 2008–January 2010 | 80/20 mg fosfomycin/tobramycin for inhalation | 35 | 45% | 119 | 8 | Related to study drug AE: 29% c: 10% | 28 days of treatment | 50% | 1% |
160/40 mg fosfomycin/tobramycin for inhalation | 31 | 51% | AE: 51% c: 7% | 48% | −0.3% | ||||||
Placebo | 31 | 43% | AE: 15% c: 10% | 48% | −6.5% | ||||||
Galeva et al. (2013) [31] | Bulgaria, Estonia, Latvia, Lithuania, 17 centers | June 2009–May 2011 | 2 × 112 mg tobramycin inhalation powder | 12.9 | 70% | 62 | 8 | Drug-related AE: 16.7% | 28 days on treatment and 28 days off treatment | 59.1% | 8.2% |
Placebo | 12.9 | 59.4% | 6.3% | 59.3% | 2.3% | ||||||
Assael et al. (2013) [32] | Europe, USA, 91 centers | August 2008–May 2010 | 3 × 75 mg aztreonam lysine | 25.8 | 50% | 273 | 24 | Drug-related AE: 22.8% c (not drug-related): 70.6% | 3 cycles of 28 days on intervention or comparator | 52.3% | 8.064% |
2 × 300 mg tobramycin inhalation solution | 25.1 | 50% | AE: 12.9% c (not drug-related): 78.8% | 52.2% | −0.14% | ||||||
Elborn et al. (2015) [33] | Europe, USA, Israel, 125 centers | February 2011–August 2012 | 2 × 240 mg levofloxacin inhalation solution | 28.1 | 45.5% | 282 | 24 | c (not drug-related): 53.3% | 3 cycles of 28 days on intervention or comparator | 54.8% | 2.33% |
2 × 300 mg tobramycin inhalation solution | 28.8 | 39.8% | 58.2% | 53.2% | 0.42% | ||||||
Flume et al. (2016) [34] | USA, Canada, Australia, New Zealand, Israel, 97 centers | October 2010–May 2012 | 2 × 240 mg levofloxacin inhalation solution | 29.4 | 47.9% | 330 | 8 | Drug-related AE: 27.9% | 28 days on treatment and 28 days off treatment | 56.6% | 1.73% |
Placebo | 28.8 | 42.7% | 18.2% | 56.3% | 0.411% | ||||||
Bilton et al. (2019) [35] | Europe, Canada, 70 centers | February 2012–September 2013 | 1 × 590 mg amikacin liposome inhalation suspension | 22.8 | 46.6% | 302 | 24 | Drug-related AE: 38.5 c: 8.8% | 3 cycles of 28 days on intervention or comparator | 64.5% | 4.14% |
2 × 300 mg tobramycin inhalation solution | 22 | 47.9% | 14.4 c: 2.1% | 61.9% | 7 |
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Selection and Eligibility
4.3. Data Extraction
4.4. Statistical Analysis
4.5. Risk-of-Bias Assessment and Quality of Evidence
4.6. Protocol Registration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walters, S. Doctor-Patient Relationship in Cystic Fibrosis—A Patient’s Perspective. Holist. Med. 1990, 5, 157–162. [Google Scholar] [CrossRef]
- Spoonhower, K.A.; Davis, P.B. Epidemiology of Cystic Fibrosis. Clin. Chest. Med. 2016, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073, Erratum in 1989, 245, 1437. [Google Scholar] [CrossRef]
- Ratjen, F.; Döring, G. Cystic fibrosis. Lancet 2003, 361, 681–689. [Google Scholar] [CrossRef]
- Kerem, E.; Conway, S.; Elborn, S.; Heijerman, H.; Consensus Committee. Standards of care for patients with cystic fibrosis: A European consensus. J. Cyst. Fibros. 2005, 4, 7–26. [Google Scholar] [CrossRef] [Green Version]
- Bhagirath, A.Y.; Li, Y.; Somayajula, D.; Dadashi, M.; Badr, S.; Duan, K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm. Med. 2016, 16, 174. [Google Scholar] [CrossRef] [Green Version]
- Döring, G.; Hoiby, N. Early intervention and prevention of lung disease in cystic fibrosis: A European consensus. J. Cyst. Fibros. 2004, 3, 67–91. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.W.; Brownlee, K.G.; Conway, S.P.; Denton, M.; Littlewood, J.M. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J. Cyst. Fibros. 2003, 2, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Castellani, C.; Duff, A.J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS best practice guidelines: The 2018 revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef] [Green Version]
- Mogayzel, P.J., Jr.; Naureckas, E.T.; Robinson, K.A.; Mueller, G.; Hadjiliadis, D.; Hoag, J.B.; Lubsch, L.; Hazle, L.; Sabadosa, K.; Marshall, B.; et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am. J. Respir. Crit. Care Med. 2013, 187, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Littlewood, K.J.; Higashi, K.; Jansen, J.P.; Capkun-Niggli, G.; Balp, M.M.; Doering, G.; Tiddens, H.A.; Angyalosi, G. A network meta-analysis of the efficacy of inhaled antibiotics for chronic Pseudomonas infections in cystic fibrosis. J. Cyst. Fibros. 2012, 11, 419–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elborn, J.S.; Vataire, A.L.; Fukushima, A.; Aballea, S.; Khemiri, A.; Moore, C.; Medic, G.; Hemels, M.E. Comparison of Inhaled Antibiotics for the Treatment of Chronic Pseudomonas aeruginosa Lung Infection in Patients With Cystic Fibrosis: Systematic Literature Review and Network Meta-analysis. Clin. Ther. 2016, 38, 2204–2226. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.J.; Ioannidis, J.P.; Thorlund, K.; Schünemann, H.J.; Puhan, M.A.; Guyatt, G.H. How to use an article reporting a multiple treatment comparison meta-analysis. JAMA 2012, 308, 1246–1253. [Google Scholar] [CrossRef]
- Li, T.; Puhan, M.A.; Vedula, S.S.; Singh, S.; Dickersin, K.; Ad Hoc Network Meta-analysis Methods Meeting Working Group. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Oermann, C.M.; Retsch-Bogart, G.Z.; Quittner, A.L.; Gibson, R.L.; McCoy, K.S.; Montgomery, A.B.; Cooper, P.J. An 18-month study of the safety and efficacy of repeated courses of inhaled aztreonam lysine in cystic fibrosis. Pediatr. Pulmonol. 2010, 45, 1121–1134. [Google Scholar] [CrossRef] [Green Version]
- Nasr, S.Z.; Gordon, D.; Sakmar, E.; Yu, X.; Christodoulou, E.; Eckhardt, B.P.; Strouse, P.J. High resolution computerized tomography of the chest and pulmonary function testing in evaluating the effect of tobramycin solution for inhalation in cystic fibrosis patients. Pediatr. Pulmonol. 2006, 41, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Lymp, J.; Minic, P.; Quittner, A.L.; Rubenstein, R.C.; et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax 2013, 68, 818–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, B.W.; Dorkin, H.L.; Eisenberg, J.D.; Gibson, R.L.; Harwood, I.R.; Kravitz, R.M.; Schidlow, D.V.; Wilmott, R.W.; Astley, S.J.; McBurnie, M.A.; et al. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N. Engl. J. Med. 1993, 328, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, B.W.; Pepe, M.S.; Quan, J.M.; Otto, K.L.; Montgomery, A.B.; Williams-Warren, J.; Vasiljev-K, M.; Borowitz, D.; Bowman, C.M.; Marshall, B.C.; et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N. Engl. J. Med. 1999, 340, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Hodson, M.E.; Gallagher, C.G.; Govan, J.R. A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosis. Eur. Respir. J. 2002, 20, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenoir, G.; Antypkin, Y.G.; Miano, A.; Moretti, P.; Zanda, M.; Varoli, G.; Monici Preti, P.A.; Aryayev, N.L. Efficacy, safety, and local pharmacokinetics of highly concentrated nebulized tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa. Paediatr. Drugs 2007, 9 (Suppl. 1), 11–20. [Google Scholar] [CrossRef] [PubMed]
- Chuchalin, A.; Csiszér, E.; Gyurkovics, K.; Bartnicka, M.T.; Sands, D.; Kapranov, N.; Varoli, G.; Monici Preti, P.A.; Mazurek, H. A formulation of aerosolized tobramycin (Bramitob) in the treatment of patients with cystic fibrosis and Pseudomonas aeruginosa infection: A double-blind, placebo-controlled, multicenter study. Paediatr. Drugs 2007, 9, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Retsch-Bogart, G.Z.; Burns, J.L.; Otto, K.L.; Liou, T.G.; McCoy, K.; Oermann, C.; Gibson, R.L.; AZLI Phase II Study Group. A phase 2 study of aztreonam lysine for inhalation to treat patients with cystic fibrosis and Pseudomonas aeruginosa infection. Pediatr. Pulmonol. 2008, 43, 47–58. [Google Scholar] [CrossRef] [PubMed]
- McCoy, K.S.; Quittner, A.L.; Oermann, C.M.; Gibson, R.L.; Retsch-Bogart, G.Z.; Montgomery, A.B. Inhaled aztreonam lysine for chronic airway Pseudomonas aeruginosa in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2008, 178, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Retsch-Bogart, G.Z.; Quittner, A.L.; Gibson, R.L.; Oermann, C.M.; McCoy, K.S.; Montgomery, A.B.; Cooper, P.J. Efficacy and safety of inhaled aztreonam lysine for airway pseudomonas in cystic fibrosis. Chest 2009, 135, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, C.E.; Quittner, A.L.; Geller, D.E.; Nakamura, C.; Wooldridge, J.L.; Gibson, R.L.; Lewis, S.; Montgomery, A.B. Aztreonam for inhalation solution (AZLI) in patients with cystic fibrosis, mild lung impairment, and P. aeruginosa. J. Cyst. Fibros. 2011, 10, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Konstan, M.W.; Flume, P.A.; Kappler, M.; Chiron, R.; Higgins, M.; Brockhaus, F.; Zhang, J.; Angyalosi, G.; He, E.; Geller, D.E. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: The EAGER trial. J. Cyst. Fibros. 2011, 10, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Konstan, M.W.; Geller, D.E.; Minić, P.; Brockhaus, F.; Zhang, J.; Angyalosi, G. Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: The EVOLVE trial. Pediatr. Pulmonol. 2011, 46, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Geller, D.E.; Flume, P.A.; Staab, D.; Fischer, R.; Loutit, J.S.; Conrad, D.J.; Mpex 204 Study Group. Levofloxacin inhalation solution (MP-376) in patients with cystic fibrosis with Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2011, 183, 1510–1516. [Google Scholar] [CrossRef]
- Trapnell, B.C.; McColley, S.A.; Kissner, D.G.; Rolfe, M.W.; Rosen, J.M.; McKevitt, M.; Moorehead, L.; Montgomery, A.B.; Geller, D.E.; Phase 2 FTI Study Group. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with pseudomonas airway infection. Am. J. Respir. Crit. Care Med. 2012, 185, 171–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeva, I.; Konstan, M.W.; Higgins, M.; Angyalosi, G.; Brockhaus, F.; Piggott, S.; Thomas, K.; Chuchalin, A.G. Tobramycin inhalation powder manufactured by improved process in cystic fibrosis: The randomized EDIT trial. Curr. Med. Res. Opin. 2013, 29, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Assael, B.M.; Pressler, T.; Bilton, D.; Fayon, M.; Fischer, R.; Chiron, R.; LaRosa, M.; Knoop, C.; McElvaney, N.; Lewis, S.A.; et al. Inhaled aztreonam lysine vs. inhaled tobramycin in cystic fibrosis: A comparative efficacy trial. J. Cyst. Fibros. 2013, 12, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Stuart Elborn, J.; Geller, D.E.; Conrad, D.; Aaron, S.D.; Smyth, A.R.; Fischer, R.; Kerem, E.; Bell, S.C.; Loutit, J.S.; Dudley, M.N.; et al. A phase 3, open-label, randomized trial to evaluate the safety and efficacy of levofloxacin inhalation solution (APT-1026) versus tobramycin inhalation solution in stable cystic fibrosis patients. J. Cyst. Fibros. 2015, 14, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Flume, P.A.; VanDevanter, D.R.; Morgan, E.E.; Dudley, M.N.; Loutit, J.S.; Bell, S.C.; Kerem, E.; Fischer, R.; Smyth, A.R.; Aaron, S.D.; et al. A phase 3, multi-center, multinational, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of levofloxacin inhalation solution (APT-1026) in stable cystic fibrosis patients. J. Cyst. Fibros. 2016, 15, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Bilton, D.; Pressler, T.; Fajac, I.; Clancy, J.P.; Sands, D.; Minic, P.; Cipolli, M.; Galeva, I.; Solé, A.; Quittner, A.L.; et al. Amikacin liposome inhalation suspension for chronic Pseudomonas aeruginosa infection in cystic fibrosis. J. Cyst. Fibros. 2020, 19, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, S.; Novak, K.; McCoy, K. Aztreonam (for inhalation solution) for the treatment of chronic lung infections in patients with cystic fibrosis: An evidence-based review. Core Evid. 2011, 6, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Medscape, D.D. Tobramycin Inhaled (Rx). Available online: https://reference.medscape.com/drug/tobi-bethkis-tobramycin-inhaled-999785 (accessed on 21 October 2020).
- Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. Ivacaftor (Kalydeco) 150 mg Tablet: For Treatment of Cystic Fibrosis with G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, S549R, or G970R Mutation [Internet]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK349151/ (accessed on 10 September 2020).
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibosch, M.M.; Sintnicolaas, C.J.; Peters, J.B.; Merkus, P.J.; Yntema, J.B.; Verhaak, C.M.; Vercoulen, J.H. How about your peers? Cystic fibrosis questionnaire data from healthy children and adolescents. BMC Pediatr. 2011, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 6th ed.; (Updated July 2019); Cochrane: London, UK, 2019; Available online: www.training.cochrane.org/handbook (accessed on 1 September 2020).
- Schünemann, H.; Guyatt, G.; Brożek, J.; Oxman, A. (Eds.) GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations; Updated October 2013; 2013 Section: 7.5.2.1; The GRADE Working Group, 2013; Available online: guidelinedevelopment.org/handbook (accessed on 1 September 2020).
- Schneider, E.K.; Azad, M.A.; Han, M.L.; Tony, Z.Q.; Wang, J.; Huang, J.X.; Cooper, M.A.; Doi, Y.; Baker, M.A.; Bergen, P.J.; et al. An “Unlikely” Pair: The Antimicrobial Synergy of Polymyxin B in Combination with the Cystic Fibrosis Transmembrane Conductance Regulator Drugs KALYDECO and ORKAMBI. ACS Infect. Dis. 2016, 2, 478–488. [Google Scholar] [CrossRef]
- Cantón, R.; Máiz, L.; Escribano, A.; Olveira, C.; Oliver, A.; Asensio, O.; Gartner, S.; Roma, E.; Quintana-Gallego, E.; Salcedo, A.; et al. En representación del Grupo Español de Consenso del Tratamiento Antimicrobiano en el Paciente con Fibrosis Quística. Spanish consensus on the prevention and treatment of Pseudomonas aeruginosa bronchial infections in cystic fibrosis patients. Arch. Bronconeumol. 2015, 51, 140–150. [Google Scholar] [CrossRef]
- Langton Hewer, S.C.; Smyth, A.R. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst. Rev. 2017, 4, Cd004197. [Google Scholar] [CrossRef] [PubMed]
- Ratjen, F.; Munck, A.; Kho, P.; Angyalosi, G.; ELITE Study Group. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: The ELITE trial. Thorax 2010, 65, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Cymberknoh, M.; Gilead, N.; Gartner, S.; Rovira, S.; Blau, H.; Mussaffi, H.; Rivlin, J.; Gur, M.; Shteinberg, M.; Bentur, L.; et al. Eradication failure of newly acquired Pseudomonas aeruginosa isolates in cystic fibrosis. J. Cyst. Fibros. 2016, 15, 776–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nick, J.A.; Moskowitz, S.M.; Chmiel, J.F.; Forssén, A.V.; Kim, S.H.; Saavedra, M.T.; Saiman, L.; Taylor-Cousar, J.L.; Nichols, D.P. Azithromycin may antagonize inhaled tobramycin when targeting Pseudomonas aeruginosa in cystic fibrosis. Ann. Am. Thorac. Soc. 2014, 11, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Máiz, L.; Girón, R.M.; Olveira, C.; Quintana, E.; Lamas, A.; Pastor, D.; Cantón, R.; Mensa, J. Inhaled antibiotics for the treatment of chronic bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis: Systematic review of randomised controlled trials. Expert. Opin. Pharmacother. 2013, 14, 1135–1149. [Google Scholar] [CrossRef]
- Vettoretti, L.; Plésiat, P.; Muller, C.; El Garch, F.; Phan, G.; Attrée, I.; Ducruix, A.; Llanes, C. Efflux unbalance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob. Agents Chemother. 2009, 53, 1987–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojo-Molinero, E.; Macià, M.D.; Rubio, R.; Moyà, B.; Cabot, G.; López-Causapé, C.; Pérez, J.L.; Cantón, R.; Oliver, A. Sequential Treatment of Biofilms with Aztreonam and Tobramycin Is a Novel Strategy for Combating Pseudomonas aeruginosa Chronic Respiratory Infections. Antimicrob. Agents Chemother 2016, 60, 2912–2922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Littlewood et al. 2012 [11] | Elborn et al. 2016 [12] | Current NMA “Varannai et al. 2021” | ||||
---|---|---|---|---|---|---|
Duration | 4 weeks | 20 weeks | 4 weeks | 24 weeks | 4 weeks | 24 weeks |
No. of RCTs | 7 trials | Insufficient data | 7 trials | 9 trials | FEV1: 14 trials, CFQ: 7 trials Pa.: 14 trials | 9 trials |
Antibiotics involved | TIS (300 mg/4 mL), TIS (300 mg/5 mL), TIP, colistin, AZLI | TIS, TIP, colistin, AZLI, LIS | TIS, TIP, AZLI, LIS | TIS, TIP, colistin, AZLI, LIS, amikacin, FTI | TIS, TIP, AZLI, LIS | |
Outcome | FEV1, Pa. sputum density, acute exacerbations | FEV1 relative and absolute change, Pa. sputum density, CFQR-RSS change, hospitalization, use of additional antibiotics, study withdrawal rates. | Relative change in FEV1%, change in Pseudomonas sputum density, change in CFQR-RSS, hospitalization, time to acute exacerbation. | |||
Results | All treatments led to an improvement compared to a placebo; tobramycin formulations led to an improvement over AZLI or colistin (although these were not significant differences). | The relative change in FEV1% was numerically the highest with AZLI. LIS reduced Pseudomonas sputum density significantly better than a placebo, although TIP, TIS, and AZLI were numerically more effective. As regards hospitalization, an indirect comparison was conducted due to a lack of trials. Additional antibiotics were required for TIS- and placebo-treated patients compared to LIS. | Changes in FEV1 and sputum density were numerically more effective with LIS compared with TIP and TIS, and they were significantly better than with a placebo. Significantly fewer patients were hospitalized with LIS than with TIP, TIS, and a placebo. Additional antibiotics were required for TIS-, TIP-, and placebo-treated patients compared to LIS. | Aztreonam combined with 28 days of tobramycin were the best treatments as regards changes in FEV1% and sputum density. | The NMA was not conducted for 24 weeks to avoid reproduction of the result from the previous NMA. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varannai, O.; Gede, N.; Juhász, M.F.; Szakács, Z.; Dembrovszky, F.; Németh, D.; Hegyi, P.; Párniczky, A. Therapeutic Approach of Chronic Pseudomonas Infection in Cystic Fibrosis—A Network Meta-Analysis. Antibiotics 2021, 10, 936. https://doi.org/10.3390/antibiotics10080936
Varannai O, Gede N, Juhász MF, Szakács Z, Dembrovszky F, Németh D, Hegyi P, Párniczky A. Therapeutic Approach of Chronic Pseudomonas Infection in Cystic Fibrosis—A Network Meta-Analysis. Antibiotics. 2021; 10(8):936. https://doi.org/10.3390/antibiotics10080936
Chicago/Turabian StyleVarannai, Orsolya, Noémi Gede, Márk Félix Juhász, Zsolt Szakács, Fanni Dembrovszky, Dávid Németh, Péter Hegyi, and Andrea Párniczky. 2021. "Therapeutic Approach of Chronic Pseudomonas Infection in Cystic Fibrosis—A Network Meta-Analysis" Antibiotics 10, no. 8: 936. https://doi.org/10.3390/antibiotics10080936
APA StyleVarannai, O., Gede, N., Juhász, M. F., Szakács, Z., Dembrovszky, F., Németh, D., Hegyi, P., & Párniczky, A. (2021). Therapeutic Approach of Chronic Pseudomonas Infection in Cystic Fibrosis—A Network Meta-Analysis. Antibiotics, 10(8), 936. https://doi.org/10.3390/antibiotics10080936