Testing as Prevention of Resistance in Bacteria Causing Sexually Transmitted Infections—A Population-Based Model for Germany
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Prevalence Assumptions
4.2. Test Assay Assumptions
4.3. Modelling Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gottwald, C.; Schwarz, N.G.; Frickmann, H. Sexually Transmitted Infections in Soldiers—A Cross-Sectional Assessment in German Paratroopers and Navy Soldiers and a Literature Review. Eur. J. Microbiol. Immunol. 2019, 9, 138–143. [Google Scholar] [CrossRef]
- Smith, E.B. Ampicillin in the treatment of “penicillin-resistant” gonorrhea. Mil. Med. 1966, 131, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Holmes, K.K.; Johnson, D.W.; Stewart, S.; Kvale, P.A. Treatment of “penicillin-resistant” gonorrhea in military personnel in S.E. Asia: A cooperative evaluation of tetracycline and of penicillin plus probenecid in 1263 men. Mil. Med. 1968, 133, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Papadimos, T.J.; Escamilla, J.; Batchelor, R.A.; Lane, E.W.; Biddle, J.W. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from a military population in San Diego. Sex. Transm. Dis. 1988, 15, 196–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickmann, H.; Podbielski, A.; Kreikemeyer, B. Resistant Gram-Negative Bacteria and Diagnostic Point-of-Care Options for the Field Setting during Military Operations. BioMed Res. Int. 2018, 2018, 9395420. [Google Scholar] [CrossRef]
- Tsai, A.Y.; Dueger, E.; Macalino, G.E.; Montano, S.M.; Tilley, D.H.; Mbuchi, M.; Wurapa, E.K.; Saylors, K.; Duplessis, C.C.; Puplampu, N.; et al. The U.S. military’s Neisseria gonorrhoeae resistance surveillance initiatives in selected populations of five countries. MSMR 2013, 20, 25–27. [Google Scholar]
- Eyre, D.W.; Sanderson, N.D.; Lord, E.; Regisford-Reimmer, N.; Chau, K.; Barker, L.; Morgan, M.; Newnham, R.; Golparian, D.; Unemo, M.; et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Eurosurveillance 2018, 23, 1800323. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Huerta, M.; Barberá, M.J.; Serra-Pladevall, J.; Esperalba, J.; Martínez-Gómez, X.; Centeno, C.; Pich, O.Q.; Pumarola, T.; Espasa, M. Mycoplasma genitalium and antimicrobial resistance in Europe: A comprehensive review. Int. J. STD AIDS 2020, 31, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Machalek, D.A.; Tao, Y.; Shilling, H.; Jensen, J.S.; Unemo, M.; Murray, G.; Chow, E.P.F.; Low, N.; Garland, S.M.; Vodstrcil, L.A.; et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: A systematic review and meta-analysis. Lancet Infect. Dis. 2020, 20, 1302–1314. [Google Scholar] [CrossRef]
- Read, T.R.H.; Jensen, J.S.; Fairley, C.K.; Grant, M.; Danielewski, J.A.; Su, J.; Murray, G.L.; Chow, E.P.F.; Worthington, K.; Garland, S.M.; et al. Use of Pristinamycin for Macrolide-Resistant Mycoplasma genitalium Infection. Emerg. Infect. Dis. 2018, 24, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Zaman, K.; Jain, N. Mycoplasma genitalium infections: Current treatment options and resistance issues. Infect. Drug Resist. 2017, 10, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, C.S.; Jensen, J.S.; Waites, K.B. New Horizons in Mycoplasma genitalium Treatment. J. Infect. Dis. 2017, 216 (Suppl. 2), S412–S419. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Morosini, M.I. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol. Rev. 2011, 35, 977–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantele, A.; Lääveri, T.; Mero, S.; Vilkman, K.; Pakkanen, S.H.; Ollgren, J.; Antikainen, J.; Kirveskari, J. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin. Infect. Dis. 2015, 60, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Schechner, V.; Temkin, E.; Harbarth, S.; Carmeli, Y.; Schwaber, M.J. Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance. Clin. Microbiol. Rev. 2013, 26, 289–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol. 2018, 26, 978–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loftie-Eaton, W.; Bashford, K.; Quinn, H.; Dong, K.; Millstein, J.; Hunter, S.; Thomason, M.K.; Merrikh, H.; Ponciano, J.M.; Top, E.M. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat. Ecol. Evol. 2017, 1, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Dunn, S.J.; Connor, C.; McNally, A. The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: The complexity of clones and plasmids. Curr. Opin. Microbiol. 2019, 51, 51–56. [Google Scholar] [CrossRef]
- Molina, J.M.; Charreau, I.; Chidiac, C.; Pialoux, G.; Cua, E.; Delaugerre, C.; Capitant, C.; Rojas-Castro, D.; Fonsart, J.; Bercot, B.; et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: An open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect. Dis. 2018, 18, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Fusca, L.; Hull, M.; Ross, P.; Grennan, T.; Burchell, A.N.; Bayoumi, A.M.; Tan, D.H.S. High Interest in Syphilis Pre-exposure and Post-exposure Prophylaxis Among Gay, Bisexual and Other Men Who Have Sex with Men in Vancouver and Toronto. Sex. Transm. Dis. 2020, 47, 224–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berçot, B.; Charreau, I.; Clotilde, R.; Delaugerre, C.; Chidiac, C.; Pialoux, G.; Capitant, C.; Bourgeois-Nicolaos, N.; Raffi, F.; Pereyre, S.; et al. High Prevalence and High Rate of Antibiotic Resistance of Mycoplasma genitalium Infections in Men who Have Sex with Men. A Sub-Study of the ANRS Ipergay PrEP Trial. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Park, J.J.; Stafylis, C.; Pearce, D.D.; Taylor, J.; Little, S.J.; Kojima, N.; Gorin, A.M.; Klausner, J.D. Interest, concerns, and attitudes among men who have sex with men and healthcare providers toward prophylactic use of doxycycline against Chlamydia trachomatis infections and syphilis. Sex. Transm. Dis. 2021. [Google Scholar] [CrossRef]
- Ito, S.; Shimada, Y.; Yamaguchi, Y.; Yasuda, M.; Yokoi, S.; Ito, S.; Nakano, M.; Ishiko, H.; Deguchi, T. Selection of Mycoplasma genitalium strains harbouring macrolide resistance-associated 23S rRNA mutations by treatment with a single 1 g dose of azithromycin. Sex. Transm. Infect. 2011, 87, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Buder, S.; Schöfer, H.; Meyer, T.; Bremer, V.; Kohl, P.K.; Skaletz-Rorowski, A.; Brockmeyer, N. Bacterial sexually transmitted infections. J. Dtsch. Dermatol. Ges. 2019, 17, 287–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, K.; Steffen, G.; Potthoff, A.; Schuppe, A.K.; Beer, D.; Jessen, H.; Scholten, S.; Spornraft-Ragaller, P.; Bremer, V.; Tiemann, C.; et al. STI in times of PrEP: High prevalence of chlamydia, gonorrhea, and mycoplasma at different anatomic sites in men who have sex with men in Germany. BMC Infect. Dis. 2020, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Skaletz-Rorowski, A.; Potthoff, A.; Nambiar, S.; Wach, J.; Kayser, A.; Kasper, A.; Brockmeyer, N.H. Sexual behaviour, STI knowledge and Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) prevalence in an asymptomatic cohort in Ruhr-area, Germany: PreYoungGo study. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Baumann, L.; Cina, M.; Egli-Gany, D.; Goutaki, M.; Halbeisen, F.S.; Lohrer, G.R.; Ali, H.; Scott, P.; Low, N. Prevalence of Mycoplasma genitalium in different population groups: Systematic review and meta-analysis. Sex. Transm. Infect. 2018, 94, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibas, K.M.; van den Berg, P.; Powell, V.E.; Krakower, D.S. Drug Resistance During HIV Pre-Exposure Prophylaxis. Drugs 2019, 79, 609–619. [Google Scholar] [CrossRef]
- Spinner, C.D.; Lang, G.F.; Boesecke, C.; Jessen, H.; Schewe, K.; Stellbrink, H.J.; Esser, S.; Haberl, A.; Römer, K.; Plettenberg, A.; et al. Summary of German-Austrian HIV PrEP guideline. HIV Med. 2019, 20, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Podbielski, A.; Meyer, T.; Zautner, A.E.; Loderstädt, U.; Schwarz, N.G.; Krüger, A.; Cadar, D.; Frickmann, H. On detection thresholds-a review on diagnostic approaches in the infectious disease laboratory and the interpretation of their results. Acta Trop. 2020, 205, 105377. [Google Scholar] [CrossRef] [PubMed]
- Torrone, E.; Papp, J.; Weinstock, H.; Centers for Disease Control and Prevention (CDC). Prevalence of Chlamydia trachomatis genital infection among persons aged 14–39 years—United States, 2007–2012. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 834–838. [Google Scholar] [PubMed]
- Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fifer, H.; Saunders, J.; Soni, S.; Sadiq, S.T.; Fitzgerald, M. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int. J. STD AIDS 2020, 31, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Ross, J.; Serwin, A.B.; Gomberg, M.; Cusini, M.; Jensen, J.S. 2020 European guideline for the diagnosis and treatment of gonorrhoea in adults. Int. J. STD AIDS 2020, 0956462420949126. [Google Scholar] [CrossRef]
- St Cyr, S.; Barbee, L.; Workowski, K.A.; Bachmann, L.H.; Pham, C.; Schlanger, K.; Torrone, E.; Weinstock, H.; Kersh, E.N.; Thorpe, P. Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1911–1916. [Google Scholar] [CrossRef]
- Jensen, J.S.; Cusini, M.; Gomberg, M.; Moi, H. 2016 European guideline on Mycoplasma genitalium infections. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1650–1656. [Google Scholar] [CrossRef] [Green Version]
- de Vries, H.J.C.; de Barbeyrac, B.; de Vrieze, N.H.N.; Viset, J.D.; White, J.A.; Vall-Mayans, M.; Unemo, M. 2019 European guideline on the management of lymphogranuloma venereum. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1821–1828. [Google Scholar] [CrossRef] [Green Version]
- Lanjouw, E.; Ouburg, S.; de Vries, H.J.; Stary, A.; Radcliffe, K.; Unemo, M. 2015 European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS 2016, 27, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Nwokolo, N.C.; Dragovic, B.; Patel, S.; Tong, C.Y.; Barker, G.; Radcliffe, K. 2015 UK national guideline for the management of infection with Chlamydia trachomatis. Int. J. STD AIDS 2016, 27, 251–267. [Google Scholar] [CrossRef]
- Soni, S.; Horner, P.; Rayment, M.; Pinto-Sander, N.; Naous, N.; Parkhouse, A.; Bancroft, D.; Patterson, C.; Fifer, H. British Association for Sexual Health and HIV national guideline for the management of infection with Mycoplasma genitalium (2018). Int. J. STD AIDS 2019, 30, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae—2014. MMWR Recomm. Rep. 2014, 63, 1–19. [Google Scholar]
- Prasad, V.; Jena, A.B. The Peltzman effect and compensatory markers in medicine. Healthcare 2014, 2, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H. Diversification of the prevention of sexually transmitted infections. Future Microbiol. 2019, 14, 1465–1468. [Google Scholar] [CrossRef]
- Haversath, J.; Gärttner, K.M.; Kliem, S.; Vasterling, I.; Strauss, B.; Kröger, C. Sexual Behavior in Germany. Dtsch. Arztebl. Int. 2017, 114, 545–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, G. The performance of non-NAAT point-of-care (POC) tests and rapid NAAT tests for chlamydia and gonorrhoea infections. An assessment of currently available assays. Sex. Transm. Infect. 2015, 91, 539–544. [Google Scholar] [CrossRef]
- Gaydos, C.A.; Van Der Pol, B.; Jett-Goheen, M.; Barnes, M.; Quinn, N.; Clark, C.; Daniel, G.E.; Dixon, P.B.; Hook, E.W., III; CT/NG Study Group. Performance of the Cepheid CT/NG Xpert Rapid PCR Test for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 2013, 51, 1666–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, S.D.; Finn, J.; Sedudzi, E.; White, J.A.; Tong, C.Y. Performance of the GeneXpert CT/NG assay compared to that of the Aptima AC2 assay for detection of rectal Chlamydia trachomatis and Neisseria gonorrhoeae by use of residual Aptima Samples. J. Clin. Microbiol. 2012, 50, 3867–3869. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.; Schwarz, N.G.; Meyer, T.; Frickmann, H. PCR-based rapid diagnostic tests as a strategy for preventing infections with sexually transmitted diseases-a ‘diagnostics-as-prevention’ modelling approach. Lett. Appl. Microbiol. 2018, 67, 420–424. [Google Scholar] [CrossRef]
- Kriesel, J.D.; Bhatia, A.S.; Barrus, C.; Vaughn, M.; Gardner, J.; Crisp, R.J. Multiplex PCR testing for nine different sexually transmitted infections. Int. J. STD AIDS 2016, 27, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
N. gonorrhoeae | C. trachomatis | M. genitalium | |
---|---|---|---|
Prevalence Rate (Heterosexuals) | 1% | 1% | 1% |
Prevalence Rate (MSM) | 7.4% to 14.8% | 7.2% to 13.8% | 14.2% to 19.4% |
Sensitivity | 0.960 | 0.970 | 0.960 |
Specificity | 0.999 | 0.994 | 0.993 |
N. gonorrhoeae | C. trachomatis | M. genitalium | |
---|---|---|---|
PPV (Heterosexuals) | 0.9065 | 0.6202 | 0.5808 |
NPV (Heterosexuals) | 0.9996 | 0.9997 | 0.9996 |
PPV (MSM) | 0.9871 to 0.9940 | 0.9262 to 0.9628 | 0.9578 to 0.9706 |
NPV (MSM) | 0.9931 to 0.9968 | 0.9952 to 0.9977 | 0.9904 to 0.9934 |
Minimum prevalence needed to achieve PPV ≥ 90% | 0.93% | 5.27% | 6.16% |
Maximum prevalence needed to achieve NPV ≥ 99% | 20.15% | 25.08% | 20.05% |
N. gonorrhoeae | C. trachomatis | M. genitalium | |
---|---|---|---|
NNT for a true positive test result (heterosexuals) | 104 | 103 | 104 |
NNT for a true positive test result (MSM) | 7 to 14 | 7 to 14 | 5 to 7 |
NNT for a false positive test result (heterosexuals) | 1010 | 168 | 144 |
NNT for a false positive test result (MSM) | 1080 to 1174 | 180 to 193 | 167 to 177 |
NNT for a true negative test result (heterosexuals) | 1.01 | 1.02 | 1.02 |
NNT for a true negative test result (MSM) | 1.08 to 1.17 | 1.08 to 1.17 | 1.17 to 1.25 |
NNT for a false negative test result (heterosexuals) | 2500 | 3333 | 2500 |
NNT for a false negative test result (MSM) | 169 to 338 | 242 to 463 | 129 to 176 |
NNT for a positive test result (heterosexuals) | 94.43 | 63.94 | 60.50 |
NNT for a positive test result (MSM) | 7.00 to 13.90 | 7.19 to 13.26 | 5.21 to 7.03 |
NNT for a negative test result (heterosexuals) | 1.01 | 1.02 | 1.02 |
NNT for a negative test result (MSM) | 1.08 to 1.17 | 1.08 to 1.16 | 1.17 to 1.24 |
Expected positive test rate (heterosexuals) | 0.011 | 0.016 | 0.017 |
Expected positive test rate (MSM) | 0.072 to 0.143 | 0.075 to 0.139 | 0.142 to 0.192 |
NNH as defined by a false positive result combined with false negative results for at least one of the other bacterial STIs (heterosexuals) | 1,466,752 | 213,374 | 208,995 |
NNH as defined by a false positive result combined with false negative results for at least one of the other bacterial STIs (MSM) | 117,434 to 152,272 | 16,977 to 23,046 | 20,560 to 35,164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, A.; Frickmann, H.; Loderstädt, U. Testing as Prevention of Resistance in Bacteria Causing Sexually Transmitted Infections—A Population-Based Model for Germany. Antibiotics 2021, 10, 929. https://doi.org/10.3390/antibiotics10080929
Hahn A, Frickmann H, Loderstädt U. Testing as Prevention of Resistance in Bacteria Causing Sexually Transmitted Infections—A Population-Based Model for Germany. Antibiotics. 2021; 10(8):929. https://doi.org/10.3390/antibiotics10080929
Chicago/Turabian StyleHahn, Andreas, Hagen Frickmann, and Ulrike Loderstädt. 2021. "Testing as Prevention of Resistance in Bacteria Causing Sexually Transmitted Infections—A Population-Based Model for Germany" Antibiotics 10, no. 8: 929. https://doi.org/10.3390/antibiotics10080929
APA StyleHahn, A., Frickmann, H., & Loderstädt, U. (2021). Testing as Prevention of Resistance in Bacteria Causing Sexually Transmitted Infections—A Population-Based Model for Germany. Antibiotics, 10(8), 929. https://doi.org/10.3390/antibiotics10080929