ESBL Activity, MDR, and Carbapenem Resistance among Predominant Enterobacterales Isolated in 2019
Abstract
:1. Introduction
2. Results
2.1. Enterobacterales and Associated Sociodemographic Characteristics
2.2. MDR, ESBL, and Associated Sociodemographic Characteristics
2.3. Carbapenem Resistance and Associated Sociodemographic Characteristics
2.4. Antimicrobial Resistance among Predominant Enterobacterales
3. Discussion
4. Conclusions
5. Material and Methods
Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 2018, 32, 76. [Google Scholar] [CrossRef]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Viale, P.; Viscoli, C.; Trecarichi, E.M.; Tumietto, F.; Marchese, A.; Spanu, T.; Ambretti, S.; Ginocchio, F.; Cristini, F.; et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase–producing K. pneumoniae: Importance of combination therapy. Clin. Infect. Dis. 2012, 55, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Tzouvelekis, L.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.; Daikos, G. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, M.; Sharma, S.; Blash, S.P.; Patel, G.; Banach, D.B.; Phillips, M.; LaBombardi, V.; Anderson, K.F.; Kitchel, B.; Srinivasan, A.; et al. Prevalence and Risk Factors for Acquisition of Carbapenem-Resistant Enterobacteriaceae in the Setting of Endemicity. Infect. Control Hosp. Epidemiol. 2013, 34, 809–817. [Google Scholar] [CrossRef]
- Xu, Y.; Gu, B.; Huang, M.; Liu, H.; Xu, T.; Xia, W.; Wang, T. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000–2012 in Asia. J. Thorac. Dis. 2015, 7, 376–385. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Tängdén, T.; Giske, C. Global dissemination of extensively drug-resistant carbapenemase-producing E nterobacteriaceae: Clinical perspectives on detection, treatment and infection control. J. Intern. Med. 2015, 277, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Hussein, K.; Raz-Pasteur, A.; Finkelstein, R.; Neuberger, A.; Shachor-Meyouhas, Y.; Oren, I.; Kassis, I. Impact of carbapenem resistance on the outcome of patients’ hospital-acquired bacteraemia caused by Klebsiella pneumoniae. J. Hosp. Infect. 2013, 83, 307–313. [Google Scholar] [CrossRef]
- Al-Zahrani, I.A.; Alasiri, B.A. The emergence of carbapenem-resistant Klebsiella pneumoniae isolates producing OXA-48 and NDM in the Southern (Asir) province, Saudi Arabia. Saudi Med. J. 2018, 39, 23–30. [Google Scholar] [CrossRef] [PubMed]
- El Ghany, M.A.; Sharaf, H.; Al-Agamy, M.H.; Shibl, A.; Hill-Cawthorne, G.A.; Hong, P.-Y. Genomic characterization of NDM-1 and 5, and OXA-181 carbapenemases in uropathogenic Escherichia coli isolates from Riyadh, Saudi Arabia. PLoS ONE 2018, 13, e0201613. [Google Scholar] [CrossRef]
- Saeed, W.M.; Ghanem, S.; El Shafey, H.M.; Manzoor, N. Assessment of antimicrobial resistance patterns in Escherichia coli isolated from clinical samples in Madinah, Saudi Arabia. Afr. J. Microbiol. Res. 2018, 12, 321–326. [Google Scholar]
- Alotaibi, F.E.; Bukhari, E.E.; Al-Mohizea, M.M.; Hafiz, T.; Essa, E.B.; AlTokhais, Y.I. Emergence of carbapenem-resistant Enterobacteriaceae isolated from patients in a university hospital in Saudi Arabia. Epidemiology, clinical profiles and outcomes. J. Infect. Public Health 2017, 10, 667–673. [Google Scholar] [CrossRef]
- Khan, M.A.; Faiz, A. Frequency of carbapenemase producing Klebsiella pneumoniae in Makkah, Saudi Arabia. J. Microbiol. Infect. Dis. 2016, 6, 121–127. [Google Scholar]
- Al-Agamy, M.H.; Aljallal, A.; Radwan, H.H.; Shibl, A.M. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. J. Infect. Public Health 2018, 11, 64–68. [Google Scholar] [CrossRef]
- Gupta, N.; Limbago, B.M.; Patel, J.B.; Kallen, A.J. Carbapenem-Resistant Enterobacteriaceae: Epidemiology and Prevention. Clin. Infect. Dis. 2011, 53, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Tella, D.; Tamburro, M.; Guerrizio, G.; Fanelli, I.; Sammarco, M.L.; Ripabelli, G. Molecular Epidemiological Insights into Colistin-Resistant and Carbapenemases-Producing Clinical Klebsiella pneumoniae Isolates. Infect. Drug Resist. 2019, 12, 3783–3795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahpawee, N.S.; Chaw, L.L.; Muharram, S.H.; Goh, H.P.; Hussain, Z.; Ming, L.C. University Students’ Antibiotic Use and Knowledge of Antimicrobial Resistance: What Are the Common Myths? Antibiotics 2020, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.T.; Klein, E.; Laxminarayan, R.; Beldavs, Z.; Lynfield, R.; Kallen, A.J.; Ricks, P.; Edwards, J.; Srinivasan, A.; Fridkin, S.; et al. Vital signs: Carbapenem-resistant Enterobacteriaceae. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 165. [Google Scholar]
- Alotaibi, F. Carbapenem-Resistant Enterobacteriaceae: An update narrative review from Saudi Arabia. J. Infect. Public Health 2019, 12, 465–471. [Google Scholar] [CrossRef]
- Zaman, T.U.; AlDrees, M.; Al Johani, S.M.; Alrodayyan, M.; Aldughashem, F.A.; Balkhy, H.H. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia. Int. J. Infect. Dis. 2014, 28, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Shibl, A.; Al-Agamy, M.; Memish, Z.; Senok, A.; Khader, S.A.; Assiri, A. The emergence of OXA-48- and NDM-1-positive Klebsiella pneumoniae in Riyadh, Saudi Arabia. Int. J. Infect. Dis. 2013, 17, e1130–e1133. [Google Scholar] [CrossRef] [Green Version]
- Marie, M.A.; John, J.; Krishnappa, L.G.; Gopalkrishnan, S. Molecular characterization of the β-lactamases in Escherichia coli and Klebsiella pneumoniae from a tertiary care hospital in Riyadh, Saudi Arabia. Microbiol. Immunol. 2013, 57, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Al-Agamy, M.H.; Shibl, A.M.; Elkhizzi, N.A.; Meunier, D.; Turton, J.F.; Livermore, D.M. Persistence of Klebsiella pneumoniae clones with OXA-48 or NDM carbapenemases causing bacteraemias in a Riyadh hospital. Diagn. Microbiol. Infect. Dis. 2013, 76, 214–216. [Google Scholar] [CrossRef]
- Faidah, H.S.; Momenah, A.M.; El-Said, H.M.; Barhameen, A.A.A.; Ashgar, S.S.; Johargy, A.; Elsawy, A.; Almalki, W.; Al Qurashi, S. Trends in the Annual Incidence of Carbapenem Resistant among Gram Negative Bacilli in a Large Teaching Hospital in Makah City, Saudi Arabia. J. Tuberc. Res. 2017, 5, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Yezli, S.; Shibl, A.M.; Memish, Z.A. The molecular basis of β-lactamase production in Gram-negative bacteria from Saudi Arabia. J. Med. Microbiol. 2015, 64, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Moglad, E.H. Antibiotics Profile, Prevalence of Extended-Spectrum Beta-Lactamase (ESBL), and Multidrug-Resistant Enterobacteriaceae from Different Clinical Samples in Khartoum State, Sudan. Int. J. Microbiol. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Alabdullatif, M.; Alrehaili, J. Three Years of Evaluation to Determine Reduction of Antibiotic Resistance in Gram-Negative Bacteria by the Saudi National Action Plan. Infect. Drug Resist. 2020, 13, 3657–3667. [Google Scholar] [CrossRef] [PubMed]
- Bitew, A.; Tsige, E. High Prevalence of Multidrug-Resistant and Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: A Cross-Sectional Study at Arsho Advanced Medical Laboratory, Addis Ababa, Ethiopia. J. Trop. Med. 2020, 2020. [Google Scholar] [CrossRef]
- Alkofide, H.; Alhammad, A.M.; Alruwaili, A.; Aldemerdash, A.; Almangour, T.; Alsuwayegh, A.; Almoqbel, D.; Albati, A.; Alsaud, A.; Enani, M. Multidrug-Resistant and Extensively Drug-Resistant Enterobacteriaceae: Prevalence, Treatments, and Outcomes—A Retrospective Cohort Study. Infect. Drug Resist. 2020, 13, 4653–4662. [Google Scholar] [CrossRef]
- Gupta, V.; Ye, G.; Olesky, M.; Lawrence, K.; Murray, J.; Yu, K. National prevalence estimates for resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States. Int. J. Infect. Dis. 2019, 85, 203–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Bradford, P.A. β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Pal, N.; Sharma, N.; Sharma, R.; Hooja, S.; Maheshwari, R.K. Prevalence of multidrug (MDR) and extensively drug resistant (XDR) Proteus species in a tertiary care hospital, India. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 243–252. [Google Scholar]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2002, 292, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Singh, P.; Rajurkar, M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J. Pathog. 2016, 2016, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, E.G.; Royer, J.; Bookstaver, P.B.; Justo, J.A.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Seasonal variation in antimicrobial resistance rates of community-acquired Escherichia coli bloodstream isolates. Int. J. Antimicrob. Agents 2019, 54, 1–7. [Google Scholar] [CrossRef]
- Al Bshabshe, A.; Al-Hakami, A.; AlShehri, B.; Al-Shahrani, K.A.; AlShehri, A.A.; Al Shahrani, M.B.; Assiry, I.; Joseph, M.R.; Alkahtani, A.M.; Hamid, M.E. Rising Klebsiella pneumoniae Infections and Its Expanding Drug Resistance in the Intensive Care Unit of a Tertiary Healthcare Hospital, Saudi Arabia. Cureus 2020, 12. [Google Scholar] [CrossRef]
- Al-Zalabani, A.; AlThobyane, O.A.; AlShehri, A.H.; AlRehaili, A.O.; Namankani, M.O.; Aljafri, O.H. Prevalence of Klebsiella pneumoniae Antibiotic Resistance in Medina, Saudi Arabia, 2014-2018. Cureus 2020, 12. [Google Scholar] [CrossRef]
- Alsaleh, N.A.; Al-Omar, H.A.; Mayet, A.Y.; Mullen, A.B. Evaluating the appropriateness of carbapenem and piperacillin-tazobactam prescribing in a tertiary care hospital in Saudi Arabia. Saudi Pharm. J. 2020, 28, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Ye, G.; Olesky, M.; Lawrence, K.; Murray, J.; Yu, K. Trends in resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States: 2013–2017. BMC Infect. Dis. 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldawsari, A.; Tawfik, K.; Al-Zaagi Sr, I. Antimicrobial-Resistant Bacteria and Prescription of Antibiotics at a Tertiary Care Hospital in Riyadh, Saudi Arabia. Cureus 2020, 12, e12098. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Qi, H.; Zhang, Q.; Zhao, D.; Liu, Z.-Z.; Tian, H.; Xu, L.; Xu, H.; Zhou, M.; Feng, X.; et al. Emergence of Extensively Drug-Resistant Proteus mirabilis Harboring a Conjugative NDM-1 Plasmid and a Novel Salmonella Genomic Island 1 Variant, SGI1-Z. Antimicrob. Agents Chemother. 2015, 59, 6601–6604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.T.; Carmeli, Y.; Falagas, M.T.; Giske, C.T.; Harbarth, S.; Hindler, J.T.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Facility Guidance for Control of Carbapenem-Resistant Enterobacteriaceae (CRE)—November 2015 Update CRE Toolkit; Centers for Disease Control and Prevention: Atlanta, GA, USA; United States Department of Health and Human Services: Washington, DC, USA, 2016. [Google Scholar]
- Wayne, P.A. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. Inform. Suppl. 2011, 31, 100–121. [Google Scholar]
Characteristic | E. coli (232) | K. pneumoniae (200) | P. mirabilis (101) | p Value | |
---|---|---|---|---|---|
Sex | Male | 89 | 118 | 59 | 0.01 |
Female | 143 | 82 | 42 | ||
Age group (years) | ≥60 | 100 | 97 | 51 | 0.05 |
40–59 | 39 | 51 | 21 | ||
20–39 | 68 | 37 | 20 | ||
≤19 | 25 | 15 | 9 | ||
Seasonality | Quarter 1 | 75 | 85 | 37 | 0.37 |
Quarter 2 | 55 | 47 | 21 | ||
Quarter 3 | 44 | 28 | 20 | ||
Quarter 4 | 58 | 40 | 23 | ||
* Specimen type | Urine | 161 | 97 | 38 | 0.01 |
Blood | 23 | 63 | 24 | ||
Wound swab | 48 | 40 | 8 | ||
** Referring unit | Intensive care units | 63 | 120 | 61 | 0.01 |
Outpatient departments | 64 | 29 | 21 | ||
Surgical wards | 45 | 27 | 9 | ||
Medical wards | 24 | 10 | 10 | ||
*** Resistance Type | MDR | 167 | 170 | 95 | 0.01 |
XDR | 8 | 65 | 24 | ||
PDR | 2 | 12 | 1 | ||
ESBL | 85 | 26 | 17 |
Characteristic | MDR | Non–MDR | OR (95% CI) | p Value | |
---|---|---|---|---|---|
Sex | Male | 213 | 53 | 0.88 (0.57–1.35) | 0.64 |
Female | 219 | 48 | |||
Age group (years) | ≥60 | 204 | 44 | 1 | |
40–59 | 89 | 22 | 1.14 (0.65–2.02) | 0.64 | |
20–39 | 96 | 29 | 1.40 (0.82–2.37) | 0.21 | |
≤19 | 43 | 6 | 0.64 (0.25–1.61) | 0.46 | |
Seasonality | Quarter 1 | 155 | 42 | 1 | |
Quarter 2 | 101 | 22 | 0.80 (0.45–1.42) | 0.54 | |
Quarter 3 | 72 | 20 | 1.02 (0.56–1.87) | 0.92 | |
Quarter 4 | 104 | 17 | 0.60 (0.32–1.11) | 0.14 | |
* Specimen type | Urine | 238 | 58 | 1 | |
Blood | 82 | 12 | 0.60 (0.30–1.17) | 0.17 | |
Wound swab | 81 | 31 | 1.57 (0.94–2.59) | 0.10 | |
Referring unit | Intensive care units | 213 | 31 | 1 | |
Outpatient departments | 92 | 22 | 1.64 (0.90–2.98) | 0.10 | |
Surgical wards | 55 | 26 | 3.24 (1.78–5.91) | 0.01 | |
Medical wards | 36 | 8 | 1.52 (0.65–3.58) | 0.46 | |
Referred from other hospitals | 36 | 14 | 2.67 (1.29–5.50) | 0.01 |
Characteristic | ESBL | Non–ESBL | OR (95% CI) | p Value | |
---|---|---|---|---|---|
Sex | Male | 61 | 205 | 0.88 (0.59–1.32) | 0.55 |
Female | 67 | 200 | |||
Age group (years) | ≥60 | 67 | 181 | 1 | |
40–59 | 21 | 90 | 1.58 (0.91–2.75) | 0.09 | |
20–39 | 28 | 97 | 1.28 (0.77–2.15) | 0.19 | |
≤ 19 | 12 | 37 | 1.14 (0.56–2.31) | 0.71 | |
Seasonality | Quarter 1 | 32 | 165 | 1 | |
Quarter 2 | 35 | 88 | 0.48 (0.28–0.84) | 0.01 | |
Quarter 3 | 25 | 67 | 0.51 (0.28–0.94) | 0.02 | |
Quarter 4 | 36 | 85 | 0.45 (0.26–0.78) | 0.01 | |
* Specimen type | Urine | 70 | 226 | 1 | |
Blood | 26 | 68 | 0.81 (0.47–1.37) | 0.43 | |
Wound swab | 23 | 89 | 1.19 (0.70–2.03) | 0.50 | |
Referring unit | Intensive care units | 49 | 195 | 1 | |
Outpatient departments | 24 | 90 | 0.94 (0.54–1.63) | 0.82 | |
Surgical wards | 21 | 60 | 0.71 (0.39–1.29) | 0.26 | |
Medical wards | 18 | 26 | 0.36 (0.18–0.71) | 0.01 | |
Referred from other hospitals | 16 | 34 | 0.53 (0.27–1.04) | 0.06 |
Organism | Characteristic | Ertapenem | Odds Ratio (95% CI) | p Value | Imipenem | Odds Ratio (95% CI) | p Value | Meropenem | Odds Ratio (95% CI) | p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | S | R | S | R | S | |||||||||
E. coli | Sex | Male | 7 | 81 | 1.03 (0.38–2.78) | 0.92 | 11 | 76 | 0.67 (0.31–1.44) | 0.30 | 8 | 79 | 0.99 (0.39–2.5) | 1.0 |
Female | 11 | 132 | 25 | 116 | 13 | 128 | ||||||||
K. pneumoniae | Male | 72 | 46 | 0.85 (0.47–1.53) | 0.60 | 69 | 49 | 0.69 (0.38–1.24) | 0.21 | 65 | 52 | 0.75 (0.42–1.35) | 0.35 | |
Female | 53 | 29 | 55 | 27 | 51 | 31 | ||||||||
** P. mirabilis | Male | 18 | 40 | 1.22 (0.50–2.97) | 0.64 | – | – | – | – | 22 | 36 | 5.5 (1.72–17.56) | 0.01* | |
Female | 11 | 30 | – | – | 4 | 36 | ||||||||
E. coli | Age group | >50 | 9 | 108 | 0.97 (0.37–2.54) | 1.0 | 17 | 100 | 0.82 (0.40–1.67) | 0.59 | 12 | 105 | 1.29 (0.52–3.20) | 0.69 |
≤ 50 | 9 | 105 | 19 | 92 | 9 | 102 | ||||||||
K. pneumoniae | >50 | 67 | 48 | 0.64 (0.36–1.17) | 0.15 | 69 | 46 | 0.81 (0.45–1.46) | 0.49 | 64 | 50 | 0.81 (0.45–1.43) | 0.27 | |
≤50 | 58 | 27 | 55 | 30 | 52 | 33 | ||||||||
** P. mirabilis | >50 | 22 | 42 | 2.09 (0.78–5.55) | 0.13 | – | – | – | – | 22 | 41 | 4.15 (1.29–13.30) | 0.02* | |
≤50 | 7 | 28 | – | – | 4 | 31 | ||||||||
E. coli | Seasonality | Quarter 4 | 8 | 50 | 2.60 (0.97–6.96) | 0.84 | 15 | 42 | 2.55 (1.21–5.37) | 0.01 | 8 | 49 | 1.98 (0.77–5.06) | 0.14 |
Quarters 1, 2 and 3 | 10 | 163 | 21 | 150 | 13 | 158 | ||||||||
K. pneumoniae | Quarter 4 | 30 | 10 | 2.06 (0.93–4.48) | 0.06 | 30 | 10 | 2.10 (0.96–4.60) | 0.05 | 29 | 11 | 2.18 (1.01–4.67) | 0.04 | |
Quarters 1, 2 and 3 | 95 | 65 | 94 | 66 | 87 | 72 | ||||||||
** P. mirabilis | Quarter 4 | 4 | 19 | 0.42 (0.13–1.39) | 0.24 * | – | – | – | – | 6 | 16 | 1.05 (0.36–3.05) | 0.92 | |
Quarters 1, 2 and 3 | 25 | 51 | – | – | 20 | 56 | ||||||||
E. coli | Specimen type | Blood | 1 | 22 | 0.51 (0.06–4.02) | 0.70 | 1 | 22 | 0.22 (0.02–1.69) | 0.13 | 0 | 23 | – | – |
Others | 17 | 191 | 35 | 170 | 21 | 184 | ||||||||
K. pneumoniae | Blood | 39 | 24 | 0.96 (0.52–1.78) | 0.92 | 41 | 22 | 1.21 (0.65–2.25) | 0.54 | 40 | 23 | 1.37 (0.74–2.53) | 0.31 | |
Others | 86 | 51 | 83 | 54 | 76 | 60 | ||||||||
** P. mirabilis | Blood | 1 | 7 | 0.32 (0.03–2.73) | 0.43 | – | – | – | – | 0 | 7 | – | – | |
Others | 28 | 63 | – | – | 26 | 65 | ||||||||
E. coli | Specimen referring unit | ICU | 8 | 54 | 2.35 (0.88–6.27) | 0.09 | 10 | 52 | 1.03 (0.46–2.29) | 0.92 | 8 | 55 | 1.70 (0.66–4.32) | 0.25 |
Others | 10 | 159 | 26 | 140 | 13 | 152 | ||||||||
K. pneumoniae | ICU | 79 | 41 | 1.42 (0.79–2.54) | 0.23 | 81 | 39 | 1.78 (0.99–3.19) | 0.05 | 77 | 42 | 1.92 (1.08–3.43) | 0.02 | |
Others | 46 | 34 | 43 | 37 | 39 | 41 | ||||||||
** P. mirabilis | ICU | 15 | 45 | 0.59 (0.24–1.43) | 0.24 | – | – | – | – | 13 | 45 | 0.60 (0.24–1.48) | 0.26 | |
Others | 14 | 25 | – | – | 13 | 27 |
Antibiotic | E. coli (%) | K. pneumoniae (%) | P. mirabilis (%) |
---|---|---|---|
Amikacin | 96.5 | 74.9 | 51.4 |
Gentamycin | 79.3 | 63.8 | 10.9 |
Cephalothin | 11.8 | 12.7 | 12.5 |
Cefuroxime | 41.1 | 17.5 | 20.0 |
Cefoxitin | 81.8 | 38.0 | 78.2 |
Ceftazidime | 48.0 | 26.0 | 25.0 |
Ceftriaxone | 45.7 | 27.4 | 21.8 |
Cefepime | 47.8 | 31.3 | 23.2 |
Aztreonam | 47.6 | 25.0 | 38.1 |
Ampicillin | 15.6 | 0.5 | 14.0 |
Amoxcyline–clavunate | 34.1 | 19.2 | 19.0 |
Piptazobactam | 82.7 | 33.5 | 76.0 |
Trimethoprim–Sulfamethoxazole | 38.3 | 33.7 | 15.8 |
Nitrofurantoin | 82.5 | 22.4 | 0.0 |
Ciprofloxacin | 40.8 | 31.0 | 13.1 |
Levofloxacin | 45.0 | 35.9 | 13.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandy, A.; Tantry, B. ESBL Activity, MDR, and Carbapenem Resistance among Predominant Enterobacterales Isolated in 2019. Antibiotics 2021, 10, 744. https://doi.org/10.3390/antibiotics10060744
Bandy A, Tantry B. ESBL Activity, MDR, and Carbapenem Resistance among Predominant Enterobacterales Isolated in 2019. Antibiotics. 2021; 10(6):744. https://doi.org/10.3390/antibiotics10060744
Chicago/Turabian StyleBandy, Altaf, and Bilal Tantry. 2021. "ESBL Activity, MDR, and Carbapenem Resistance among Predominant Enterobacterales Isolated in 2019" Antibiotics 10, no. 6: 744. https://doi.org/10.3390/antibiotics10060744
APA StyleBandy, A., & Tantry, B. (2021). ESBL Activity, MDR, and Carbapenem Resistance among Predominant Enterobacterales Isolated in 2019. Antibiotics, 10(6), 744. https://doi.org/10.3390/antibiotics10060744