Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus suis Isolates Recovered from Pigs in Spain
Abstract
:1. Introduction
2. Results
2.1. Typing of Streptococcus suis Isolates
2.2. Determination of Virulence-Associated Genes in Streptococcus suis Isolates
2.3. Antimicrobial Susceptibility Testing in Streptococcus suis Isolates
2.4. Detection of Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Streptococcus suis Isolates, DNA Extraction and Molecular Typing
4.2. Detection of Virulence Genes in Streptococcus suis Isolates
4.3. Antimicrobial Sensitivity Testing
4.4. Detection of Antimicrobial Resistance Genes
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fablet, C.; Marois-Créhan, C.; Simon, G.; Grasland, B.; Jestin, A.; Kobisch, M.; Madec, F.; Rose, N. Infectious agents associated with respiratory diseases in 125 farrow-to-finish pig herds: A cross-sectional study. Vet. Microbiol. 2012, 157, 152–163. [Google Scholar] [CrossRef]
- Luque, I.; Tarradas, C.; Arenas, A.; Maldonado, A.; Astorga, R.; Perea, A. Streptococcus suis serotypes associated with different disease conditions in pigs. Vet. Rec. 1988, 142, 726–727. [Google Scholar] [CrossRef]
- Gottschalk, M.; Xu, J.; Calzas, C.; Segura, M. Streptococcus suis: A new emerging or and old neglected zoonotic pathogen? Fut. Microbiol. 2010, 5, 371–391. [Google Scholar] [CrossRef]
- Segura, M.; Calzas, C.; Grenier, D.; Gottschalk, M. Initial step of the pathogenesis of the infection caused by Streptoccocus suis, fighting against nonspecific defenses. FEBS Lett. 2016, 590, 3772–3799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, J.E.; Gottschalk, M.; Brousseau, R.; Harel, J.; Hemmingsen, S.M.; Goh, S.M. Biochemical analysis, cpn60 and 16C rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34, isolated from pigs, are Streptococcus orisratti. Vet. Microbiol. 2005, 107, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Le Tien, H.T.; Nishibori, T.; Nishitani, Y.; Nomoto, R.; Osawa, R. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22, 26, and 33 based on DNA-DNA homology and soda and recN phylogenies. Vet. Microbiol. 2013, 162, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Goyette-Desjardins, G.; Auger, J.P.; Xu, J.; Segura, M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microbes Infect. 2014, 3, e45. [Google Scholar] [CrossRef]
- Vecht, U.; Wisselink, H.J.; Dijk, J.E.; Smith, H.E. Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect. Immun. 1992, 60, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, M.; Lebrun, A.; Wisselink, H.J.; Dubreuil, J.D.; Smith, H.E.; Vecht, U. Production of virulence-related proteins by Canadian strains of Streptococcus suis capsular type 2. Can. J. Vet. Res. 1998, 62, 75–79. [Google Scholar]
- Luque, I.; Tarradas, C.; Astorga, R.; Perea, A.; Wisselink, H.J.; Vecht, U. The presence of muramidase released protein and extracellular factor protein in various serotypes of Streptococcus suis isolated from diseased and healthy pigs in Spain. Res. Vet. Sci. 1999, 66, 69–72. [Google Scholar] [CrossRef]
- Wisselink, H.J.; Smith, H.E.; Stockhofe-Zurwieden, N.; Peperkamp, K.; Vecht, U. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet. Microbiol. 2000, 74, 237–248. [Google Scholar] [CrossRef]
- Bonifat, L.; Vaillancourt, K.; Gottschalk, M.; Frenette, M.; Grenier, D. Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence. Vet. Microbiol. 2011, 148, 333–340. [Google Scholar] [CrossRef]
- Zheng, F.; Shao, A.Q.; Hao, X.; Wu, Q.; Li, C.; Hou, H.; Hu, D.; Wang, C.; Pan, X. Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microb. Pathogen. 2018, 118, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fu, H.; Jiang, X.; Liao, X.; Yue, M.; Li, X.; Fang, W. PrsA contributes to Streptococcus suis serotype 2 pathogenicity by modulating secretion of selected virulence factors. Vet. Microbiol. 2019, 236, 108375. [Google Scholar] [CrossRef] [PubMed]
- Holmer, I.; Salomonsen, C.M.; Jorsai, S.E.; Astrup, L.B.; Jensen, V.F.; Borck Høg, B.; Pedersen, K. Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Vet. Res. 2019, 11, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela, N.P.; Gadbois, P.; Thibault, C.; Gottschalk, M.; Dick, P.; Wilson, J. Antimicrobial resistance and prudent drug use for Streptococcus suis. Anim. Health Res. Rev. 2013, 14, 68–77. [Google Scholar] [CrossRef]
- Zeineldin, M.M.; Megahed, A.; Blair, B.; Burton, B.; Aldridge, B.; Lowe, J. Negigible impact of perinatal tulathromycin metaphylaxis on the development dynamics of fecal microbiota and their accompanying antimicrobial resistome in piglets. Front. Microbiol. 2019, 10, 726. [Google Scholar] [CrossRef] [Green Version]
- Prieto, C.; Peña, J.; Suárez, P.; Imaz, M.; Castro, J.M. Isolation and distribution of Streptococcus suis capsular types from diseased pigs in Spain. Zentrlbl. Veterinarmed. B 1993, 40, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Allgaier, A.; Goethe, R.; Wisselink, H.J.; Smith, E.; Valentin-Weigand, P. Relatedness of Streptococcus suis isolates of various serotypes and clinical backgrounds as evaluated by macrorestriction analysis and expression of potential virulence traits. J. Clin. Microbiol. 2001, 39, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Tarradas, C.; Arenas, A.; Maldonado, A.; Luque, I.; Miranda, A.; Perea, A. Identification of Streptococcus suis isolated from swine: Proposal for biochemical parameters. J. Clin. Microbiol. 1994, 32, 578–580. [Google Scholar] [CrossRef] [Green Version]
- Vela, A.I.; Moreno, M.A.; Cebolla, J.A.; González, S.; Latre, M.V.; Domínguez, L.; Fernández-Garayzábal, J.F. Antimicrobial susceptibility of clinical strains of Streptococcus suis isolated from pigs in Spain. Vet. Microbiol. 2005, 105, 143–147. [Google Scholar] [CrossRef]
- Yongkiettrakul, S.; Maneerat, K.; Arechanajan, B.; Malila, Y.; Srimanote, P.; Gottschalk, M.; Visessanguan, W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet. Res. 2019, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.A.; Gottschalk, M.; Rossow, S.; Rendahl, A.; Gebhart, C.; Marthaler, D.G. Serotype and genotype (multilocus sequence type) of Streptococcus suis isolates from the United States serve as predictors of pathotype. J. Clin. Microbiol. 2019, 57, e00377-19. [Google Scholar] [CrossRef] [Green Version]
- Thongkamkoon, P.; Kiatyingangsulee, T.; Gottschalk, M. Serotypes of Streptococcus suis isolated from healthy pigs in Phayao province, Thailand. BMC Vet. Notes 2017, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Li, L.L.; Liao, X.P.; Sun, J.; Yang, Y.R.; Liu, B.T.; Yang, S.S.; Zhao, D.H.; Liu, Y.H. Antimicrobial resistance, serotypes, and virulence factors of Streptococcus suis isolates from diseased pigs. Foodborne Pathogen. Dis. 2012, 9, 583–588. [Google Scholar] [CrossRef]
- Oh, S.; Jeon, A.B.; Jung, B.; Byun, J.; Gottschalk, M.; Kim, A.; Kim, H. Capsular serotypes, virulence-associated genes and antimicrobial susceptibility of Streptococcus suis isolates from pigs in Korea. J. Vet. Med. Sci. 2017, 79, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Wongsawan, K.; Gottschalk, M.; Tharavichitkul, P. Serotype- and virulence-associated gene profile of Streptococcus suis isolates from pig carcasesses in Chiang Mai Province, Northern Thailand. J. Vet. Med. Sci. 2015, 77, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Werinder, A.; Aspán, A.; Backhans, A.; Sjölund, M.; Guss, B.; Jacobson, M. Streptococcus suis in Swedish grower pigs: Occurrence, serotypes, and antimicrobial susceptibility. Acta Vet. Scand. 2020, 62, 36. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, X.; Chen, H.; Chen, L.; Gao, X.; Pan, Z.; Wang, J.; Lu, C.; Yao, H.; Wang, L.; et al. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transboun. Emerg. Dis. 2019, 66, 995–1003. [Google Scholar] [CrossRef]
- Silva, L.M.G.; Baums, C.G.; Rehm, T.; Wisselink, H.J.; Goethe, R.; Valentin-Weigand, P. Virulence-associated gene prolifing of Streptococcus suis isolates by PCR. Vet. Microbiol. 2006, 115, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Matajira, C.E.C.; Moreno, L.Z.; Poor, A.P.; Gomes, V.T.M.; Dalmutti, A.C.; Parra, B.M.; de Oliveira, C.H.; Barbosa, M.R.F.; Sato, M.I.Z.; Calderaro, F.F.; et al. Streptococcus suis in Brazil: Genotypic, virulence, and resistance profiling of strains isolated from pigs between 2001 and 2016. Pathogens 2020, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Arndt, E.R.; Frazn, A.; MacInnes, J.I.; Friendship, R.M. Antimicrobial resistance of Streptococcus suis isolates recovered from clinically ill nursery pigs and from healthy pigs at different stages of production. Can. Vet. J. 2019, 60, 519–522. [Google Scholar]
- Ichikawa, T.; Oshima, M.; Yamagishi, J.; Muramatsu, C.; Asai, T. Changes in antimicrobial resistance phenotypes and genotypes in Streptococcus suis strains isolated from pigs in the Tokai area of Japan. J. Vet. Med. Sci. 2020, 82, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhang, Z.; Song, L.; Fan, X.; Wen, F.; Xu, S.; Ning, Y. Antimicrobial resistance profile and genotypic characteristics of Streptococcus suis capsular type 2 isolated from clinical carrier sows and diseased pigs in China. BioMed Res. Int. 2015, 2015, 284303. [Google Scholar]
- Prieto, C.; García, F.J.; Suárez, P.; Imaz, M.; Castro, J.M. Biochemical traits and antimicrobial susceptibility of Streptococcus suis isolated from slaughtered pigs. Zentrlbl. Veterinarmed. B 1994, 41, 608–617. [Google Scholar] [CrossRef]
- Blondeau, J.M.; Fitch, S.D. Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis. PLoS ONE 2019, 14, e02100154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Ku, X.; Yu, X.; Sun, Q.; Wu, H.; Chen, F.; Zhang, X.; Guo, L.; Tang, X.; He, O. Prevalence and antimicrobial susceptibilities of bacterial pathogens in Chinese pig farms from 2013 to 2017. Sci. Rep. 2019, 9, 9908. [Google Scholar] [CrossRef] [PubMed]
- Athey, T.B.T.; Teatero, S.; Takamatsu, D.; Wasserscheid, J.; Dewar, K.; Gottschalk, M.; Fittipaldi, N. Population structure and antimicrobial resistance profiles of Streptococcus suis serotype 2 sequence type 25 strains. PLoS ONE 2016, 11, e0150908. [Google Scholar]
- Escudero, J.A.; San Millán, Á.; Catalán, A.; de la Campa, A.G.; Rivero, E.; López, G.; Domínguez, L.; Moreno, M.A.; González Zorn, B. First characterization of fluoroquinolone resistance in Streptococcus suis. Antimicrob. Agents Chemother. 2007, 51, 777–782. [Google Scholar] [CrossRef] [Green Version]
- van Hout, J.; Heuvelik, A.; Gonggrip, M. Monitoring of antimicrobial susceptibility of Streptococcus suis in the Netherlands, 2013–2015. Vet. Microbiol. 2016, 194, 5–10. [Google Scholar] [CrossRef]
- Niemann, L.; Müller, P.; Brauns, J.; Nathaus, R.; Schäkel, F.; Kipschull, K.; Höltig, D.; Wendt, M.; Schwarz, S.; Kadlec, K. Antimicrobial susceptibility and genetic relatedness of respiratory tract pathogens in weaner pigs over a 12-month period. Vet. Microbiol. 2018, 219, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Siqueira Soares, T.C.; Gottschalk, M.; Lacouture, S.; Megid, J.; Martins Ribolla, P.E.; de Figueirido Pantoja, J.C.; Paes, A.C. Streptococcus suis in employees and the environmental of swine slaughterhouses in São Paulo, Brazil: Occurrence, risk factors, serotype distribution, and antimicrobial susceptibility. Can. J. Vet. Res. 2015, 79, 279–284. [Google Scholar]
- Ousmane, S.; Diallo, B.A.; Ouedraogo, R. Genetic determinants of tetracycline resistance in clinical Streptococcus pneumonia serotype 1 isolates from Niger. Antibiotics 2018, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Shang, K.; Kashif, J.; Wang, L. Genetic diversity of Streptococcus suis isolated from three pig farms of China obtained by acquiring antibiotic resistance genes. J. Sci. Food Agric. 2015, 95, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Hoa, N.T.; Chieu, T.T.B.; Nghia, H.D.T.; Mai, N.T.H.; Anh, P.H.; Wolbers, M.; Baker, S.; Campbell, J.I.; Chau, N.W.; Hien, T.T.; et al. The antimicrobial resistance patterns and associated determinants in Streptococcus suis isolated from humans in southern Vietnan, 1997–2008. BMC Infect. Dis. 2011, 11, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra-Kumar, S.; Lammens, C.; Piessens, J.; Goossens, H. Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob. Agents Chemother. 2005, 49, 4798–4800. [Google Scholar] [CrossRef] [Green Version]
- Martel, A.; Baele, M.; Devriese, L.A.; Goossens, H.; Wisselink, H.J.; Decostere, A.; Haesebrouck, F. Prevalence and mechanism of resistance against macrolides and lincosamides in Streptococcus suis isolates. Vet. Microbiol. 2001, 83, 287–297. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, J.; Zhang, Y.; Chen, S.; Ma, J.; Dong, W.; Wu, Z.; Yao, H. A novel integrative conjugative element mediates transfer of multi-drug resistance between Streptococcus suis strains of different serotypes. Vet. Microbiol. 2019, 229, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Okwumabua, O.; O’Connor, M.; Shull, E. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiol. Lett. 2003, 218, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Kerdsin, A.; Akeda, Y.; Hatrongjit, R.; Detchawna, U.; Sekizaki, T.; Hamada, S.; Gottschalk, M.; Oishi, K. Streptococcus suis serotyping by a new multiplex PCR. J. Med. Microbiol. 2014, 63, 824–830. [Google Scholar] [CrossRef] [Green Version]
- Staats, J.J.; Plattner, B.L.; Stewart, G.C.; Chengappa, M.M. Presence of the Streptococcus suis suilysin gene and expression of MRP and EF correlates with high virulence in Streptococcus suis type 2 isolates. Vet. Microbiol. 1999, 70, 201–211. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Wu, Z.; Zhu, X.; Lu, C. Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Vet. Microbiol. 2011, 152, 151–160. [Google Scholar] [CrossRef]
- Teles, C.; Smith, A.; Lang, S. Antibiotic modulation of the plasminogen binding ability of viridans group streptococci. Antimicrob. Agents Chemother. 2012, 56, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Wayne: Philadelphia, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Wayne: Philadelphia, PA, USA, 2018. [Google Scholar]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Gurung, M.; Tamang, M.D.; Moon, D.C.; Kim, S.R.; Jeong, J.H.; Jang, G.C.; Jung, S.C.; Park, Y.H.; Lim, S.K. Molecular basis of resistance to selected antimicrobial agents in the emerging zoonotic pathogen Streptococcus suis. J. Clin. Microbiol. 2015, 53, 2332–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Serotype | Number of Farms Tested | Place of Isolation (Number and Percentage) | Total *** | ||||
---|---|---|---|---|---|---|---|
Joints | Central Nervous System (CNS) | Lungs | Liver | Other Viscera | |||
1 | 26 | 22 (50.0%) * (38.0%) ** | 16 (36.4%) * (21.9%) ** | 6 (13.6%) * (9.4%) ** | 0 | 0 | 44 (21.3%) |
2 | 30 | 12 (26.7%) * (20.7%) ** | 16 (35.6%) * (21.9%) ** | 14 (31.1%) * (22.0%) ** | 1 (2.2%) * (100%) ** | 2 (4.4%) * (18.2%) ** | 45 (21.7%) |
3 | 13 | 0 | 1 (7.7%) * (1.4%) ** | 12 (92.3%) * (18.7%) ** | 0 | 0 | 13 (6.3%) |
4 | 6 | 0 | 2 (28.6%) * (2.7%) ** | 4 (57.1%) * (6.2%) ** | 0 | 1 (14.3%) * (9.1%) ** | 7 (3.4%) |
5 | 2 | 1 (50.0%) * (1.7%) ** | 1 (50.0%) * (1.4%) ** | 0 | 0 | 0 | 2 (1.0%) |
7 | 5 | 3 (42.8%) * (5.2%) ** | 2 (28.6%) * (2.7%) ** | 1 (14.3%) * (1.6%) ** | 0 | 1 (14.3%) * (9.1%) ** | 7 (3.4%) |
8 | 6 | 0 | 0 | 8 (88.9%) * (12.5%) ** | 0 | 1 (1.1%) * (9.1%) ** | 9 (4.3%) |
9 | 27 | 11 (27.5%) * (19.0) ** | 17 (42.5%) * (23.4%) ** | 10 (25.0%) * (15.6%) ** | 0 | 2 (5.0%) * (18.2%) ** | 40 (19.3%) |
10 | 1 | 0 | 1 (100%) * (1.4%) ** | 0 | 0 | 0 | 1 (0.5%) |
16 | 5 | 2 (40.0%) * (3.4%) ** | 3 (60.0%) * (4.1%) ** | 0 | 0 | 0 | 5 (2.4%) |
17 | 2 | 0 | 2 (66.7%) * (2.7%) ** | 0 | 0 | 1 (33.3%) * (9.1%) ** | 3 (1.4%) |
19 | 3 | 1 (25.0%) * (1.7%) ** | 2 (50.0%) * (2.7%) ** | 0 | 0 | 1 (25.0%) * (9.1%) ** | 4 (1.9%) |
23 | 2 | 0 | 0 | 2 (100%) * (3.1%) ** | 0 | 0 | 2 (1.0%) |
Non-typable | 19 | 6 (24.0%) * (10.3%) ** | 10 (40.0%) * (13.7%) ** | 7 (28.0%) * (10.9%) ** | 0 | 2 (8.0%) * (18.2%) ** | 25 (12.1%) |
Total *** | 147 | 58 (28.0%) | 73 (35.3%) | 64 (30.9%) | 1 (0.5%) | 11 (5.3%) | 207 (100%) |
Virulence Gene | Number of Isolates (%) | Serotypes |
---|---|---|
none | 4 (1.9) | NT (n = 4) |
epf | 1 (0.5) | NT |
luxS | 14 (6.8) | 3 *, 7, 9, 17, 19 (n = 3), NT (n = 7) |
gapdh | 3 (1.4) | NT (n = 3) |
epf + mrp | 1 (0.5) | NT |
epf + sly | 3 (1.4) | 16 (n = 2), 17 |
epf + gapdh | 1 (0.5) | NT |
mrp + luxS | 11 (5.3) | 2, 3, 7, 8, 9 (n = 5), 23, NT |
sly + luxS | 3 (1.4) | 4, 8, 9 |
sly + gapdh | 1 (0.5) | 3 |
luxS + gapdh | 5 (2.4) | 1, 5, 17, NT (n = 2) |
epf + mrp + luxS | 3 (1.4) | 1, 2 (n = 2) |
epf + sly + luxS | 6 (2.9) | 2 (n = 4), 8, NT |
epf + luxS + gapdh | 1 (0.5) | 10 |
mrp + sly + luxS | 22 (10.6) | 1, 2 (n = 4), 3, 8, 9 (n = 14), NT |
mrp + sly + gadph | 1 (0.5) | 2 |
mrp + luxS + gadph | 17 (8.2) | 2 (n = 2), 3 (n = 3), 5, 7 (n = 4), 9 (n = 5), 16, NT |
sly + luxS + gapdh | 9 (4.3) | 3 (n = 2), 8 (n = 4), 7, 16, 23 |
epf + mrp + sly + luxS | 49 (23.8) | 1 (n = 29), 2 (n = 17), 4 (n = 2), NT |
epf + mrp + luxS + gapdh | 2 (1.0) | 19 |
epf + sly + luxS + gapdh | 3 (1.4) | 2, 9, NT |
mrp + sly + luxS + gapdh | 26 (12.7) | 1 (n = 3), 2 (n = 2), 3 (n = 3), 4 (n = 3), 8, 9 (n = 13), 16 |
epf + mrp + sly + luxS + gapdh | 21 (10.1) | 1 (n = 9), 2 (n = 11), 4 |
Antimicrobial Agent (Dilution Range) | Range (μg/mL) | MIC50 (μg/mL) | MIC90 (μg/mL) | Breakpoint (μg/mL) * | Antimicrobial Resistance (%) |
---|---|---|---|---|---|
Penicillin (0.12–8 μg/mL) | 0.12–>8 | 0.12 | 2.0 | 1 | 26.2 |
Ampicillin (0.25–16 μg/mL) | 0.25–>16 | 0.25 | 0.5 | 1 | 2.9 |
Ceftiofur (0.25–8 μg/mL) | 0.25–>32 | 0.25 | 8.0 | 4 | 17.5 |
Chlortetracycline (0.5–8 μg/mL) | 0.5–>8 | >8 | >8 | 4 | 93.2 |
Oxytetracycline (0.5–8 μg/mL) | 0.5–>8 | >8 | >8 | 4 | 93.2 |
Gentamicin (1–16 μg/mL) | 2–>16 | 8 | 16 | 8 | 16.5 |
Neomycin (4–32 μg/mL) | 4–>32 | 32 | >32 | 8 | 88.3 |
Spectinomycin (8–64 μg/mL) | 16–>64 | 32 | >64 | 64 | 11.6 |
Enrofloxacin (0.12–2 μg/mL) | 0.5–>2 | 1 | 2 | 1 | 46.6 |
Danofloxacin (0.12–1 μg/mL) | 0.12–>1 | >1 | >1 | 1 | 61.2 |
Florfenicol (0.25–8 μg/mL) | 2–8 | 4 | 8 | 4 | 14.6 |
Clindamycin (0.25–16 μg/mL) | 0.25–>32 | >32 | >32 | 1 | 87.4 |
Sulfamethoxazole/trimethoprim (38/2 μg/mL) | 38/2–>38/2 | 38/2 | >38/2 | 38/2 | 34.9 |
Sulphadimethoxine (256 μg/mL) | 256–>256 | >256 | >256 | 256 | 94.2 |
Tiamulin (0.5–32 μg/mL) | 0.5–>32 | 4 | >32 | 32 | 12.6 |
Tylosin (0.5–32 μg/mL) | 0.5–>32 | >32 | >32 | 32 | 86.4 |
Tilmicosin (4–64 μg/mL) | 4–>64 | >64 | >64 | 32 | 84.5 |
Tulathromycin (1–64 μg/mL) | 2–>64 | >64 | >64 | 32 | 85.4 |
Number of Antimicrobial Agents to Which Resistance Was Detected | Number of Isolates (%) | Serotypes |
---|---|---|
Three * | 1 (1.0) | NT |
Four | 1 (1.0) | 3 |
Seven | 3 (2.9) | 1 (n = 2), NT ** |
Eight | 2 (1.9) | 1, 2 |
Nine | 5 (4.8) | 1, 2 (n = 3), 10 |
Ten | 3 (2.9) | 1, 2 (n = 2) |
Eleven | 4 (3.9) | 2, 3 (n = 2), 9 |
Twelve | 22 (21.4) | 1 (n = 2), 2 (n = 4), 3, 4, 5 7, 9 (n = 5), 16 (n = 2) 23, NT (n = 2) |
Thirteen | 29 (28.2) | 1 (n = 9), 2 (n = 7), 3, 7 (n = 2) 9 (n = 6), 19, NT (n = 2) |
Fourteen | 16 (15.5) | 1 (n = 2), 2 (n = 3), 3, 4, 8 9 (n = 2), NT (n = 3) |
Fifteen | 6 (5.8) | 1, 4, 8, 9, 17, NT |
Sixteen | 7 (6.8) | 1, 2, 9 (n = 5) |
Seventeen | 3 (2.9) | 7, 9, NT |
Eighteen (all the antimicrobial agents tested) | 1 (1.0) | 7 |
Resistance Gene | Number of Isolates (%) | Serotypes |
---|---|---|
none | 5 (4.9) | 1 (n = 2), 3 (n = 2), 8 * |
tetO | 22 (21.4) | |
ermB | 2 (1.9) | 9, NT |
fexA | 3 (2.7) | 1 (n = 3) |
tetM + ermB | 1 (1.0) | 1 |
tetO + ermB | 45 (43.6) | 1 (n = 14), 2 (n = 7), 3 (n = 4), 4 (n = 2), 5, 7 (n = 3), 8, 9 (n = 7), 19, 23, NT (n = 4) |
tetO + fexA | 6 (5.9) | 2 (n = 3), 7, 9 (n = 2) |
ermB + fexA | 1 (1.0) | 9 |
tetM + ermB + fexA | 1 (1.0) | 1 |
tetO + ermB + mefA/E | 1 (1.0) | NT |
tetO + ermB + fexA | 16 (15.6) | 2 (n = 2), 3, 4, 8 (n = 2) 9 (n = 7), 16, NT (n = 2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrocchi-Rilo, M.; Martínez-Martínez, S.; Aguarón-Turrientes, Á.; Roca-Martínez, E.; García-Iglesias, M.-J.; Pérez-Fernández, E.; González-Fernández, A.; Herencia-Lagunar, E.; Gutiérrez-Martín, C.-B. Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus suis Isolates Recovered from Pigs in Spain. Antibiotics 2021, 10, 707. https://doi.org/10.3390/antibiotics10060707
Petrocchi-Rilo M, Martínez-Martínez S, Aguarón-Turrientes Á, Roca-Martínez E, García-Iglesias M-J, Pérez-Fernández E, González-Fernández A, Herencia-Lagunar E, Gutiérrez-Martín C-B. Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus suis Isolates Recovered from Pigs in Spain. Antibiotics. 2021; 10(6):707. https://doi.org/10.3390/antibiotics10060707
Chicago/Turabian StylePetrocchi-Rilo, Máximo, Sonia Martínez-Martínez, Álvaro Aguarón-Turrientes, Elisabet Roca-Martínez, María-José García-Iglesias, Esther Pérez-Fernández, Alba González-Fernández, Elena Herencia-Lagunar, and César-Bernardo Gutiérrez-Martín. 2021. "Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus suis Isolates Recovered from Pigs in Spain" Antibiotics 10, no. 6: 707. https://doi.org/10.3390/antibiotics10060707
APA StylePetrocchi-Rilo, M., Martínez-Martínez, S., Aguarón-Turrientes, Á., Roca-Martínez, E., García-Iglesias, M. -J., Pérez-Fernández, E., González-Fernández, A., Herencia-Lagunar, E., & Gutiérrez-Martín, C. -B. (2021). Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus suis Isolates Recovered from Pigs in Spain. Antibiotics, 10(6), 707. https://doi.org/10.3390/antibiotics10060707