Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives
Abstract
:1. Introduction
2. Case Series
- (i)
- 5/13 (38%) critically ill patients with severe lung failure due to underlying SARS-CoV-2 infection;
- (ii)
- 4/13 (31%) post-surgical infections;
- (iii)
- 4/13 (31%) severe infections in immunocompromised patients due to solid organ transplantation (2/4) or hematological malignancy (2/4).
2.1. Critically Ill Patients Due to Severe Lung Failure in the Course of SARS-CoV-2 Infection
2.2. Post-Surgical Infections
- (i)
- A VAP caused by CRAB, in a patient mechanically ventilated post neurosurgical treatment for cerebral hemorrhage (Pt6);
- (ii)
- A CRAB BSI post-coronary angioplasty in a subject hospitalized for myocardial infarction in course of mild SARS-CoV-2 infection (Pt7);
- (iii)
- A neurosurgical wound infection post-parietal bone excision caused by XDR-P. aeruginosa (Pt8);
- (iv)
- A tertiary peritonitis with polymicrobial intrabdominal abscesses caused by CRAB, XDR-E. cloacae complex, M. morganii and ampicillin-resistant E. faecium in a patient hospitalized in the ICU (Pt9).
2.3. Severe Infections in Immunocompromised Patients
- (i)
- Liver abscesses with BSI occurred 6 months after liver transplantation caused by KPC-producing K. pneumoniae resistant to ceftazidime/avibactam (Pt10);
- (ii)
- VAP with BSI caused by CRAB in a heart transplant recipient (Pt11);
- (iii)
- BSI due to CRAB in a patient with myelodysplastic syndrome, hospitalized for COVID-19 (Pt12);
- (iv)
- Severe multifocal pneumonia caused by XDR-P. aeruginosa in a patient with acute myeloid leukemia who underwent allogenic stem cells transplantation (Pt13).
3. Discussion and Future Perspectives
3.1. Spectrum of the Activity of Cefiderocol Against “Difficult-To-Treat” Bacteria
3.2. Pharmacologic Aspects of Cefiderocol
3.3. The Role of Combination Therapy
3.4. Place in Therapy in Critically Ill Patients
3.5. Place in the Therapy of Immunocompromised Hosts
4. Materials and Methods
4.1. Patients and Treatments
- Mild/Moderate, if they had clinical signs of pneumonia (fever, cough, dyspnea, fast breathing) but no signs of severe pneumonia, including SpO2 ≥ 90% on room air;
- Severe, if they had signs of pneumonia (fever, cough, dyspnea, fast breathing) plus one of the following: respiratory rate > 30 breaths/min; severe respiratory distress; or SpO2 < 90% on room air;
- Critical, if a diagnosis of acute respiratory distress syndrome (ARDS) was made.
4.2. Bacterial Strains
4.3. Sampling Process
4.4. Antibiotic Susceptibility Testing
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Mehrad, B.; Clark, N.M.; Zhanel, G.G.; Lynch, J.P., 3rd. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest 2015, 147, 1413–1421. [Google Scholar] [CrossRef] [Green Version]
- Rouby, J.J.; Sole-Lleonart, C.; Rello, J. European Investigators Network for Nebulized Antibiotics in Ventilator-associated Pneumonia. Ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria: Understanding nebulization of aminoglycosides and colistin. Intensive Care Med. 2020, 46, 766–770. [Google Scholar] [CrossRef]
- Leal, H.F.; Azevedo, J.; Silva, G.E.O.; Amorim, A.M.L.; de Roma, L.R.C.; Arraes, A.C.P.; Gouveia, E.L.; Reis, M.G.; Mendes, A.V.; de Oliveira Silva, M.; et al. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: Epidemiological, clinical and microbiological features. BMC Infect. Dis. 2019, 19, 609. [Google Scholar] [CrossRef]
- Lob, S.H.; Kazmierczak, K.M.; Badal, R.E.; Hackel, M.A.; Bouchillon, S.K.; Biedenbach, D.J.; Sahm, D.F. Trends in susceptibility of Escherichia coli from intra-abdominal infections to ertapenem and comparators in the United States according to data from the SMART program, 2009 to 2013. Antimicrob. Agents Chemother. 2015, 59, 3606–3610. [Google Scholar] [CrossRef] [Green Version]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; Digaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated with Mortality in Consecutive Patients with Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, 461. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.M.; Yuan, Z.; Zhou, H.Y. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection relative to two types of control patients: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Xu, X.; Yao, J.; Deng, K.; Chen, S.; Shen, Z.; Yang, L.; Feng, G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am. J. Infect. Control. 2019, 47, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 2019, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Aghapour, Z.; Gholizadeh, P.; Ganbarov, K.; Bialvaei, A.Z.; Mahmood, S.S.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Yousefi, B.; Kafil, H.S. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect. Drug Resist. 2019, 12, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Romanelli, F.; Stolfa, S.; Belati, A.; Diella, L.; Ronga, L.; Fico, C.; Monno, L.; Mosca, A.; Saracino, A. Recurrent neurosurgical site infection by extensively drug-resistant P. aeruginosa treated with cefiderocol: A case report and literature review. Infect. Dis. 2021, 53, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Ceccarelli, G.; De Angelis, M.; Sacco, F.; Miele, M.C.; Mastroianni, C.M.; Venditti, M. Cefiderocol for compassionate use in the treatment of complicated infections caused by extensively and pan-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2020, 23, 292–296. [Google Scholar] [CrossRef]
- Zingg, S.; Nicoletti, G.J.; Kuster, S.; Junker, M.; Widmer, A.; Egli, A.; Hinic, V.; Sendi, P.; Battegay, M.; Bättig, V.; et al. Cefiderocol for Extensively Drug-Resistant Gram-Negative Bacterial Infections: Real-world Experience from a Case Series and Review of the Literature. Open Forum Infect. Dis. 2020, 7, 185. [Google Scholar] [CrossRef]
- Bleibtreu, A.; Dortet, L.; Bonnin, R.A.; Wyplosz, B.; Sacleux, S.C.; Mihaila, L.; Dupont, H.; Junot, H.; Bunel, V.; Grall, N.; et al. The Cefiderocol French Study Group, OBO. Susceptibility Testing Is Key for the Success of Cefiderocol Treatment: A Retrospective Cohort Study. Microorganisms 2021, 9, 282. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; Barnini, S.; et al. Cefiderocol as rescue therapy for Acinetobacter baumannii and other carbapenem-resistant Gram-Negative infections in ICU patients. Clin. Infect. Dis. 2020, 17, 1410. [Google Scholar] [CrossRef]
- Taheri, Y.; Joković, N.; Vitorović, J.; Grundmann, O.; Maroyi, A.; Calina, D. The Burden of the Serious and Difficult-to-Treat Infections and a New Antibiotic Available: Cefiderocol. Front. Pharmacol. 2021, 11, 578823. [Google Scholar] [CrossRef]
- Simner, P.J.; Patel, R. Cefiderocol Antimicrobial Susceptibility Testing Considerations: The Achilles’ Heel of the Trojan Horse? J. Clin. Microbiol. 2020, 59, 00951-20. [Google Scholar] [CrossRef]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2017, 62, e01454-17. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Sato, T.; Ota, M.; Ito-Horiyama, T.; Ishibashi, N.; Sato, T.; Tsuji, M.; Yamano, Y. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J. Antimicrob. Chemother. 2019, 74, 539. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Srinivas, P.; Pogue, J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2020, 9, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Parsels, K.A.; Mastro, K.A.; Steele, J.M.; Thomas, S.J.; Kufel, W.D. Cefiderocol: A novel siderophore cephalosporin for multidrug-resistant Gram-negative bacterial infections. J. Antimicrob. Chemother. 2021, 76, 1379–1391. [Google Scholar] [CrossRef]
- Bonomo, R.A. Cefiderocol: A Novel Siderophore Cephalosporin Defeating Carbapenem-resistant Pathogens. Clin. Infect. Dis. 2019, 69, S519–S520. [Google Scholar] [CrossRef] [Green Version]
- Page, M.G.P. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin. Infect. Dis. 2019, 69, S529–S537. [Google Scholar] [CrossRef]
- Jean, S.S.; Hsueh, S.C.; Lee, W.S.; Hsueh, P.R. Cefiderocol: A promising antibiotic against multidrug-resistant Gram-negative bacteria. Expert. Rev. Anti. Infect. Ther. 2019, 17, 307–309. [Google Scholar] [CrossRef] [Green Version]
- Katsube, T.; Echols, R.; Wajima, T. Pharmacokinetic and Pharmacodynamic Profiles of Cefiderocol, a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, S552–S558. [Google Scholar] [CrossRef]
- Bialvaei, A.Z.; Samadi Kafil, H. Colistin, mechanisms and prevalence of resistance. Curr. Med. Res. Opin. 2015, 31, 707–721. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Cattaneo, F.M.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.R.M.; Hu, Y.; Holt, J.; Yeh, P. Antibiotic combination therapy against resistant bacterial infections: Synergy, rejuvenation and resistance reduction. Expert. Rev. Anti. Infect. Ther. 2020, 18, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Lenhard, J.R.; Thamlikitkul, V.; Silveira, F.P.; Garonzik, S.M.; Tao, X.; Forrest, A.; Shin, B.S.; Kaye, K.S.; Bulitta, J.B.; Nation, R.L.; et al. Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity. J. Antimicrob. Chemother. 2017, 72, 1415–1420. [Google Scholar] [CrossRef] [Green Version]
- Bulman, Z.P.; Chen, L.; Walsh, T.J.; Satlin, M.J.; Qian, Y.; Bulitta, J.B.; Peloquin, C.A.; Holden, P.N.; Nation, R.L.; Li, J.; et al. Polymyxin Combinations Combat Escherichia coli Harboring mcr-1 and blaNDM-5: Preparation for a Postantibiotic Era. mBio 2017, 8, e00540-17. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, M.A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 2011, 14, 519–523. [Google Scholar] [CrossRef] [Green Version]
- Munck, C.; Gumpert, H.K.; Wallin, A.I.; Wang, H.H.; Sommer, M.O. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 2014, 6, 262ra156. [Google Scholar] [CrossRef] [Green Version]
- Guillamet, M.C.V.; Vazquez, R.; Noe, J.; Micek, S.T.; Fraser, V.J.; Kollef, M.H. Impact of Baseline Characteristics on Future Episodes of Bloodstream Infections: Multistate Model in Septic Patients with Bloodstream Infections. Clin. Infect. Dis. 2020, 71, 3103–3109. [Google Scholar] [CrossRef]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Lee, C.H.; Yang, C.Y.; Hsieh, C.C.; Tang, H.J.; Ko, W.C. Beneficial effects of early empirical administration of appropriate antimicrobials on survival and defervescence in adults with community-onset bacteremia. Crit. Care 2019, 23, 363. [Google Scholar] [CrossRef] [Green Version]
- De Vries Schultink, A.H.M.; Sallevelt, B.T.G.M.; Meinders, A.J.; van de Garde, E.M.W.; Roescher, N. The need for gentamicin adjunctive to cefuroxime as empirical sepsis therapy: A local protocol evaluation. Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef]
- Scully, M.; Hassoun, A. Increasing evidence of potential toxicity of a common antibiotic combination. J. Infect. Public. Health 2018, 11, 594–595. [Google Scholar] [CrossRef]
- Biagi, M.; Vialichka, A.; Jurkovic, M.; Wu, T.; Shajee, A.; Lee, M.; Patel, S.; Mendes, R.E.; Wenzler, E. Activity of Cefiderocol Alone and in Combination with Levofloxacin, Minocycline, Polymyxin B, or Trimethoprim-Sulfamethoxazole against Multidrug-Resistant Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2020, 64, e00559-20. [Google Scholar] [CrossRef]
- Kollef, M.H.; Niederman, M.S. Why is Acinetobacter baumannii a problem for critically ill patients? Intensive Care Med. 2015, 41, 2170–2172. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018, 44, 925–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adembri, C.; Cappellini, I.; Novelli, A. The role of PK/PD-based strategies to preserve new molecules against multi-drug resistant gram-negative strains. J. Chemother. 2020, 32, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Adembri, C.; Novelli, A.; Nobili, S. Some Suggestions from PK/PD Principles to Contain Resistance in the Clinical Setting-Focus on ICU Patients and Gram-Negative Strains. Antibiotics 2020, 9, 676. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.Y.; Peng, C.K.; Sheu, C.C.; Lin, Y.C.; Chan, M.C.; Wang, S.H.; Chen, C.M.; Shen, Y.C.; Zheng, Z.R.; Lin, Y.T.; et al. T-CARE (Taiwan Critical Care and Infection) Group. Efficacy of adjunctive nebulized colistin in critically ill patients with nosocomial carbapenem-resistant Gram-negative bacterial pneumonia: A multi-centre observational study. Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, D.A.; Kalil, A.C. The last breath for inhaled antibiotics and VAP? Not so fast. Lancet Infect. Dis. 2020, 20, 265–266. [Google Scholar] [CrossRef]
- Nakamura, R.; Ito-Horiyama, T.; Takemura, M. In Vivo Pharmacodynamic Study of Cefiderocol, a Novel Parenteral Siderophore Cephalosporin, in Murine Thigh and Lung Infection Models. Antimicrob. Agents Chemother. 2019, 63, e02031-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, R.W.; Clancy, M. Compassionate Use of Cefiderocol in the Treatment of an Intraabdominal Infection Due to Multidrug-Resistant Pseudomonas aeruginosa: A Case Report. Pharmacotherapy 2019, 39, 1113–1118. [Google Scholar] [CrossRef]
- Contreras, D.A.; Fitzwater, S.P.; Nanayakkara, D.D.; Schaenman, J.; Aldrovandi, G.M.; Garner, O.B.; Yang, S. Coinfections of Two Strains of NDM-1- and OXA-232-Coproducing Klebsiella pneumoniae in a Kidney Transplant Patient. Antimicrob. Agents Chemother. 2020, 64, e00948-19. [Google Scholar] [CrossRef]
- Fishman, J.A. Infection in Organ Transplantation. Am. J. Transpl. 2017, 17, 856–879. [Google Scholar] [CrossRef] [Green Version]
- Abbo, L.M.; Grossi, P.A. AST ID Community of Practice. Surgical site infections: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transpl. 2019, 33, e13589. [Google Scholar] [CrossRef]
- Kinnunen, S.; Karhapää, P.; Juutilainen, A.; Finne, P.; Helanterä, I. Secular Trends in Infection-Related Mortality after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2018, 13, 755–762. [Google Scholar] [CrossRef]
- Lanini, S.; Costa, A.N.; Puro, V.; Procaccio, F.; Grossi, P.A.; Vespasiano, F.; Ricci, A.; Vesconi, S.; Ison, M.G.; Carmeli, Y.; et al. Donor-Recipient Infection (DRIn) Collaborative Study Group. Incidence of carbapenem-resistant gram negatives in Italian transplant recipients: A nationwide surveillance study. PLoS ONE 2015, 10, e0123706. [Google Scholar] [CrossRef] [Green Version]
- Bartoletti, M.; Giannella, M.; Tedeschi, S.; Viale, P. Multidrug-Resistant Bacterial Infections in Solid Organ Transplant Candidates and Recipients. Infect. Dis. Clin. N. Am. 2018, 32, 551–580. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Cardozo-Espinola, C.; Puerta-Alcalde, P.; Marco, F.; Tellez, A.; Agüero, D.; Romero-Santana, F.; Díaz-Beyá, M.; Giné, E.; Morata, L.; et al. Risk factors for mortality in patients with acute leukemia and bloodstream infections in the era of multiresistance. PLoS ONE 2018, 13, e0199531. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Pizzutilo, P.; Catino, A.; Signorile, F.; Pesola, F.; Di Gennaro, F.; Cassiano, S.; Marech, I.; Lamorgese, V.; Angarano, G.; et al. Incidence of Infections and Predictors of Mortality during Checkpoint Inhibitors Immunotherapy in Patients with Advanced Lung Cancer: A Retrospective Cohort Study. Open Forum Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Fiordelisi, D.; Angarano, G.; Monno, L.; Saracino, A. Targeted therapies for autoimmune/idiopathic nonmalignant diseases: Risk and management of opportunistic infections. Expert Opin Drug Saf. 2020, 19, 817–842. [Google Scholar] [CrossRef]
- Alagna, L.; Palomba, E.; Mangioni, D.; Bozzi, G.; Lombardi, A.; Ungaro, R.; Castelli, V.; Prati, D.; Vecchi, M.; Muscatello, A.; et al. Multidrug-Resistant Gram-Negative Bacteria Decolonization in Immunocompromised Patients: A Focus on Fecal Microbiota Transplantation. Int. J. Mol. Sci. 2020, 21, 5619. [Google Scholar] [CrossRef]
- Theuretzbacher, U. Pharmacokinetic and pharmacodynamic issues for antimicrobial therapy in patients with cancer. Clin. Infect. Dis. 2012, 54, 1785–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergen, P.J.; Bulitta, J.B.; Forrest, A.; Tsuji, B.T.; Li, J.; Nation, R.L. Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an in vitro model. Antimicrob. Agents Chemother. 2010, 54, 3783–3789. [Google Scholar] [CrossRef] [Green Version]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by MBL- producing Enterobacterales. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Bunsow, E.; Los-Arcos, I.; Martin-Gómez, M.T.; Bello, I.; Pont, T.; Berastegui, C.; Ferrer, R.; Nuvials, X.; Deu, M.; Peghin, M.; et al. Donor-derived bacterial infections in lung transplant recipients in the era of multidrug resistance. J. Infect. 2020, 80, 190–196. [Google Scholar] [CrossRef]
- Clerici, D.; Oltolini, C.; Greco, R.; Ripa, M.; Giglio, F.; Mastaglio, S.; Lorentino, F.; Pavesi, F.; Farina, F.; Liberatore, C.; et al. The place in therapy of ceftazidime/avibactam and ceftolozane/tazobactam in hematological patients with febrile neutropenia. Int. J. Antimicrob. Agents 2021, 57, 106335. [Google Scholar] [CrossRef]
- Criscuolo, M.; Trecarichi, E.M. Ceftazidime/Avibactam and Ceftolozane/Tazobactam for Multidrug-Resistant Gram Negatives in Patients with Hematological Malignancies: Current Experiences. Antibiotics 2020, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Sun, L.; Guo, L.; Cao, B.; Liu, Y.; Zhao, L.; Lu, B.; Li, B.; Chen, J.; Wang, C. Clinical outcomes of ceftazidime-avibactam in lung transplant recipients with infections caused by extensively drug-resistant gram-negative bacilli. Ann. Transl. Med. 2020, 8, 39. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir J. 2017, 10, 1700582. [Google Scholar]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.; Sherertz, R.J.; Warren, D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 149, 1–45. [Google Scholar] [CrossRef]
- Global Guidelines for the Prevention of Surgical Site Infection, 2nd ed.; World Health Organization: Geneva, Switzerland, 2018.
- Sartelli, M.; Chichom-Mefire, A.; Labricciosa, F.M.; Hardcastle, T.; Abu-Zidan, F.M.; Adesunkanmi, A.K.; Ansaloni, L.; Bala, M.; Balogh, Z.J.; Beltrán, M.A.; et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017, 10, 12–29. [Google Scholar]
- World Health Organization. Clinical management of COVID-19. Interim Guidance. 20 April 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/332196/WHO-2019-nCoV-clinical-2020.5-eng.pdf?sequence=1&isAllowed=y (accessed on 20 April 2021).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
Age (Year) | Sex | Cause of Hospitalization | Underlying Diseases | Ward | Pathogen | Type of Infection | Initial Therapy (*) | Cause of Failure | Cefiderocol Based Therapy (*) | Outcome | Outcome at 30 Days | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pt1 | 68 | M | COVID-19 | Huntington Chorea, Immobilization syndrome, Severe COVID-19 disease | Internal Medicine, COVID Unit | CRAB | CVC-related BSI with Septic Shock | CST, TG, FOF (4) | Unsatisfactory clinical response | FDC, FOF, TGC (5) | Microbiological Eradication | Death† |
Pt2 | 62 | F | COVID-19 | Fibromyalgia | Intensive Care Unit | CRAB | CVC-related BSI with Septic Shock | MEM, CST (7) | CST resistance | FDC, CST, MEM (13) | Recovery | Success |
Pt3 | 69 | M | COVID-19 | Hypertension, Diabetes | Intensive Care Unit | CRAB | CVC-related BSI with Septic Shock | MEM, CST (10) | Unsatisfactory clinical response | FDC, CST (10) | Recovery | Success |
Pt4 | 78 | M | COVID-19 | Hypertension, COPD, Diabetes | Internal Medicine, COVID Unit | CRAB | CVC-related BSI with Sepsis | MEM, CST, TG (2) | Unsatisfactory clinical response | FDC, TGC (8) | Recovery | Success |
Pt5 | 75 | F | COVID-19 | Diabetes | Infectious Diseases | CRAB | CVC-related BSI with Sepsis | MEM, CST, FOF (5) | CST toxicity | FDC, FOF (5) | Recovery | Success |
t | Age (Year) | Sex | Cause of Hospitalization | Underlying Diseases | Ward | Pathogen | Type of Infection | Initial Therapy (*) | Cause of Failure | Cefiderocol Based Therapy (*) | Outcome | Outcome at 30 Days |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pt6 | 38 | M | Dyspnea post orotracheal intubation for cerebral hemorrhage | Hypertension, Pulmonary Embolism | Thoracic Surgery | CRAB | VAP | CST, FOF, TGC (4) | Unsatisfactory clinical response | FDC, FOF, TGC (9) | Recovery | Success |
Pt7 | 70 | M | PTCA due to myocardial Infarction in course of COVID-19 | Mild COVID-19, Diabetes, Ischemic heart disease, Dyslipidemia | Internal Medicine, COVID Unit | CRAB | Bloodstream infection | MEM, CST, FOF, SAM (2) | Unsatisfactory clinical response | FDC, CST, FOF (8) | Recovery | Success |
Pt8 | 64 | M | Neurosurgical wound Infection | Previous drainage of post-traumatic subarachnoid hematoma, Hypertension, Iatrogenic hypothyroidism | Infectious Diseases | P. aeruginosa XDR | Neurosurgical Wound Infection | CST, FOF (5) | Unsatisfactory clinical response | FDC, FOF (10) | Recovery | Success |
Pt9 | 25 | M | Subocclusion and volvulus treated with gut surgical resection | Colostomy, Hip and Arm fracture | Intensive Care Unit | Polymicrobial ** | Perihepatic Abscess, Septic Shock | MEM, TGC, DAP, FOF (5) | Unsatisfactory clinical response | FDC, TGC, DAP, FOF (21) | Recovery | Success |
Age (Year) | Sex | Cause of Hospitalization | Underlying Diseases | Ward | Pathogen | Type of Infection | Initial Therapy (*) | Cause of Therapeutic Failure, Day | Cefiderocol Based Therapy (*) | Outcome | Outcome at 30 Days | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pt10 | 60 | M | Sepsis | Hepatic transplantation for HBV-related cirrhosis and HCC, Previous ischemic heart disease | Gastroenterology | CR-Kp (KPC) | Hepatic Abscess, Bloodstream infection | TGC, CZA, CST (3) | Unsatisfactory clinical response | FDC, TGC, CST (17), then FDC, FOF (11) * | Recovery | Success |
Pt11 | 43 | M | Myocardial Infarction and cardiogenic shock, Arrhythmic storm, Acute pulmonary edema | Heart transplantation, Hepatic failure, Renal failure in CRRT | Cardiosurgical Intensive Care Unit | CRAB | VAP, Bloodstream infection | CST, MEM, DAP, TGC (12) | Unsatisfactory clinical response | FDC, TGC, CST, FOF (16) | Microbiological Eradication | Death ‡ |
Pt12 | 57 | M | COVID-19 | Myelodysplastic syndrome, Hypertension, Basedow’s disease | Intensive Care Unit | CRAB | Bloodstream infection | MEM, CST (3) | Unsatisfactory clinical response | FDC, CST (12) | Microbiological Eradication | Death † |
Pt13 | 68 | M | Pneumonia | Acute Myeloid Leukemia, Chronic Kidney Disease, Hypertension | Hematology | P. aeruginosa XDR | Pneumonia | CST, MEM, FOF (10) | Unsatisfactory clinical response | FDC, FOF (10) | Recovery | Success |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bavaro, D.F.; Belati, A.; Diella, L.; Stufano, M.; Romanelli, F.; Scalone, L.; Stolfa, S.; Ronga, L.; Maurmo, L.; Dell’Aera, M.; et al. Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics 2021, 10, 652. https://doi.org/10.3390/antibiotics10060652
Bavaro DF, Belati A, Diella L, Stufano M, Romanelli F, Scalone L, Stolfa S, Ronga L, Maurmo L, Dell’Aera M, et al. Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics. 2021; 10(6):652. https://doi.org/10.3390/antibiotics10060652
Chicago/Turabian StyleBavaro, Davide Fiore, Alessandra Belati, Lucia Diella, Monica Stufano, Federica Romanelli, Luca Scalone, Stefania Stolfa, Luigi Ronga, Leonarda Maurmo, Maria Dell’Aera, and et al. 2021. "Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives" Antibiotics 10, no. 6: 652. https://doi.org/10.3390/antibiotics10060652
APA StyleBavaro, D. F., Belati, A., Diella, L., Stufano, M., Romanelli, F., Scalone, L., Stolfa, S., Ronga, L., Maurmo, L., Dell’Aera, M., Mosca, A., Dalfino, L., Grasso, S., & Saracino, A. (2021). Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics, 10(6), 652. https://doi.org/10.3390/antibiotics10060652