Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli
Abstract
:1. Introduction
2. Acid Tolerance Potential of EHECs
Protection Mechanism | Main Substrate | Decarboxylases | Antiporter | Final Product | Regulators | Level of Protection | pH | Reference |
---|---|---|---|---|---|---|---|---|
Oxidative system | Glucose | - | - | - | RpoS | Least | 2.5 | [77,78,79] |
Glutamate dependent system (GAD) | l-Glutamate | GadA, GadB | GadC | GABA | GadE, GadX, GadW | Highest | ≤2 | [67,75,79,80,81,82] |
Arginine dependent system (ADI) | l-Arginine | AdiA | AdiC | Agmatine | - | Modest | 5.2 | [75,79] |
Lysine dependent system (CAD) | Lysine | CadA | CadB | Cadaverine | CadC | Quite ineffective | NA | [75,79] |
2.1. Glutamate-Dependent Acid Resistance System
2.2. Control of Glutamate-Dependent System
2.2.1. EvgAS: An Acid-Resistance Regulator
2.2.2. PhoPQ: Role in Acid Regulation
2.2.3. RcsB: An Essential Activator/Repressor
3. Cross-Protection in EHECs
4. Metabolic Adaptations
5. Acid-Adaptive Antibiotic Resistance Strategies
5.1. Acid-Adaptive Structural Modifications
5.1.1. Acid-Induced LPS Modification
5.1.2. Acid-Induced Antimicrobial Resistance by RcsB
5.1.3. CpxAR-Mediated Peptidoglycan Cross-Linking
5.2. Target Replacement
PhoPQ- and PmrAB-Mediated Competitive Inhibition
5.3. Acid-Adaptive Activation of Drug Efflux Pumps
5.3.1. Activation of EvgAS-Regulated Drug Efflux Genes
5.3.2. Activation of the KdpA Proton Pump
Treatment under Acid Stress | Two-Component Systems Involved | Acquired Antibiotic Resistance/Tolerance | Phenotypic Expression 1 | Reference |
---|---|---|---|---|
ΔtatC, over-expressed nlpE | CpxRA | Cationic antimicrobial peptides (CAPs) | Increased tolerance | [145] |
ΔrcsF, ΔrcsB, ΔcpxR | RcsCB, CpxRA | Mecillinam and cefsulodin | Increased tolerance | [139] |
ΔcpxR | CpxRA | Cephalexin | Increased tolerance | [156] |
W3110 tolC732::kan, W3110 acrB747::kan, W3110 mdtB774::kan, W3110 mdtF769::kan, W3110 emrY776::kan, W3110 emrB767::kan, W3110 marR751::kan | MarRAB, AcrAB, EmrKY, MdtABC and TolC | Extended-spectrum β-lactamases (ESBLs) | Increased tolerance | [152] |
Δmar | MarRAB, AcrAB and TolC | Beta-lactamase, rifampicin, spectinomycin, streptomycin, tetracycline, nalidixic acid | Increased resistance | [157] |
ΔrcsF and ΔrcsB | RcsBC | Cefsulodin | Increased tolerance | [139] |
RcsBC, CpxRA, BaeSR | Mecillinam and cefsulodin | |||
baeR cloned pTrc99A plasmid | BaeRS, MdtABC, ArcAB | Ceftriaxone, | 8 fold increased resistance | [158,159] |
novobiocin, | ||||
deoxycholate | ||||
pH stress only | ArcAB, MarRAB | Ceftriaxone, | Presence ofhyper-resistantcolonies | [60] |
amikacin, | ||||
nalidixic acid | ||||
ArcAB, MarRAB, MdtABC | Multidrugresistance | [144,160] | ||
RcsCB | Cationic antimicrobial peptides (CAPs) | Intrinsic resistance | [161] | |
Aztreonam | [162] | |||
Beta-lactams | [161] | |||
Daptomycin | [96,163,164] | |||
ΔdpiA, ΔcpxR | RcsBC, CpxRA | Ampicillin | Increased tolerance | [165] |
ΔpmrA, ΔpmrB | PmrAB, arn operon | PolymyxinB | Increased tolerance | [137] |
ΔacrB | BaeSR, RcsBC, CpxRA, EvgAS, ArcAB | Multidrug resistance | 16- to 32-fold increased resistance | [166] |
ΔmarR | MarRAB | Norfloxacin | Increased tolerance | [44]. |
ΔacrBΔevgAS, ΔacrBΔemrKY, ΔacrBΔyhiUVΔemrKY, ΔacrBΔyhiUVΔemrKY/pUCevgA | ArcAB, EvgAS, EmrKY | Multidrug resistance | 4 fold increased resistance | [167,168] |
Overexpression of baeR, evgA, rcsB | BaeSR, RcsBC, CpxRA, EvgAS, ArcAB | Multidrug resistance | 16- to 32-fold increased resistance | [166] |
5.3.3. Activation of TolC-Dependent Efflux Pumps
AcrAB-TolC Regulation under Anaerobic Conditions
Activation of Multiple Antibiotic Resistance Operon
BaeSR: Multidrug-Resistance Efflux Pump Regulator
5.3.4. Prophage-Encoded AraC-Like Transcriptional Regulators
6. Acquired Antibiotic Resistance among EHEC Serotypes
Acid-Adapted Strains | pH | Acquired Resistance | MIC | Reference |
---|---|---|---|---|
EHEC O157:H7 ATCC 43889 | 2.75 | Polymixin B, Colistin | Increased | [16] |
E. coli ATCC25922 | Acidic | Colistin | Increased | [195] |
E. coli (EHEC) ATCC 43889E. coli ATCC 10536 | 2 | Tetracycline | Increased | [41] |
Foodborne EHEC strain | 4 | Nalidixic acid, amikacin, ceftriaxone | 5 fold increase | [60] |
E. coli K-12 | 2 | Multidrug resistance | Increased | [45] |
E. coli O157:H7 strain | 4.8 | Trimethoprim, ampicillin, and ofloxacin | Increased | [196] |
EHEC Gut flora | 2.5–4 | Multidrug resistance | Increased | [43,197,198,199,200,201,202] |
Tetracycline | [48] | |||
Rifampicin resistant E. coli | 2.5–4 | Sulphonamide, gentamicin and ampicillin | Increased | [203] |
E. coli O157:H7 | 3.7 | Streptomycin | Increased | [204] |
29A and 29B EHEC strains | 2.5–4 | Ampicillin | Increased | [205] |
E. coli IID 5208 | 3.2 | Chitosan | Increased | [206] |
Foodborne E. coli | Acidic | Aminoglycosides, cephalosporins, and quinolones | Increased | [207] |
E. coli ATCC 12806 | Acidic | Ampicillin-sulbactam, amoxicillin-clavulanic acid, cefotaxime, trimethoprim-sulphamethoxazole, tetracycline, ciprofloxacin, nitrofurantoin | Not evaluated | [208] |
E. coli O157:H7 | Acidic | Amoxicillin, tetracycline, ciprofloxacin, chloramphenicol, streptomycin, erythromycin, and gentamicin | Increased | [209] |
E. coli BW25113 | 3 | Trimethoprim | Increased | [46] |
E. coli O157:H7, E. coli O26:H7 | 4.2–4.4 | Ampicillin, kanamycin, streptomycin, trimethoprim, nalidixic acid, rifampicin, sulphonamides, chloramphenicol, chloramphenicol, tetracycline, minocycline, doxycycline | Increased | [210] |
E. coli O157:H7 | 1.5 | Trimethoprim, ampicillin, ofloxacin | Increased | [211] |
E. coli | Acidic | Ampicillin | Increased | [212] |
EHEC W3110 | Acidic | Chloramphenicol | Increased | [47] |
EHEC EV18 strain | Acidic | Norfloxacin | Increased | [44]. |
E. coli K12 | Acidic | Cephalosporins, ceftiofur, cefotaxime | 2-fold increased | [151] |
7. Effect on Pathogenicity and Biofilm Formation
8. Risk of Acquired Resistance in Non-Pathogenic Bacteria
9. Conclusions and Future Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Glu | l-glutamate |
Gln | Glutamine |
GABA | Gamma-aminobutyric acid |
Arg | l-arginine |
AdiA | Arginine decarboxylase |
Lys | Lysine |
CRP | Global regulatory cyclic AMP receptor protein |
NA | Not applicable |
EHEC | Enterohaemorrhagic Escherichia coli |
HUS | Hemolytic uremic syndrome |
TCS | Two-component system |
LEE | Locus of enterocyte effacement |
AFI | Acid fitness island |
AR2 | Glutamate-dependent acid resistance system |
AR1 | Oxidative system |
RNAP | RNA polymerase |
T3SS | Type-three secretion system |
AMP | Antimicrobial peptides |
CAPs | Cationic antimicrobial peptides |
ESBLs | Extended-spectrum β-lactamases |
LPS | Lipopolysaccharides |
PBPs | Penicillin-binding proteins |
IHF | Integration host factor |
RND | Resistance nodulation division |
LEE-PAI | Locus of enterocyte effacement pathogenicity island |
LAB | Lactic acid bacteria |
CD | Crohn’s disease |
IBD | Inflammatory bowel disease |
UC | Ulcerative colitis |
GAD | Glutamate-dependent system |
ADI | Arginine-dependent system |
CAD | Lysine-dependent system |
MIC | Minimum inhibitory concentration |
GaNt | Gallium nitrate |
References
- Maurer, L.M.; Yohannes, E.; Bondurant, S.S.; Radmacher, M.; Slonczewski, J.L. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 2005, 187, 304–319. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.W. Escherichia coli acid resistance: Tales of an amateur acidophile. Nat. Rev. Microbiol. 2004, 2, 898–907. [Google Scholar] [CrossRef]
- Gullian-Klanian, M.; Sánchez-Solis, M.J. Growth kinetics of Escherichia coli O157:H7 on the epicarp of fresh vegetables and fruits. Braz. J. Microbiol. 2018, 49, 104–111. [Google Scholar] [CrossRef]
- Wang, L.; Bassiri, M.; Najafi, R.; Najafi, K.; Yang, J.; Khosrovi, B.; Hwong, W.; Barati, E.; Belisle, B.; Celeri, C.; et al. Hypochlorous acid as a potential wound care agent: Part I. Stabilized hypochlorous acid: A component of the inorganic armamentarium of innate immunity. J. Burns Wounds 2007, 6, e5. [Google Scholar]
- Pijuan, M.; Wang, Q.; Ye, L.; Yuan, Z. Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresour. Technol. 2012, 116, 92–98. [Google Scholar] [CrossRef]
- Drosou, A.; Falabella, A.; Kirsner, R.S. Antiseptics on Wounds: An Area of Controversy. Wounds 2003, 15, 149–166. [Google Scholar]
- Nagoba, B.S.; Selkar, S.P.; Wadher, B.J.; Gandhi, R.C. Acetic acid treatment of pseudomonal wound infections—A review. J. Infect. Public Health 2013, 6, 410–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.L.; Kalchayanand, N.; Bosilevac, J.M. Pre- and post-harvest interventions to reduce pathogen contamination in the U.S. beef industry. Meat Sci. 2014, 98, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.-M.; Hung, Y.-C.; Doyle, M.P.; Ezeike, G.O.I.; Kim, C. Pathogen Reduction and Quality of Lettuce Treated with Electrolyzed Oxidizing and Acidified Chlorinated Water. J. Food Sci. 2001, 66, 1368–1372. [Google Scholar] [CrossRef]
- Karmali, M.A.; Gannon, V.; Sargeant, J.M. Verocytotoxin-producing Escherichia coli (VTEC). Vet. Microbiol. 2010, 140, 360–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiring, J.; Andreoli, S.P.; Zimmerhackl, L.B. Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). Pediatr. Nephrol. 2008, 23, 1749–1760. [Google Scholar] [CrossRef] [Green Version]
- Iramiot, J.S.; Kajumbula, H.; Bazira, J.; Kansiime, C.; Asiimwe, B.B. Antimicrobial resistance at the human–animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci. Rep. 2020, 10, 14737. [Google Scholar] [CrossRef]
- Jakobsen, L.; Spangholm, D.J.; Pedersen, K.; Jensen, L.B.; Emborg, H.D.; Agerso, Y.; Aarestrup, F.M.; Hammerum, A.M.; Frimodt-Moller, N. Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. Int. J. Food Microbiol. 2010, 142, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Kanjee, U.; Houry, W.A. Mechanisms of acid resistance in Escherichia coli. Annu. Rev. Microbiol. 2013, 67, 65–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferens, W.A.; Hovde, C.J. Escherichia coli O157:H7: Animal reservoir and sources of human infection. Foodborne Pathog. Dis. 2011, 8, 465–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, D.; Kim, S.M.; Kim, H.J. Transcriptome changes and polymyxin resistance of acid-adapted Escherichia coli O157:H7 ATCC 43889. Gut Pathog. 2020, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Yousef, A.E.; Juneja, V.K. Microbial Stress Adaptation and Food Safety, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002; p. 384. [Google Scholar]
- Cointe, A.; Birgy, A.; Mariani-Kurkdjian, P.; Liguori, S.; Courroux, C.; Blanco, J.; Delannoy, S.; Fach, P.; Loukiadis, E.; Bidet, P.; et al. Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin-Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Emerg. Infect. Dis. 2018, 24, 2262–2269. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Tantawy, M.; Gouda, N.A.; Elzayat, M.G.; Gabra, S.; Nabih, A.; Diab, A.A.; El-Hadidi, M.; Bakry, U.; Shoeb, M.R.; et al. Genotypic characterization of multiple drug resistant Escherichia coli isolates from a pediatric cancer hospital in Egypt. Sci. Rep. 2020, 10, 4165. [Google Scholar] [CrossRef] [PubMed]
- Wi, S.M.; Yoon, J.W. Acid resistance mechanisms in enterohemorrhagic Escherichia coli O157:H7. J. Prev. Vet. Med. 2018, 42, 124–132. [Google Scholar] [CrossRef]
- Delannoy, S.; Beutin, L.; Fach, P. Towards a molecular definition of enterohemorrhagic Escherichia coli (EHEC): Detection of genes located on O island 57 as markers to distinguish EHEC from closely related enteropathogenic E. coli strains. J. Clin. Microbiol. 2013, 51, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Segura, A.; Bertoni, M.; Auffret, P.; Klopp, C.; Bouchez, O.; Genthon, C.; Durand, A.; Bertin, Y.; Forano, E. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genom. 2018, 19, 766. [Google Scholar] [CrossRef] [Green Version]
- Saile, N.; Voigt, A.; Kessler, S.; Stressler, T.; Klumpp, J.; Fischer, L.; Schmidt, H. Escherichia coli O157:H7 Strain EDL933 Harbors Multiple Functional Prophage-Associated Genes Necessary for the Utilization of 5-N-Acetyl-9-O-Acetyl Neuraminic Acid as a Growth Substrate. Appl. Environ. Microbiol. 2016, 82, 5940–5950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panos, G.Z.; Betsi, G.I.; Falagas, M.E. Systematic review: Are antibiotics detrimental or beneficial for the treatment of patients with Escherichia coli O157:H7 infection? Aliment. Pharmacol. Ther. 2006, 24, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Soysal, N.; Mariani-Kurkdjian, P.; Smail, Y.; Liguori, S.; Gouali, M.; Loukiadis, E.; Fach, P.; Bruyand, M.; Blanco, J.; Bidet, P.; et al. Enterohemorrhagic Escherichia coli Hybrid Pathotype O80:H2 as a New Therapeutic Challenge. Emerg. Infect. Dis. 2016, 22, 1604–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Hebert, R.J.; Olcott, E.S.; Johnson, L.M.; Hargrett, N.T.; et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 1983, 308, 681–685. [Google Scholar] [CrossRef]
- Lim, J.Y.; Yoon, J.; Hovde, C.J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Menne, J.; Nitschke, M.; Stingele, R.; Abu-Tair, M.; Beneke, J.; Bramstedt, J.; Bremer, J.P.; Brunkhorst, R.; Busch, V.; Dengler, R.; et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: Case-control study. BMJ 2012, 345, e4565. [Google Scholar] [CrossRef] [Green Version]
- Venturini, C.; Beatson, S.A.; Djordjevic, S.P.; Walker, M.J. Multiple antibiotic resistance gene recruitment onto the enterohemorrhagic Escherichia coli virulence plasmid. FASEB J. 2010, 24, 1160–1166. [Google Scholar] [CrossRef]
- Um, M.M.; Brugère, H.; Kérourédan, M.; Oswald, E.; Bibbal, D. Antimicrobial Resistance Profiles of Enterohemorrhagic and Enteropathogenic Escherichia coli of Serotypes O157:H7, O26:H11, O103:H2, O111:H8, O145:H28 Compared to Escherichia coli Isolated from the Same Adult Cattle. Microb. Drug Resist. Larchmt. N. Y. 2018, 24, 852–859. [Google Scholar] [CrossRef]
- Medina, A.; Horcajo, P.; Jurado, S.; De La Fuente, R.; Ruiz-Santa-Quiteria, J.A.; Domínguez-Bernal, G.; Orden, J.A. Phenotypic and Genotypic Characterization of Antimicrobial Resistance in Enterohemorrhagic Escherichia coli and Atypical Enteropathogenic E. coli Strains from Ruminants. J. Vet. Diagn. Investig. 2011, 23, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Guiral, E.; Gonçalves Quiles, M.; Muñoz, L.; Moreno-Morales, J.; Alejo-Cancho, I.; Salvador, P.; Alvarez-Martinez, M.J.; Marco, F.; Vila, J. Emergence of Resistance to Quinolones and β-Lactam Antibiotics in Enteroaggregative and Enterotoxigenic Escherichia coli Causing Traveler’s Diarrhea. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadan, A.A.; Abdelaziz, N.A.; Amin, M.A.; Aziz, R.K. Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci. Rep. 2019, 9, 4224. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.H.; Samir, R.; Aziz, R.K.; Toama, M.A. Two putative MmpL homologs contribute to antimicrobial resistance and nephropathy of enterohemorrhagic E. coli O157:H7. Gut Pathog. 2019, 11, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühlen, S.; Dersch, P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front. Cell. Infect. Microbiol. 2020, 10, 169. [Google Scholar] [CrossRef]
- Zhang, Q.; Donohue-Rolfe, A.; Krautz-Peterson, G.; Sevo, M.; Parry, N.; Abeijon, C.; Tzipori, S. Gnotobiotic piglet infection model for evaluating the safe use of antibiotics against Escherichia coli O157:H7 infection. J. Infect. Dis. 2009, 199, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agger, M.; Scheutz, F.; Villumsen, S.; Mølbak, K.; Petersen, A.M. Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection: A systematic review and a proposal. J. Antimicrob. Chemother. 2015, 70, 2440–2446. [Google Scholar] [CrossRef] [Green Version]
- Corogeanu, D.; Willmes, R.; Wolke, M.; Plum, G.; Utermöhlen, O.; Krönke, M. Therapeutic concentrations of antibiotics inhibit Shiga toxin release from enterohemorrhagic E. coli O104:H4 from the 2011 German outbreak. BMC Microbiol. 2012, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.G.; Hansen, C.; Riise, E.; Persson, S.; Olsen, K.E. Subtype-specific suppression of Shiga toxin 2 released from Escherichia coli upon exposure to protein synthesis inhibitors. J. Clin. Microbiol. 2008, 46, 2987–2991. [Google Scholar] [CrossRef] [Green Version]
- Wesche, A.M.; Gurtler, J.B.; Marks, B.P.; Ryser, E.T. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J. Food Prot. 2009, 72, 1121–1138. [Google Scholar] [CrossRef]
- Hwang, D.; Kim, S.M.; Kim, H.J. Modelling of tetracycline resistance gene transfer by commensal Escherichia coli food isolates that survived in gastric fluid conditions. Int. J. Antimicrob. Agents 2017, 49, 81–87. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sasaki, T.; Agui, N. Possible food contamination with the excreta of housefly with enterohemorrhagic Escherichia coli O157:H7. Med Entomol. Zool. 2002, 53, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect. Drug Resist. 2014, 7, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Fernández, E.Z.; Schuldiner, S. Acidification of Cytoplasm in Escherichia coli Provides a Strategy to Cope with Stress and Facilitates Development of Antibiotic Resistance. Sci. Rep. 2020, 10, 9954. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, S.H.; Lee, A.V.; Pham, M.T.N.; Kassaye, B.B.; Li, H.; Tallada, S.; Lis, C.; Lang, M.; Liu, Y.; Ahmed, N.; et al. Salicylate, Bile Acids and Extreme Acid Cause Fitness Tradeoffs for Multidrug Pumps in Escherichia coli K-12. bioRxiv 2020. [Google Scholar] [CrossRef]
- Mitosch, K.; Rieckh, G.; Bollenbach, T. Noisy Response to Antibiotic Stress Predicts Subsequent Single-Cell Survival in an Acidic Environment. Cell Syst. 2017, 4, 393–403.e395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.P.; Li, H.; Engmann, M.L.; Bischof, K.M.; Kunka, K.S.; Harris, M.E.; Tancredi, A.C.; Ditmars, F.S.; Basting, P.J.; George, N.S.; et al. Inverted Regulation of Multidrug Efflux Pumps, Acid Resistance and Porins in Benzoate-Evolved Escherichia coli K-12. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 2013, 4, 2151. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Ma, Y.; Daliri, E.B.-M.; Koseki, S.; Wei, S.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci. Technol. 2020, 95, 97–106. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Bhagirath, A.Y.; Li, Y.; Patidar, R.; Yerex, K.; Ma, X.; Kumar, A.; Duan, K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int. J. Mol. Sci. 2019, 20, 1781. [Google Scholar] [CrossRef] [Green Version]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta BBA Proteins Proteom. 2009, 1794, 808–816. [Google Scholar] [CrossRef] [Green Version]
- Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013, 4, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.; Spengler, G.; Rodrigues, L.; Viveiros, M.; Ramos, J.; Martins, M.; Couto, I.; Fanning, S.; Pagès, J.-M.; Bolla, J.M.; et al. pH Modulation of efflux pump activity of multi-drug resistant Escherichia coli: Protection during its passage and eventual colonization of the colon. PLoS ONE 2009, 4, e6656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Hancock, R.E.W. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nové, M.; Kincses, A.; Molnár, J.; Amaral, L.; Spengler, G. The Role of Efflux Pumps and Environmental pH in Bacterial Multidrug Resistance. In Vivo Athens Greece 2020, 34, 65–71. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Yu, R.-C.; Chou, C.-C. Increased acid tolerance of Escherichia coli O157:H7 as affected by acid adaptation time and conditions of acid challenge. Food Res. Int. 2003, 36, 49–56. [Google Scholar] [CrossRef]
- Yang, J.; Russell, T.W.; Hocking, D.M.; Bender, J.K.; Srikhanta, Y.N.; Tauschek, M.; Robins-Browne, R.M. Control of Acid Resistance Pathways of Enterohemorrhagic Escherichia coli Strain EDL933 by PsrB, a Prophage-Encoded AraC-Like Regulator. Infect. Immun. 2015, 83, 346–353. [Google Scholar] [CrossRef] [Green Version]
- McMahon, M.A.S.; Xu, J.; Moore, J.E.; Blair, I.S.; McDowell, D.A. Environmental stress and antibiotic resistance in food-related pathogens. Appl. Environ. Microbiol. 2007, 73, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Houry, W.A. Acid stress response in enteropathogenic gammaproteobacteria: An aptitude for survival. Biochem. Cell Biol. 2010, 88, 301–314. [Google Scholar] [CrossRef]
- Ortega, A.D.; Quereda, J.J.; Pucciarelli, M.G.; García-del Portillo, F. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front. Cell. Infect. Microbiol. 2014, 4, 162. [Google Scholar] [CrossRef]
- Castillo-Juárez, I.; Maeda, T.; Mandujano-Tinoco, E.A.; Tomás, M.; Pérez-Eretza, B.; García-Contreras, S.J.; Wood, T.K.; García-Contreras, R. Role of quorum sensing in bacterial infections. World J. Clin. Cases. 2015, 3, 575–598. [Google Scholar] [CrossRef]
- Pitman, S.; Cho, K.H. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens. Int. J. Mol. Sci. 2015, 16, 29797–29814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stincone, A.; Rahman, A.S.; Henderson, I.; Cole, J.; Johnson, M.D.; Daudi, N.; Lund, P.; Antczak, P.; Falciani, F. A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Res. 2011, 39, 7512–7528. [Google Scholar] [CrossRef] [Green Version]
- De Biase, D.; Lund, P.A. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. Adv. Appl. Microbiol. 2015, 92, 49–88. [Google Scholar] [CrossRef] [PubMed]
- De Biase, D.; Pennacchietti, E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: Function, distribution and biomedical implications of the gadBC operon. Mol. Microbiol. 2012, 86, 770–786. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.; Williams, C.; Miller, C. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol. 2003, 185, 6556–6561. [Google Scholar] [CrossRef] [Green Version]
- Moreau, P.L. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J. Bacteriol. 2007, 189, 2249–2261. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Ma, D.; Chen, Y.; Guo, Y.; Chen, G.Q.; Deng, H.; Shi, Y. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res. 2013, 23, 635–644. [Google Scholar] [CrossRef] [Green Version]
- De Biase, D.; Tramonti, A.; Bossa, F.; Visca, P. The response to stationary-phase stress conditions in Escherichia coli: Role and regulation of the glutamic acid decarboxylase system. Mol. Microbiol. 1999, 32, 1198–1211. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Richard, H.; Foster, J.W. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J. Bacteriol. 2003, 185, 4402–4409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirshfield, I.N.; Terzulli, S.; O’Byrne, C. Weak organic acids: A panoply of effects on bacteria. Sci. Prog. 2003, 86, 245–269. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fukamachi, T.; Saito, H.; Kobayashi, H. ATP requirement for acidic resistance in Escherichia coli. J. Bacteriol. 2011, 193, 3072–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diez-Gonzalez, F.; Karaibrahimoglu, Y. Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J. Appl. Microbiol. 2004, 96, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Richard, H.; Foster, J.W. Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential. J. Bacteriol. 2004, 186, 6032–6041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hersh, B.M.; Farooq, F.T.; Barstad, D.N.; Blankenhorn, D.L.; Slonczewski, J.L. A glutamate-dependent acid resistance gene in Escherichia coli. J. Bacteriol. 1996, 178, 3978–3981. [Google Scholar] [CrossRef] [Green Version]
- Castanie-Cornet, M.P.; Penfound, T.A.; Smith, D.; Elliott, J.F.; Foster, J.W. Control of acid resistance in Escherichia coli. J. Bacteriol. 1999, 181, 3525–3535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bearson, B.L.; Lee, I.S.; Casey, T.A. Escherichia coli O157:H7 glutamate- and arginine-dependent acid-resistance systems protect against oxidative stress during extreme acid challenge. Microbiology 2009, 155, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Waterman, S.R.; Small, P.L. Identification of the promoter regions and sigma(s)-dependent regulation of the gadA and gadBC genes associated with glutamate-dependent acid resistance in Shigella flexneri. FEMS Microbiol. Lett. 2003, 225, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.D.; Ryan, S.; Gahan, C.G.M.; Hill, C. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl. Environ. Microbiol. 2005, 71, 2832–2839. [Google Scholar] [CrossRef] [Green Version]
- Su, M.S.; Schlicht, S.; Gänzle, M.G. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb. Cell Factories 2011, 10 (Suppl. 1), S8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergholz, T.M.; Tarr, C.L.; Christensen, L.M.; Betting, D.J.; Whittam, T.S. Recent gene conversions between duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli. Mol. Biol. Evol. 2007, 24, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- O’Byrne, C.P.; Karatzas, K.A. The role of sigma B (sigma B) in the stress adaptations of Listeria monocytogenes: Overlaps between stress adaptation and virulence. Adv. Appl. Microbiol. 2008, 65, 115–140. [Google Scholar] [CrossRef] [PubMed]
- Feehily, C.; Karatzas, K.A.G. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 2013, 114, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Castanie-Cornet, M.P.; Treffandier, H.; Francez-Charlot, A.; Gutierrez, C.; Cam, K. The glutamate-dependent acid resistance system in Escherichia coli: Essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 2007, 153, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Pienaar, J.A.; Singh, A.; Barnard, T.G. Acid-happy: Survival and recovery of enteropathogenic Escherichia coli (EPEC) in simulated gastric fluid. Microb. Pathog. 2019, 128, 396–404. [Google Scholar] [CrossRef]
- Matter, L.B.; Ares, M.A.; Abundes-Gallegos, J.; Cedillo, M.L.; Yanez, J.A.; Martinez-Laguna, Y.; De la Cruz, M.A.; Giron, J.A. The CpxRA stress response system regulates virulence features of avian pathogenic Escherichia coli. Environ. Microbiol. 2018, 20, 3363–3377. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Yu, L.; Gao, F.; Jiang, Y.; Xu, X. Resistance of biofilm formation and formed-biofilm of Escherichia coli O157:H7 exposed to acid stress. LWT 2020, 118, 108787. [Google Scholar] [CrossRef]
- Boon, N.; Kaur, M.; Aziz, A.; Bradnick, M.; Shibayama, K.; Eguchi, Y.; Lund, P.A. The Signaling Molecule Indole Inhibits Induction of the AR2 Acid Resistance System in Escherichia coli. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Wu, L.; Liu, Z.; Lv, Y.; Feng, J.; Wang, W.; Xue, Y.; Wang, D.; Li, J.; Drlica, K.; et al. Gain-of-Function Mutations in Acid Stress Response (evgS) Protect Escherichia coli from Killing by Gallium Nitrate, an Antimicrobial Candidate. Antimicrob. Agents Chemother. 2021, 65, e01595-20. [Google Scholar] [CrossRef]
- White-Ziegler, C.A.; Um, S.; Perez, N.M.; Berns, A.L.; Malhowski, A.J.; Young, S. Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiol. 2008, 154, 148–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Fierke, C.A. The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 2013, 5, 372–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.D.; Igoshin, O.A. Overlaid positive and negative feedback loops shape dynamical properties of PhoPQ two-component system. PLoS Comput. Biol. 2021, 17, e1008130. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.M.; Kim, J.W.; Song, J.W.; Blank, L.M.; Park, J.B. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity. PLoS ONE 2016, 11, e0163265. [Google Scholar] [CrossRef]
- Szczesny, M.; Beloin, C.; Ghigo, J.M. Increased Osmolarity in Biofilm Triggers RcsB-Dependent Lipid A Palmitoylation in Escherichia coli. mBio 2018, 9, e01415-18. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-J.; Lin, C.-T.; Chiang, J.-D.; Lin, C.-Y.; Tay, Y.-X.; Fan, L.-C.; Peng, K.-N.; Lin, C.-H.; Peng, H.-L. RcsB regulation of the YfdX-mediated acid stress response in Klebsiella pneumoniae CG43S3. PLoS ONE 2019, 14, e0212909. [Google Scholar] [CrossRef]
- Castanié-Cornet, M.-P.; Cam, K.; Bastiat, B.; Cros, A.; Bordes, P.; Gutierrez, C. Acid stress response in Escherichia coli: Mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res. 2010, 38, 3546–3554. [Google Scholar] [CrossRef] [Green Version]
- Burton, N.A.; Johnson, M.D.; Antczak, P.; Robinson, A.; Lund, P.A. Novel aspects of the acid response network of E. coli K-12 are revealed by a study of transcriptional dynamics. J. Mol. Biol. 2010, 401, 726–742. [Google Scholar] [CrossRef]
- Gong, S.; Ma, Z.; Foster, J.W. The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol. Microbiol. 2004, 54, 948–961. [Google Scholar] [CrossRef]
- Eguchi, Y.; Ishii, E.; Yamane, M.; Utsumi, R. The connector SafA interacts with the multi-sensing domain of PhoQ in Escherichia coli. Mol. Microbiol. 2012, 85, 299–313. [Google Scholar] [CrossRef]
- Tu, J.; Huang, B.; Zhang, Y.; Zhang, Y.; Xue, T.; Li, S.; Qi, K. Modulation of virulence genes by the two-component system PhoP-PhoQ in avian pathogenic Escherichia coli. Pol. J. Vet. Sci. 2016, 19, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Jin, F.; Glatter, T.; Sourjik, V. Osmosensing by the bacterial PhoQ/PhoP two-component system. Proc. Natl. Acad. Sci. USA 2017, 114, e10792–e10798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, J.K.; Vendura, K.W.; Stevens, S.M., Jr.; Riordan, J.T. RcsB determines the locus of enterocyte effacement (LEE) expression and adherence phenotype of Escherichia coli O157:H7 spinach outbreak strain TW14359 and coordinates bicarbonate-dependent LEE activation with repression of motility. Microbiology 2013, 159, 2342–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giangrossi, M.; Zattoni, S.; Tramonti, A.; De Biase, D.; Falconi, M. Antagonistic role of H-NS and GadX in the regulation of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. J. Biol. Chem. 2005, 280, 21498–21505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hommais, F.; Krin, E.; Coppee, J.Y.; Lacroix, C.; Yeramian, E.; Danchin, A.; Bertin, P. GadE (YhiE): A novel activator involved in the response to acid environment in Escherichia coli. Microbiology 2004, 150, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tramonti, A.; De Canio, M.; De Biase, D. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: Transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol. Microbiol. 2008, 70, 965–982. [Google Scholar] [CrossRef]
- Bordi, C.; Theraulaz, L.; Mejean, V.; Jourlin-Castelli, C. Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol. Microbiol. 2003, 48, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Masuda, N.; Foster, J.W. Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J. Bacteriol. 2004, 186, 7378–7389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prost, L.R.; Daley, M.E.; Le Sage, V.; Bader, M.W.; Le Moual, H.; Klevit, R.E.; Miller, S.I. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol. Cell 2007, 26, 165–174. [Google Scholar] [CrossRef]
- Simpson, B.W.; Trent, M.S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 2019, 17, 403–416. [Google Scholar] [CrossRef]
- Roggiani, M.; Yadavalli, S.S.; Goulian, M. Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli. PLoS Genet. 2017, 13, e1007101. [Google Scholar] [CrossRef] [PubMed]
- Battesti, A.; Majdalani, N.; Gottesman, S. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 2011, 65, 189–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, N.; Church, G.M. Regulatory network of acid resistance genes in Escherichia coli. Mol. Microbiol. 2003, 48, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, Y.; Ishii, E.; Hata, K.; Utsumi, R. Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 2011, 193, 1222–1228. [Google Scholar] [CrossRef] [Green Version]
- Rhouma, M.; Romero-Barrios, P.; Gaucher, M.-L.; Bhachoo, S. Antimicrobial resistance associated with the use of antimicrobial processing aids during poultry processing operations: Cause for concern? Crit. Rev. Food Sci. Nutr. 2020, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Gunn, L.; Wall, P.; Fanning, S. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiol. 2017, 64, 23–32. [Google Scholar] [CrossRef]
- Woode, B.K.; Daliri, F.; Daliri, E.B.-M. Correlation Between Food Processing-Associated Stress Tolerance and Antimicrobial Resistance in Food Pathogens. J. Food Hyg. Saf. 2020, 35, 103–108. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; Shaker, R.R.; Olaimat, A.N.; Jaradat, Z.W.; Zain Elabedeen, N.A.; Holley, R.A. Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiol. 2015, 46, 154–160. [Google Scholar] [CrossRef]
- Komora, N.; Bruschi, C.; Magalhães, R.; Ferreira, V.; Teixeira, P. Survival of Listeria monocytogenes with different antibiotic resistance patterns to food-associated stresses. Int. J. Food Microbiol. 2017, 245, 79–87. [Google Scholar] [CrossRef]
- De Sales, C.V.; De Melo, A.N.F.; Niedzwiedzka, K.M.; De Souza, E.L.; Schaffner, D.W.; Magnani, M. Changes of Antibiotic Resistance Phenotype in Outbreak-Linked Salmonella enterica Strains after Exposure to Human Simulated Gastrointestinal Conditions in Chicken Meat. J. Food Prot. 2018, 81, 1844–1850. [Google Scholar] [CrossRef]
- Karatzas, K.A.; Webber, M.A.; Jorgensen, F.; Woodward, M.J.; Piddock, L.J.; Humphrey, T.J. Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J. Antimicrob. Chemother. 2007, 60, 947–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebinesh, A.; Vijaykumar, G.; Kiran, T. Exposure to stress minimizes the zone of antimicrobial action: A phenotypic demonstration with six Acinetobacter baumannii strains. MicroMedicine 2018, 6, 16–35. [Google Scholar]
- Al-Nabulsi, A.A.; Osaili, T.M.; Elabedeen, N.A.Z.; Jaradat, Z.W.; Shaker, R.R.; Kheirallah, K.A.; Tarazi, Y.H.; Holley, R.A. Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii. Int. J. Food Microbiol. 2011, 146, 137–143. [Google Scholar] [CrossRef]
- Ma, Y.; Lan, G.; Li, C.; Cambaza, E.M.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Stress tolerance of Staphylococcus aureus with different antibiotic resistance profiles. Microb. Pathog. 2019, 133, 103549. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Hernández, M.M.; Rojas-López, M.; Medrano-López, A.; Nuñez-Reza, K.J.; Puente, J.L.; Martínez-Laguna, Y.; Torres, A.G. Environmental regulation of the long polar fimbriae 2 of enterohemorrhagic Escherichia coli O157:H7. FEMS Microbiol. Lett. 2014, 357, 105–114. [Google Scholar] [CrossRef] [PubMed]
- House, B.; Kus, J.V.; Prayitno, N.; Mair, R.; Que, L.; Chingcuanco, F.; Gannon, V.; Cvitkovitch, D.G.; Barnett Foster, D. Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157:H7 virulence. Microbiology (Reading, England) 2009, 155, 2907–2918. [Google Scholar] [CrossRef] [Green Version]
- Lajhar, S.A.; Brownlie, J.; Barlow, R. Survival capabilities of Escherichia coli O26 isolated from cattle and clinical sources in Australia to disinfectants, acids and antimicrobials. BMC Microbiol. 2017, 17, 47. [Google Scholar] [CrossRef] [Green Version]
- King, T.; Lucchini, S.; Hinton, J.C.; Gobius, K. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl. Environ. Microbiol. 2010, 76, 6514–6528. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiao, M.; Horiyama, T.; Zhang, Y.; Li, X.; Nishino, K.; Yan, A. The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J. Biol. Chem. 2011, 286, 26576–26584. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Shan, Y.; Pan, Q.; Gao, X.; Yan, A. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Front. Microbiol. 2013, 4, 194. [Google Scholar] [CrossRef] [Green Version]
- Novoa, D.; Conroy-Ben, O. The Anaerobic Efflux Pump MdtEF-TolC Confers Resistance to Cationic Biocides. bioRxiv 2019. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Wierzbowski, J.; Cottarel, G.; Collins, J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 2008, 135, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Rice, A.; Wereszczynski, J. Atomistic Scale Effects of Lipopolysaccharide Modifications on Bacterial Outer Membrane Defenses. Biophys. J. 2018, 114, 1389–1399. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, A.; Pontes, F.J.; Lins, R.D.; Soares, T.A. Hydration, ionic valence and cross-linking propensities of cations determine the stability of lipopolysaccharide (LPS) membranes. Chem. Commun. Camb. 2014, 50, 231–233. [Google Scholar] [CrossRef]
- Carpenter, T.S.; Parkin, J.; Khalid, S. The free energy of small solute permeation through the Escherichia coli outer membrane has a distinctly asymmetric profile. J. Phys. Chem. Lett. 2016, 7, 3446–3451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, A.-S. Bile Salts-and Ferric Iron-Induced PMRAB Dependent Resistance to CAMPs in EHEC O157:H7; Ryerson University: Toronto, ON, Canada, 2017. [Google Scholar]
- Santos, D.E.; Pol-Fachin, L.R.; Lins, R.D.; Soares, T.A. Polymyxin binding to the bacterial outer membrane reveals cation displacement and increasing membrane curvature in susceptible but not in resistant lipopolysaccharide chemotypes. J. Chem. Inf. 2017, 57, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Laubacher, M.E.; Ades, S.E. The Rcs Phosphorelay Is a Cell Envelope Stress Response Activated by Peptidoglycan Stress and Contributes to Intrinsic Antibiotic Resistance. J. Bacteriol. 2008, 190, 2065–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, M.Q.; Parker, C.T.; Louie, J.W.; Huynh, S.; Fagerquist, C.K.; Mandrell, R.E. RcsB Contributes to the Distinct Stress Fitness among Escherichia coli O157:H7 Curli Variants of the 1993 Hamburger-Associated Outbreak Strains. Appl. Environ. Microbiol. 2012, 78, 7706–7719. [Google Scholar] [CrossRef] [Green Version]
- Poole, K. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 2012, 67, 2069–2089. [Google Scholar] [CrossRef] [Green Version]
- Tierney, A.R.; Rather, P.N. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol. 2019, 14, 533–552. [Google Scholar] [CrossRef]
- Surmann, K.; Ćudić, E.; Hammer, E.; Hunke, S. Molecular and proteome analyses highlight the importance of the Cpx envelope stress system for acid stress and cell wall stability in Escherichia coli. Microbiologyopen 2016, 5, 582–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, K.; Yamasaki, S.; Hayashi-Nishino, M.; Yamaguchi, A. Effect of NlpE overproduction on multidrug resistance in Escherichia coli. Antimicrob. Agents Chemother. 2010, 54, 2239–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weatherspoon-Griffin, N.; Zhao, G.; Kong, W.; Kong, Y.; Andrews-Polymenis, H.M.; McClelland, M.; Shi, Y. The CpxR/CpxA Two-Component System Up-Regulates Two Tat-Dependent Peptidoglycan Amidases to Confer Bacterial Resistance to Antimicrobial Peptide. J. Biol. Chem. 2011, 286, 5529–5539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, E.J.; Herrera, C.M.; Crofts, A.A.; Trent, M.S. PmrD is required for modifications to Escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob. Agents Chemother. 2015, 59, 2051–2061. [Google Scholar] [CrossRef] [Green Version]
- Kox, L.F.; Wösten, M.M.; Groisman, E.A. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J. 2000, 19, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Chen, H.D.; Latifi, T.; Groisman, E.A. Reciprocal control between a bacterium’s regulatory system and the modification status of its lipopolysaccharide. Mol. Cell 2012, 47, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Herrera, C.M.; Hankins, J.V.; Trent, M.S. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol. Microbiol. 2010, 76, 1444–1460. [Google Scholar] [CrossRef]
- Pasqua, M.; Grossi, M.; Scinicariello, S.; Aussel, L.; Barras, F.; Colonna, B.; Prosseda, G. The MFS efflux pump EmrKY contributes to the survival of Shigella within macrophages. Sci. Rep. 2019, 9, 2906. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; You, C.; Memon, F.Q.; Zhang, G.; Sun, Y.; Si, H. BaeR participates in cephalosporins susceptibility by regulating the expression level of outer membrane proteins in Escherichia coli. J. Biochem. 2020, 169, 101–108. [Google Scholar] [CrossRef]
- Deininger, K.N.; Horikawa, A.; Kitko, R.D.; Tatsumi, R.; Rosner, J.L.; Wachi, M.; Slonczewski, J.L. A requirement of TolC and MDR efflux pumps for acid adaptation and GadAB induction in Escherichia coli. PLoS ONE 2011, 6, e18960. [Google Scholar] [CrossRef]
- Baral, B.; Mozafari, M.R. Strategic Moves of “Superbugs” Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol. Transl. Sci. 2020, 3, 373–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greie, J.C. The KdpFABC complex from Escherichia coli: A chimeric K+ transporter merging ion pumps with ion channels. Eur. J. Cell Biol. 2011, 90, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; García-Contreras, R.; Wood, T.K. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J. Bacteriol. 2007, 189, 3051–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delhaye, A.; Collet, J.-F.; Laloux, G. Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli. mBio 2016, 7, e00047-16. [Google Scholar] [CrossRef] [Green Version]
- Carone, B.R.; Xu, T.; Murphy, K.C.; Marinus, M.G. High incidence of multiple antibiotic resistant cells in cultures of in enterohemorrhagic Escherichia coli O157:H7. Mutat. Res. 2014, 759, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranova, N.; Nikaido, H. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J. Bacteriol. 2002, 184, 4168–4176. [Google Scholar] [CrossRef] [Green Version]
- Nagakubo, S.; Nishino, K.; Hirata, T.; Yamaguchi, A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J. Bacteriol. 2002, 184, 4161–4167. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.J.; Lepp, D.; McKellar, R.C.; Griffiths, M.W. Examination of stress and virulence gene expression in Escherichia coli O157:H7 using targeted microarray analysis. Foodborne Pathog. Dis. 2008, 5, 437–447. [Google Scholar] [CrossRef]
- Pietiäinen, M.; Gardemeister, M.; Mecklin, M.; Leskelä, S.; Sarvas, M.; Kontinen, V.P. Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology 2005, 151, 1577–1592. [Google Scholar] [CrossRef]
- Arends, S.J.; Weiss, D.S. Inhibiting cell division in Escherichia coli has little if any effect on gene expression. J. Bacteriol. 2004, 186, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.J. The Rcs phosphorelay: More than just a two-component pathway. Future Microbiol. 2010, 5, 1173–1184. [Google Scholar] [CrossRef]
- Ferrières, L.; Clarke, D.J. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol. Microbiol. 2003, 50, 1665–1682. [Google Scholar] [CrossRef]
- Miller, C.; Thomsen, L.E.; Gaggero, C.; Mosseri, R.; Ingmer, H.; Cohen, S.N. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 2004, 305, 1629–1631. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, H.; Nishino, K.; Yamada, J.; Hirata, T.; Yamaguchi, A. Beta-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J. Antimicrob. Chemother. 2003, 52, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Church, G.M. Escherichia coli gene expression responsive to levels of the response regulator EvgA. J. Bacteriol. 2002, 184, 6225–6234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, K.; Inazumi, Y.; Yamaguchi, A. Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli. J. Bacteriol. 2003, 185, 2667–2672. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.A. Anaerobic Bacterial Response to Nitrosative Stress. Adv. Microb. Physiol. 2018, 72, 193–237. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.M.; Kumar, A. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics 2013, 2, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Haycocks, J.R.J.; Middlemiss, A.D.; Kettles, R.A.; Sellars, L.E.; Ricci, V.; Piddock, L.J.V.; Grainger, D.C. The multiple antibiotic resistance operon of enteric bacteria controls DNA repair and outer membrane integrity. Nat. Commun. 2017, 8, 1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, V.; Lister, I.M. MarA, SoxS and Rob of Escherichia coli—Global regulators of multidrug resistance, virulence and stress response. Int. J. Biotechnol. Wellness Ind. 2013, 2, 101–124. [Google Scholar] [CrossRef] [Green Version]
- White, S.; Tuttle, F.E.; Blankenhorn, D.; Dosch, D.C.; Slonczewski, J.L. pH dependence and gene structure of inaA in Escherichia coli. J. Bacteriol. 1992, 174, 1537–1543. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, T.M.; Levy, S.B. Differential Expression of over 60 Chromosomal Genes in Escherichia coli by Constitutive Expression of MarA. J. Bacteriol. 2000, 182, 3467–3474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, N.A.; Dunlop, M.J. Customized Regulation of Diverse Stress Response Genes by the Multiple Antibiotic Resistance Activator MarA. PLoS Comput. Biol. 2017, 13, e1005310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prajapat, M.K.; Jain, K.; Saini, S. Control of MarRAB Operon in Escherichia coli via Autoactivation and Autorepression. Biophys. J. 2015, 109, 1497–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zgurskaya, H.I.; Krishnamoorthy, G.; Ntreh, A.; Lu, S. Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria. Front. Microbiol. 2011, 2, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leblanc, S.K.D.; Oates, C.W.; Raivio, T.L. Characterization of the Induction and Cellular Role of the BaeSR Two-Component Envelope Stress Response of Escherichia coli. J. Bacteriol. 2011, 193, 3367–3375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosner, J.L.; Martin, R.G. Reduction of Cellular Stress by TolC-Dependent Efflux Pumps in Escherichia coli Indicated by BaeSR and CpxARP Activation of spy in Efflux Mutants. J. Bacteriol. 2013, 195, 1042–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schusser, B.; Collarini, E.J.; Yi, H.; Izquierdo, S.M.; Fesler, J.; Pedersen, D.; Klasing, K.C.; Kaspers, B.; Harriman, W.D.; van de Lavoir, M.C.; et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc. Natl. Acad. Sci. USA 2013, 110, 20170–20175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; O’Riordan, M.X. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv. Appl. Microbiol. 2013, 85, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, A.A.; Chan, L.; Han, R.; Tan, J.; Kothary, M.; Jean-Gilles, J.; Tall, B.D. Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes. Infect. Immun. 2005, 73, 4993–5003. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Schellhorn, H.E. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genom. 2009, 10, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mand, T.D.; Döpfer, D.; Ingham, B.; Ané, C.; Kaspar, C.W. Growth and survival parameter estimates and relation to RpoS levels in serotype O157:H7 and non-O157 Shiga toxin-producing Escherichia coli. J. Appl. Microbiol. 2013, 114, 242–255. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, S.; Xu, Y.; Mi, X.; Xing, T.; Li, J.; Zhang, L.; Gao, F.; Jiang, Y. Acid resistance of E. coli O157:H7 and O26:H11 exposure to lactic acid revealed by transcriptomic analysis. LWT 2021, 136, 110352. [Google Scholar] [CrossRef]
- Seo, S.W.; Kim, D.; O’Brien, E.J.; Szubin, R.; Palsson, B.O. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat. Commun. 2015, 6, 7970. [Google Scholar] [CrossRef]
- Kailasan Vanaja, S.; Bergholz, T.M.; Whittam, T.S. Characterization of the Escherichia coli O157:H7 Sakai GadE Regulon. J. Bacteriol. 2009, 191, 1868–1877. [Google Scholar] [CrossRef] [Green Version]
- Pore, D.; Hoque, K.M.; Chakrabarti, M.K. Chapter 10—Animal models in advancement of research in enteric diseases. In Animal Biotechnology, 2nd ed.; Verma, A.S., Singh, A., Eds.; Academic Press: Boston, MA, USA, 2020; pp. 199–219. [Google Scholar] [CrossRef]
- McConnell, E.L.; Basit, A.W.; Murdan, S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J. Pharm. Pharmacol. 2008, 60, 63–70. [Google Scholar] [CrossRef]
- Brenneman, K.E.; Willingham, C.; Kilbourne, J.A.; Curtiss, R., 3rd; Roland, K.L. A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. PLoS ONE 2014, 9, e87411. [Google Scholar] [CrossRef] [Green Version]
- Price, S.B.; Wright, J.C.; DeGraves, F.J.; Castanie-Cornet, M.P.; Foster, J.W. Acid resistance systems required for survival of Escherichia coli O157:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl. Environ. Microbiol. 2004, 70, 4792–4799. [Google Scholar] [CrossRef] [Green Version]
- Chingcuanco, F.; Yu, Y.; Kus, J.V.; Que, L.; Lackraj, T.; Lévesque, C.M.; Barnett Foster, D. Identification of a novel adhesin involved in acid-induced adhesion of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 2012, 158, 2399–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Li, C.; Song, J.; Velkov, T.; Wang, L.; Zhu, Y.; Li, J. Regulating polymyxin resistance in Gram-negative bacteria: Roles of two-component systems PhoPQ and PmrAB. Future Med. 2020, 15, 445–459. [Google Scholar] [CrossRef]
- Miyawaki, S.; Uemura, Y.; Hongo, K.; Kawata, Y.; Mizobata, T. Acid-denatured small heat shock protein HdeA from Escherichia coli forms reversible fibrils with an atypical secondary structure. J. Biol. Chem. 2019, 294, 1590–1601. [Google Scholar] [CrossRef] [Green Version]
- Loose, M.; Naber, K.G.; Coates, A.; Wagenlehner, F.M.E.; Hu, Y. Effect of Different Media on the Bactericidal Activity of Colistin and on the Synergistic Combination With Azidothymidine Against mcr-1-Positive Colistin-Resistant Escherichia coli. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- Azizoglu, R.O. Influence of Antibiotic, Acid, and Salt Stress on Resistance of Escherichia coli O157:H7; NC State University Libraries: Raleigh, NC, USA, 2006. [Google Scholar]
- Sommer, M.O.A.; Dantas, G.; Church, G.M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009, 325, 1128–1131. [Google Scholar] [CrossRef] [Green Version]
- Schjørring, S.; Krogfelt, K.A. Assessment of bacterial antibiotic resistance transfer in the gut. Int. J. Microbiol. 2011, 2011, 312956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salyers, A.A.; Gupta, A.; Wang, Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004, 12, 412–416. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Gupta, S.S.; Nair, G.B.; Mande, S.S. In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geographies and age-groups. PLoS ONE 2013, 8, e83823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparo, M.; Urbizu, L.; Solana, M.V.; Pourcel, G.; Delpech, G.; Confalonieri, A.; Ceci, M.; Sánchez Bruni, S.F. High-level resistance to gentamicin: Genetic transfer between Enterococcus faecalis isolated from food of animal origin and human microbiota. Lett. Appl. Microbiol. 2012, 54, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010, 5, e9836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trobos, M.; Lester, C.H.; Olsen, J.E.; Frimodt-Møller, N.; Hammerum, A.M. Natural transfer of sulphonamide and ampicillin resistance between Escherichia coli residing in the human intestine. J. Antimicrob. Chemother. 2009, 63, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samelis, J.; Ikeda, J.S.; Sofos, J.N. Evaluation of the pH-dependent, stationary-phase acid tolerance in Listeria monocytogenes and Salmonella Typhimurium DT104 induced by culturing in media with 1% glucose: A comparative study with Escherichia coli O157:H7. J. Appl. Microbiol. 2003, 95, 563–575. [Google Scholar] [CrossRef]
- Karami, N.; Martner, A.; Enne, V.I.; Swerkersson, S.; Adlerberth, I.; Wold, A.E. Transfer of an ampicillin resistance gene between two Escherichia coli strains in the bowel microbiota of an infant treated with antibiotics. J. Antimicrob. Chemother. 2007, 60, 1142–1145. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, T.; Tsuchiya, Y.; Terao, M.; Nakamura, K.; Yamamoto, M. Antibacterial effects of Chitosan solution® against Legionella pneumophila, Escherichia coli, and Staphylococcus aureus. Int. J. Food Microbiol. 2006, 112, 96–101. [Google Scholar] [CrossRef]
- Capita, R.; Riesco-Peláez, F.; Alonso-Hernando, A.; Alonso-Calleja, C. Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Appl. Environ. Microbiol. 2014, 80, 1268–1280. [Google Scholar] [CrossRef] [Green Version]
- Capita, R.; Alvarez-Fernández, E.; Fernández-Buelta, E.; Manteca, J.; Alonso-Calleja, C. Decontamination treatments can increase the prevalence of resistance to antibiotics of Escherichia coli naturally present on poultry. Food Microbiol. 2013, 34, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.-B.; Seo, K.-H. Variation of antibiotic resistance in Salmonella Enteritidis, Escherichia coli O157:H7, and Listeria monocytogenes after exposure to acid, salt, and cold stress. J. Food Saf. 2020, 40, e12804. [Google Scholar] [CrossRef]
- Duffy, G.; Walsh, C.; Blair, I.S.; McDowell, D.A. Survival of antibiotic resistant and antibiotic sensitive strains of E. coli O157 and E. coli O26 in food matrices. Int. J. Food Microbiol. 2006, 109, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Azizoglu, R.O.; Drake, M. Impact of antibiotic stress on acid and heat tolerance and virulence factor expression of Escherichia coli O157:H7. J. Food Prot. 2007, 70, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Dai, X. High Salt Cross-Protects Escherichia coli from Antibiotic Treatment through Increasing Efflux Pump Expression. mSphere 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Schembri, M.A.; Kjaergaard, K.; Klemm, P. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 2003, 48, 253–267. [Google Scholar] [CrossRef]
- Beloin, C.; Valle, J.; Latour-Lambert, P.; Faure, P.; Kzreminski, M.; Balestrino, D.; Haagensen, J.A.; Molin, S.; Prensier, G.; Arbeille, B.; et al. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 2004, 51, 659–674. [Google Scholar] [CrossRef]
- Ren, D.; Bedzyk, L.A.; Thomas, S.M.; Ye, R.W.; Wood, T.K. Gene expression in Escherichia coli biofilms. Appl. Microbiol. Biotechnol. 2004, 64, 515–524. [Google Scholar] [CrossRef]
- DeLisa, M.P.; Valdes, J.J.; Bentley, W.E. Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12. J. Bacteriol. 2001, 183, 2918–2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patten, C.L.; Kirchhof, M.G.; Schertzberg, M.R.; Morton, R.A.; Schellhorn, H.E. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol. Genet. Genom. 2004, 272, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Domka, J.; Lee, J.; Bansal, T.; Wood, T.K. Temporal gene-expression in Escherichia coli K-12 biofilms. Environ. Microbiol. 2007, 9, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Page, R.; García-Contreras, R.; Palermino, J.-M.; Zhang, X.-S.; Doshi, O.; Wood, T.K.; Peti, W. Structure and Function of the Escherichia coli Protein YmgB: A Protein Critical for Biofilm Formation and Acid-resistance. J. Mol. Biol. 2007, 373, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Fay, P.A.; Morgan, J.K.; Vendura, K.W.; Versaggi, S.L.; Riordan, J.T. Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli. PLoS ONE 2012, 7, e46288. [Google Scholar] [CrossRef] [Green Version]
- Mathlouthi, A.; Pennacchietti, E.; Biase, D. Effect of Temperature, pH and Plasmids on In Vitro Biofilm Formation in Escherichia coli. Acta Nat. 2018, 10, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Shayanfar, S.; Broumand, A.; Pillai, S.D. Acid stress induces differential accumulation of metabolites in Escherichia coli O26:H11. J. Appl. Microbiol. 2018, 125, 1911–1919. [Google Scholar] [CrossRef]
- Fang, F.C.; Frawley, E.R.; Tapscott, T.; Vázquez-Torres, A. Bacterial Stress Responses during Host Infection. Cell Host Microbe 2016, 20, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G.; Coda, R.; Gobbetti, M. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 2007, 73, 7283–7290. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cao, Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.G.; Bottiglieri, T.; Snead, O.C., 3rd. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol. 2003, 54 (Suppl. 6), S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-H.; Soh, J.; Cha, Y. Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. J. Med. Food 2003, 6, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Charlet, R.; Bortolus, C.; Sendid, B.; Jawhara, S. Bacteroides thetaiotaomicron and Lactobacillus johnsonii modulate intestinal inflammation and eliminate fungi via enzymatic hydrolysis of the fungal cell wall. Sci. Rep. 2020, 10, 11510. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Petersen, F.C.; Shekhar, S. Commensal Bacteria: An Emerging Player in Defense Against Respiratory Pathogens. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Needham, B.D.; Trent, M.S. Fortifying the barrier: The impact of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 2013, 11, 467–481. [Google Scholar] [CrossRef]
- Hoarau, G.; Mukherjee, P.K.; Gower-Rousseau, C.; Hager, C.; Chandra, J.; Retuerto, M.A.; Neut, C.; Vermeire, S.; Clemente, J.; Colombel, J.F.; et al. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease. J. mBio 2016, 7, e01250-16. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhao, W.; Lan, P.; Mou, X. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy. Protein Cell 2020. [Google Scholar] [CrossRef]
- Chin, V.K.; Yong, V.C.; Chong, P.P.; Amin Nordin, S.; Basir, R.; Abdullah, M. Mycobiome in the Gut: A Multiperspective Review. Mediat. Inflamm. 2020, 2020, 9560684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungaro, F.; Massimino, L.; D’Alessio, S.; Danese, S. The gut virome in inflammatory bowel disease pathogenesis: From metagenomics to novel therapeutic approaches. United Eur. Gastroenterol. J. 2019, 7, 999–1007. [Google Scholar] [CrossRef] [PubMed]
Organism | Treatment | Acquired Resistance | MIC at Low pH | Reference |
---|---|---|---|---|
Listeria monocytogenes | pH 5.5–6.0 | Multidrug-resistant | Increased | [119] |
Acid stress | Erythromycin, ciprofloxacin, nitrofurantoin | Increased | [120] | |
Salmonella enterica | pH 2–3.8 | Tetracycline, chloramphenicol, ampicillin, penicillin, cephalosporins, ceftriaxone, cefepime, kanamycin, gentamicin; ciprofloxacin, cyclic lipopeptide polymyxin, sulfamethoxazole-trimethoprim | Increased | [121] |
Chloramphenicol, tetracycline, ampicillin, acriflavine, triclosan | Increased | [122] | ||
Acinetobacter baumannii | Acid stress | Amikacin, norfloxacin, imipenem, meropenem piperacillin-tazobactam | Increased | [123] |
Cronobacter sakazakii | pH 3.5 | Tetracycline, tilmicosin, florfenicol, amoxicillin, ampicillin, vancomycin, neomycin, ciprofloxacin, enrofloxacin | Increased | [124] |
Staphylococcus aureus | pH 1.5 | Multidrug-resistant | Increased | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikh, S.W.; Ali, A.; Ahsan, A.; Shakoor, S.; Shang, F.; Xue, T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics 2021, 10, 522. https://doi.org/10.3390/antibiotics10050522
Sheikh SW, Ali A, Ahsan A, Shakoor S, Shang F, Xue T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics. 2021; 10(5):522. https://doi.org/10.3390/antibiotics10050522
Chicago/Turabian StyleSheikh, Salma Waheed, Ahmad Ali, Asma Ahsan, Sidra Shakoor, Fei Shang, and Ting Xue. 2021. "Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli" Antibiotics 10, no. 5: 522. https://doi.org/10.3390/antibiotics10050522
APA StyleSheikh, S. W., Ali, A., Ahsan, A., Shakoor, S., Shang, F., & Xue, T. (2021). Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics, 10(5), 522. https://doi.org/10.3390/antibiotics10050522