Initially Reduced Linezolid Dosing Regimen to Prevent Thrombocytopenia in Hemodialysis Patients
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics and Clinical Characteristics
2.2. Frequency of Thrombocytopenia and Safety of the Initially Reduced Dosing Strategy
2.3. Linezolid Trough Concentration at Standard and Reduced Doses
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Therapeutic Drug Monitoring Based on trough Concentration
4.3. Measurement of Linezolid Concentration
4.4. Analysis Strategy
4.5. Data Collection
4.6. Evaluation of Myelosuppression
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kato, H.; Hamada, Y.; Hagihara, M.; Hirai, J.; Yamagishi, Y.; Matsuura, K.; Mikamo, H. Bicytopenia, especially thrombocytopenia in hemodialysis and non-hemodialysis patients treated with linezolid therapy. J. Infect. Chemother. 2015, 21, 707–712. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Merelli, M.; Bassetti, M.; Pea, F. Proactive therapeutic drug monitoring (tdm) may be helpful in managing long-term treatment with linezolid safely: Findings from a monocentric, prospective, open-label, interventional study. J. Antimicrob. Chemother. 2019. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, E.; Cho, Y.J.; Lee, Y.J.; Rhie, S.J. Linezolid-induced thrombocytopenia increases mortality risk in intensive care unit patients, a 10 year retrospective study. J. Clin. Pharm. Ther. 2019, 44, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, V.C.; Wang, Y.T.; Wang, C.Y.; Tsai, I.J.; Wu, K.D.; Hwang, J.J.; Hsueh, P.R. High frequency of linezolid-associated thrombocytopenia and anemia among patients with end-stage renal disease. Clin. Infect. Dis. 2006, 42, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Hiraki, Y.; Tsuji, Y.; Misumi, N.; Hiraike, M.; Matsumoto, K.; Morita, K.; Kamimura, H.; Karube, Y. Pharmacokinetics and elimination efficiency of linezolid during dialysis. Ren. Fail. 2013, 35, 418–420. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, Y.; Hiraki, Y.; Mizoguchi, A.; Hayashi, W.; Kamohara, R.; Kamimura, H.; Karube, Y. Pharmacokinetics of repeated dosing of linezolid in a hemodialysis patient with chronic renal failure. J. Infect. Chemother. 2008, 14, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, C.; Bergia, R.; Cozzi, V.; Clementi, E.; Cattaneo, D. Is it time to revise linezolid doses in peritoneal dialysis patients? A case series. J. Antimicrob. Chemother. 2015, 70, 2918–2920. [Google Scholar] [CrossRef] [Green Version]
- Hanai, Y.; Matsuo, K.; Ogawa, M.; Higashi, A.; Kimura, I.; Hirayama, S.; Kosugi, T.; Nishizawa, K.; Yoshio, T. A retrospective study of the risk factors for linezolid-induced thrombocytopenia and anemia. J. Infect. Chemother. 2016, 22, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Viale, P.; Cojutti, P.; Del Pin, B.; Zamparini, E.; Furlanut, M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J. Antimicrob. Chemother. 2012, 67, 2034–2042. [Google Scholar] [CrossRef]
- Matsumoto, K.; Shigemi, A.; Takeshita, A.; Watanabe, E.; Yokoyama, Y.; Ikawa, K.; Morikawa, N.; Takeda, Y. Analysis of thrombocytopenic effects and population pharmacokinetics of linezolid: A dosage strategy according to the trough concentration target and renal function in adult patients. Int. J. Antimicrob. Agents 2014, 44, 242–247. [Google Scholar] [CrossRef]
- Tsuji, Y.; Holford, N.H.G.; Kasai, H.; Ogami, C.; Heo, Y.A.; Higashi, Y.; Mizoguchi, A.; To, H.; Yamamoto, Y. Population pharmacokinetics and pharmacodynamics of linezolid-induced thrombocytopenia in hospitalized patients. Br. J. Clin. Pharmacol. 2017, 83, 1758–1772. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, Y.; Tashiro, M.; Ashizawa, N.; Ota, Y.; Obi, H.; Nagura, S.; Narukawa, M.; Fukahara, K.; Yoshimura, N.; To, H.; et al. Treatment of mediastinitis due to methicillin-resistant staphylococcus aureus in a renal dysfunction patient undergoing adjustments to the linezolid dose. Intern. Med. 2015, 54, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Kawasuji, H.; Tsuji, Y.; Ogami, C.; Kimoto, K.; Ueno, A.; Miyajima, Y.; Kawago, K.; Sakamaki, I.; Yamamoto, Y. Proposal of initial and maintenance dosing regimens with linezolid for renal impairment patients. BMC Pharmacol. Toxicol. 2021, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Brier, M.E.; Stalker, D.J.; Aronoff, G.R.; Batts, D.H.; Ryan, K.K.; O’Grady, M.; Hopkins, N.K.; Jungbluth, G.L. Pharmacokinetics of linezolid in subjects with renal dysfunction. Antimicrob. Agents Chemother. 2003, 47, 2775–2780. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Takesue, Y.; Nakajima, K.; Ichiki, K.; Tsuchida, T.; Tatsumi, S.; Ishihara, M.; Ikeuchi, H.; Uchino, M. Risk factors associated with the development of thrombocytopenia in patients who received linezolid therapy. J. Infect. Chemother. 2011, 17, 382–387. [Google Scholar] [CrossRef]
- Takahashi, S.; Tsuji, Y.; Kasai, H.; Ogami, C.; Kawasuji, H.; Yamamoto, Y.; To, H. Classification tree analysis based on machine learning for predicting linezolid-induced thrombocytopenia. J. Pharm. Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Töpper, C.; Steinbach, C.L.; Dorn, C.; Kratzer, A.; Wicha, S.G.; Schleibinger, M.; Liebchen, U.; Kees, F.; Salzberger, B.; Kees, M.G. Variable linezolid exposure in intensive care unit patients-possible role of drug-drug interactions. Ther. Drug Monit. 2016, 38, 573–578. [Google Scholar] [CrossRef]
- Hoyo, I.; Martínez-Pastor, J.; Garcia-Ramiro, S.; Climent, C.; Brunet, M.; Cuesta, M.; Mensa, J.; Soriano, A. Decreased serum linezolid concentrations in two patients receiving linezolid and rifampicin due to bone infections. Scand. J. Infect. Dis. 2012, 44, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Cadeo, B.; Cojutti, P.G.; Pecori, D.; Bassetti, M. Linezolid underexposure in a hypothyroid patient on levothyroxine replacement therapy: A case report. Ther. Drug Monit. 2014, 36, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Furlanut, M.; Cojutti, P.; Cristini, F.; Zamparini, E.; Franceschi, L.; Viale, P. Therapeutic drug monitoring of linezolid: A retrospective monocentric analysis. Antimicrob. Agents Chemother. 2010, 54, 4605–4610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pea, F.; Scudeller, L.; Lugano, M.; Baccarani, U.; Pavan, F.; Tavio, M.; Furlanut, M.; Rocca, G.D.; Bresadola, F.; Viale, P. Hyperlactacidemia potentially due to linezolid overexposure in a liver transplant recipient. Clin. Infect. Dis. 2006, 42, 434–435. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, F.; Tsuji, Y.; Seto, Y.; Ogami, C.; Yamamoto, Y.; To, H. Effects of a rifampicin pre-treatment on linezolid pharmacokinetics. PLoS ONE 2019, 14, e0214037. [Google Scholar] [CrossRef] [Green Version]
- Ashizawa, N.; Tsuji, Y.; Kawago, K.; Higashi, Y.; Tashiro, M.; Nogami, M.; Gejo, R.; Narukawa, M.; Kimura, T.; Yamamoto, Y. Successful treatment of methicillin-resistant staphylococcus aureus osteomyelitis with combination therapy using linezolid and rifampicin under therapeutic drug monitoring. J. Infect. Chemother. 2016, 22, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Douros, A.; Grabowski, K.; Stahlmann, R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin. Drug Metab. Toxicol. 2015, 11, 1849–1859. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhu, Z.Y.; Chen, Z.; Li, Y.; Zou, Y.; Yan, M.; Xu, Y.; Wang, F.; Liu, M.Z.; Zhang, M.; et al. Population pharmacokinetics and dosage optimization of linezolid in patients with liver dysfunction. Antimicrob. Agents Chemother. 2020, 64, e00133-20. [Google Scholar] [CrossRef] [PubMed]
- Luque, S.; Muñoz-Bermudez, R.; Echeverría-Esnal, D.; Sorli, L.; Campillo, N.; Martínez-Casanova, J.; González-Colominas, E.; Álvarez-Lerma, F.; Horcajada, J.P.; Grau, S.; et al. Linezolid dosing in patients with liver cirrhosis: Standard dosing risk toxicity. Ther. Drug Monit. 2019, 41, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Xie, J.; Wang, T.; Chen, L.; Zeng, X.; Sun, J.; Wang, X.; Dong, Y. Pharmacokinetic/pharmacodynamic evaluation of linezolid for the treatment of staphylococcal infections in critically ill patients. Int. J. Antimicrob. Agents 2016, 48, 259–264. [Google Scholar] [CrossRef]
- Fiaccadori, E.; Maggiore, U.; Rotelli, C.; Giacosa, R.; Parenti, E.; Picetti, E.; Manini, P.; Andreoli, R.; Cabassi, A. Does haemodialysis significantly affect serum linezolid concentrations in critically ill patients with renal failure? A pilot investigation. Nephrol. Dial. Transpl. 2006, 21, 1402–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, E.; Crass, R.L.; Felton, J.; Hanaya, K.; Pai, M.P. Accumulation of major linezolid metabolites in patients with renal impairment. Antimicrob. Agents Chemother. 2020, 64, e00027-20. [Google Scholar] [CrossRef]
- Morata, L.; De la Calle, C.; Gomez-Cerquera, J.M.; Manzanedo, L.; Casals, G.; Brunet, M.; Cobos-Trigueros, N.; Martinez, J.A.; Mensa, J.; Soriano, A. Risk factors associated with high linezolid trough plasma concentrations. Expert Opin. Pharmacother. 2016, 17, 1183–1187. [Google Scholar] [CrossRef]
Characteristics | All, n = 11 | Standard Dose Group, n = 6 (54.5%) | Initially Reduced-Dose Group, n = 5 (45.5%) | p-Value |
---|---|---|---|---|
Demographics | ||||
Age (years), median (IQR) | 56 (41–60) | 55 (42–64) | 59 (41–76) | 0.78 |
Sex (male/female), (%/%) | 8/3 (72.7/27.3) | 4/2 (66.7/33.3) | 4/1 (80.0/20.0) | 1.00 |
Body weight (kg), median (IQR) | 56.7 (46.3–64.0) | 53.2 (42.3–78.3) | 56.7 (42.8–60.4) | 0.93 |
Body mass index (kg/m2), median (IQR) | 19.8 (17.1–22.6) | 21.2 (16.1–26.1) | 19.8 (17.7–21.1) | 0.65 |
Laboratory, median (IQR) | ||||
Serum creatinine (mg/dL) | 6.8 (5.9–9.8) | 6.8 (5.6–8.5) | 8.5 (6.1–10.6) | 0.31 |
eGFR | 6.1 (4.5–8.5) | 6.8 (5.7–8.3) | 4.5 (4.2–9.3) | 0.65 |
Total bilirubin (mg/dL) | 0.2 (0.2–0.4) | 0.3 (0.2–0.4) | 0.2 (0.2–0.4) | 1.00 |
Baseline hematological parameters | ||||
Hemoglobin concentration (g/dL), median (IQR) | 9.8 (8.5–11.6) | 9.7 (8.2–10.3) | 8.8 (7.3–10.4) | 0.78 |
Platelet count (×103/μL), median (IQR) | 243 (177–319) | 240 (184–488) | 180 (166–201) | 0.12 |
Main reason for linezolid | ||||
Type of infection, n (%) | ||||
Skin and soft tissue infections, and surgical site infections | 8 (72.7) | 3 (50.0) | 5 (100.0) | 0.18 |
Mediastinitis | 3 (27.3) | 2 (33.3) | 1 (20.0) | 1.00 |
Bone and joint infections | 2 (18.2) | 1 (16.7) | 1 (20.0) | 1.00 |
Respiratory tract infections | 1 (9.1) | 1 (16.7) | 0 (0.0) | 1.00 |
Microbiological isolate, n (%) | ||||
MRSA | 5 (45.5) | 3 (50.0) | 2 (40.0) | 1.00 |
MR-CoNS | 3 (27.3) | 2 (33.3) | 1 (20.0) | 0.81 |
No isolate, unknown | 3 (27.3) | 1 (16.7) | 2 (40.0) | 0.55 |
Linezolid dosage and exposure | ||||
Empirical/target therapy, n/n (%/%) | 3/8 (27.3/72.7) | 0/6 (0.0/100.0) | 2/5 (40.0/60.0) | 0.061 |
Dose (mg/kg/day), median (IQR) | - | 22.7 (15.5–28.6) | 10.6 (10.0–15.3) | 0.022 |
Number of all TDM instances, median (IQR) | 10 (3–12) | 10.5 (2.8–14.5) | 5 (2.5–11.5) | 0.52 |
Episodes with TDM assessment performed during linezolid treatment, until end of treatment | 10 (90.9) | 5 (83.3) | 5 (100.0) | 1.00 |
Duration of linezolid treatment (days), median (IQR) | 17 (13–21) | 17.5 (13–30) | 17 (8.5–19) | 0.31 |
Cotreatment, n (%) | ||||
Levothyroxine | 6 (54.5) | 2 (33.3) | 4 (80.0) | 0.24 |
Other antimicrobials, n (%) | ||||
Meropenem | 2 (18.2) | 1 (16.7) | 1 (20.0) | 1.00 |
Piperacillin/tazobactam | 2 (18.2) | 2 (33.3) | 0 (0.0) | 0.45 |
Variables | All, n = 11 | Standard-Dose Group, n = 6 (54.5%) | Initially Reduced-Dose Group, n = 5 (45.5%) | p-Value |
---|---|---|---|---|
Type of toxicity, n (%) | ||||
Thrombocytopenia | 9 (81.8) | 6 (100.0) | 3 (60.0) | 0.18 |
Median time from initiation of therapy to development of thrombocytopenia (n = 9), median days (IQR) | 10 (6.5–11) | 9 (5–10.5) | 10 (10–16) | 0.18 |
Severe thrombocytopenia | 6 (54.5) | 5 (83.3) | 1 (20.0) | 0.080 |
Nadir platelet count (×103/μL), median (range) | 97 (54–208) | 81.5 (57–208) | 131 (54–180) | 0.65 |
Reduction rate of platelet count (%), median (IQR) | 57.8 (35.5–67.0) | 63.1 (52.7–76.1) | 35.5 (6.4–54.7) | 0.055 |
Anemia | 7 (63.6) | 5 (83.3) | 2 (40.0) | 0.24 |
Gastrointestinal intolerance | 2 (18.2) | 2 (33.3) | 0 (0.0) | 0.45 |
Hyponatremia | 2 (18.2) | 2 (33.3) | 0 (0.0) | 0.45 |
Clinical outcome, n (%) | ||||
Failure | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
Thirty-day reinfection | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasuji, H.; Tsuji, Y.; Ogami, C.; Kaneda, M.; Murai, Y.; Kimoto, K.; Ueno, A.; Miyajima, Y.; Fukui, Y.; Sakamaki, I.; et al. Initially Reduced Linezolid Dosing Regimen to Prevent Thrombocytopenia in Hemodialysis Patients. Antibiotics 2021, 10, 496. https://doi.org/10.3390/antibiotics10050496
Kawasuji H, Tsuji Y, Ogami C, Kaneda M, Murai Y, Kimoto K, Ueno A, Miyajima Y, Fukui Y, Sakamaki I, et al. Initially Reduced Linezolid Dosing Regimen to Prevent Thrombocytopenia in Hemodialysis Patients. Antibiotics. 2021; 10(5):496. https://doi.org/10.3390/antibiotics10050496
Chicago/Turabian StyleKawasuji, Hitoshi, Yasuhiro Tsuji, Chika Ogami, Makito Kaneda, Yushi Murai, Kou Kimoto, Akitoshi Ueno, Yuki Miyajima, Yasutaka Fukui, Ippei Sakamaki, and et al. 2021. "Initially Reduced Linezolid Dosing Regimen to Prevent Thrombocytopenia in Hemodialysis Patients" Antibiotics 10, no. 5: 496. https://doi.org/10.3390/antibiotics10050496
APA StyleKawasuji, H., Tsuji, Y., Ogami, C., Kaneda, M., Murai, Y., Kimoto, K., Ueno, A., Miyajima, Y., Fukui, Y., Sakamaki, I., & Yamamoto, Y. (2021). Initially Reduced Linezolid Dosing Regimen to Prevent Thrombocytopenia in Hemodialysis Patients. Antibiotics, 10(5), 496. https://doi.org/10.3390/antibiotics10050496