Prevalence of Antibiotic-Resistant Bacteria ESKAPE among Healthy People Estimated by Monitoring of Municipal Wastewater
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Bacterial Enumeration
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
%ARB | Column1 | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|---|
Comparison | Z | P. unadj | Z | P. unadj | Z | P. unadj | Z | P. unadj | |
MDRA | HW-WW1 | 0.217 | 0.828 | 1.006 | 0.314 | −0.188 | 0.851 | ||
HW-WW2 | 1.003 | 0.316 | 1.666 | 0.096 | −0.391 | 0.696 | |||
WW1-WW2 | 0.907 | 0.364 | 0.808 | 0.419 | −0.384 | 0.701 | −0.322 | 0.748 | |
CARBA | HW-WW1 | −0.144 | 0.885 | 0.264 | 0.791 | −1.161 | 0.246 | −0.325 | 0.745 |
HW-WW2 | 0.314 | 0.753 | 0.017 | 0.987 | 0.013 | 0.989 | −0.718 | 0.472 | |
WW1-WW2 | 0.512 | 0.608 | −0.248 | 0.804 | 1.438 | 0.150 | −0.425 | 0.671 | |
ESBL | HW-WW1 | 0.766 | 0.444 | −1.845 | 0.065 | −1.498 | 0.134 | −1.235 | 0.217 |
HW-WW2 | 0.781 | 0.435 | −2.992 | 0.003 | −1.149 | 0.251 | −1.918 | 0.055 | |
WW1-WW2 | 0.016 | 0.987 | −1.203 | 0.229 | 0.390 | 0.696 | −0.737 | 0.461 | |
MDRP | HW-WW1 | 1.704 | 0.088 | 1.568 | 0.117 | ||||
HW-WW2 | 0.893 | 0.372 | 1.109 | 0.267 | |||||
WW1-WW2 | −0.821 | 0.412 | −1.148 | 0.251 | 0.795 | 0.427 | −0.398 | 0.691 | |
MRSA | HW-WW1 | −1.203 | 0.229 | 1.192 | 0.233 | 0.729 | 0.466 | ||
HW-WW2 | −0.597 | 0.551 | 1.631 | 0.103 | 1.530 | 0.126 | |||
WW1-WW2 | 0.635 | 0.525 | 0.551 | 0.581 | 0.298 | 0.766 | 0.980 | 0.327 | |
VRE | HW-WW1 | ||||||||
HW-WW2 | |||||||||
WW1-WW2 | 0.154 | 0.877 | 0.591 | 0.555 | 1.891 | 0.059 | −0.767 | 0.443 | |
Detection rate | Comparison | Z | P. unadj | Z | P. unadj | Z | P. unadj | Z | P. unadj |
MDRA | HW-WW1 | −0.420 | 0.674 | −1.261 | 0.207 | −1.787 | 0.074 | −1.576 | 0.115 |
HW-WW2 | −0.420 | 0.674 | −1.261 | 0.207 | −1.787 | 0.074 | −1.576 | 0.115 | |
WW1-WW2 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | |
CARBA | HW-WW1 | −1.545 | 0.122 | 0.000 | 1.000 | −1.802 | 0.072 | −1.287 | 0.198 |
HW-WW2 | −1.545 | 0.122 | 0.000 | 1.000 | −1.802 | 0.072 | −1.287 | 0.198 | |
WW1-WW2 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | |
ESBL | HW-WW1 | −1.170 | 0.242 | −1.170 | 0.242 | −1.755 | 0.079 | −1.521 | 0.128 |
HW-WW2 | −1.170 | 0.242 | −1.170 | 0.242 | −1.755 | 0.079 | −1.521 | 0.128 | |
WW1-WW2 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | |
MDRP | HW-WW1 | −1.312 | 0.190 | −1.312 | 0.190 | 1.000 | 0.614 | 0.807 | 0.419 |
HW-WW2 | −1.817 | 0.069 | −1.312 | 0.190 | 1.000 | 0.614 | 0.807 | 0.419 | |
WW1-WW2 | −0.508 | 0.611 | −0.508 | 0.611 | 1.000 | 1.000 | 0.000 | 1.000 | |
MRSA | HW-WW1 | −0.508 | 0.611 | 0.000 | 1.000 | −0.712 | 0.477 | −1.220 | 0.222 |
HW-WW2 | 0.000 | 1.000 | 0.508 | 0.611 | −0.203 | 0.839 | −1.220 | 0.222 | |
WW1-WW2 | 0.635 | 0.525 | 0.551 | 0.581 | 0.508 | 0.611 | 0.000 | 1.000 | |
VRE | HW-WW1 | −1.310 | 0.190 | −0.504 | 0.614 | −1.813 | 0.070 | −0.907 | 0.365 |
HW-WW2 | −1.310 | 0.190 | −0.705 | 0.481 | −1.310 | 0.190 | −1.813 | 0.070 | |
WW1-WW2 | 0.000 | 1.000 | −0.201 | 0.840 | 0.504 | 0.614 | −0.907 | 0.365 |
References
- Gottlieb, T.; Nimmo, G.R. Antibiotic resistance is an emerging threat to public health: An urgent call to action at the Antimicrobial Resistance Summit 2011. Med. J. Aust. 2011, 194, 281–283. [Google Scholar] [CrossRef]
- Pruden, A.; Larsson, D.G.J.; Amézquita, A.; Collignon, P.; Brandt, K.K.; Graham, D.W.; Lazorchak, J.M.; Suzuki, S.; Silley, P.; Snape, J.R.; et al. Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment. Environ. Health Perspect. 2003, 121, 878–885. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Boonyasiri, A.; Tangkoskul, T.; Seenama, C.; Saiyarin, J.; Tiengrim, S.; Thamlikitkul, V. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog. Glob. Health 2014, 108, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Manaia, C.M. Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends Microbiol. 2017, 25, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Sifakis, F.; Harbarth, S.; Schrijver, R.; van Mourik, M.; Voss, A.; Sharland, M.; Rajendran, N.B.; Rodríguez-Baño, J.; Bielicki, J.; et al. Surveillance for control of antimicrobial resistance. Lancet Infect. Dis. 2018, 18, e99–e106. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Charlebois, E.D.; Bangsberg, D.R.; Chambers, H.F.; Perdreau-Remington, F. Population-Based Community Prevalence of Methicillin-Resistant Staphylococcus aureus in the Urban Poor of San Francisco. Clin. Infect. Dis. 2002, 34, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Hocquet, D.; Muller, A.; Bertrand, X. What happens in hospitals does not stay in hospitals: Antibiotic-resistant bacteria in hospital wastewater systems. J. Hosp. Infect. 2016, 93, 395–402. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [Green Version]
- Collignon, P.J. 11: Antibiotic resistance. Infect. Dis. 2002, 177, 5. [Google Scholar] [CrossRef] [PubMed]
- Mckenna, M. The Last Resort: Health Officials Are Watching in Horror as Bacteria Become Resistant to Powerful Carbapenem Antibiotics—One of the Last Drugs on the Shelf. Nature 2013, 499, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Van Duijkeren, E.; Hengeveld, P.; Zomer, T.P.; Landman, F.; Bosch, T.; Haenen, A.; van de Giessen, A. Transmission of MRSA between humans and animals on duck and turkey farms. J. Antimicrob. Chemother. 2016, 71, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Modarai, M.; Naylor, N.R.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J.V. Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Infect. Dis. 2018, 18, e368–e378. [Google Scholar] [CrossRef] [Green Version]
- Pärnänen, K.M.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef] [Green Version]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems–A review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef]
- Paulshus, E.; Kühn, I.; Möllby, R.; Colque, P.; O’Sullivan, K.; Midtvedt, T.; Lingaas, E.; Holmstad, R.; Sørum, H. Diversity and antibiotic resistance among Escherichia coli populations in hospital and community wastewater compared to wastewater at the receiving urban treatment plant. Water Res. 2019, 161, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Manaia, C.M.; Rocha, J.; Scaccia, N.; Marano, R.; Radu, E.; Biancullo, F.; Cerqueira, F.; Fortunato, G.; Iakovides, I.C.; Zammit, I.; et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environ. Int. 2018, 115, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Amador, P.P.; Fernandes, R.M.; Prudêncio, M.C.; Barreto, M.P.; Duarte, I.M. Antibiotic resistance in wastewater: Occurrence and fate of Enterobacteriaceae producers of Class A and Class C β-lactamases. J. Environ. Sci. Health Part A 2015, 50, 26–39. [Google Scholar] [CrossRef]
- Sala, A.; Di Ianni, F.; Pelizzone, I.; Bertocchi, M.; Santospirito, D.; Rogato, F.; Flisi, S.; Spadini, C.; Iemmi, T.; Moggia, E.; et al. The prevalence of Pseudomonas aeruginosa and multidrug resistant Pseudomonas aeruginosa in healthy captive ophidian. PeerJ 2019, 7, e6706. [Google Scholar] [CrossRef] [Green Version]
- Breathnach, A.S.; Cubbon, M.D.; Karunaharan, R.N.; Pope, C.F.; Planche, T.D. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: Association with contaminated hospital waste-water systems. J. Hosp. Infect. 2012, 82, 19–24. [Google Scholar] [CrossRef]
- Magalhães, M.J.T.L.; Pontes, G.; Serra, P.T.; Balieiro, A.; Castro, D.; Pieri, F.A.; Crainey, J.L.; Nogueira, P.A.; Orlandi, P.P. Multidrug resistant Pseudomonas aeruginosa survey in a stream receiving effluents from ineffective wastewater hospital plants. BMC Microbiol. 2016, 16, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, A.; Kuhn, I.; Franklin, A.; Mollby, R. High Prevalence of Vancomycin-Resistant Enterococci in Swedish Sewage. Appl. Environ. Microbiol. 2002, 68, 2838–2842. [Google Scholar] [CrossRef] [Green Version]
- Auguet, O.; Pijuan, M.; Borrego, C.M.; Rodriguez-Mozaz, S.; Triadó-Margarit, X.; Giustina, S.V.D.; Gutierrez, O. Sewers as potential reservoirs of antibiotic resistance. Sci. Total Environ. 2017, 605–606, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Cayford, B.I.; Jiang, G.; Keller, J.; Tyson, G.; Bond, P.L. Comparison of microbial communities across sections a corroding sewer pipe and the effects of wastewater flooding. Biofouling 2017, 9, 780–792. [Google Scholar] [CrossRef]
- Neela, F.A.; Nonaka, L.; Rahman, M.H.; Suzuki, S. Transfer of the chromosomally encoded tetracycline resistance gene tet(M) from marine bacteria to Escherichia coli and Enterococcus faecalis. World J. Microb. Biot. 2009, 25, 1095–1101. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Hammarén, R.; Pal, C.; Östman, M.; Björlenius, B.; Flach, C.F.; Larsson, D.G.J. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 2016, 572, 697–712. [Google Scholar] [CrossRef] [PubMed]
Site | ARB | Detection Rate (%) | Geometric Mean of % Resistance among Positive Samples |
---|---|---|---|
WW1 | CARBA | 100.0 | 8.0 |
ESBL | 100.0 | 5.1 | |
MDRA | 95.8 | 13.9 | |
MDRP | 33.3 | 0.3 | |
MRSA | 75.0 | 14.3 | |
VRE | 79.2 | 0.1 | |
WW2 | CARBA | 100.0 | 7.0 |
ESBL | 100.0 | 4.9 | |
MDRA | 91.7 | 13.5 | |
MDRP | 33.3 | 0.5 | |
MRSA | 66.7 | 11.1 | |
VRE | 83.3 | 0.1 | |
HW | CARBA | 66.7 | 5.8 |
ESBL | 70.8 | 3.6 | |
MDRA | 25.0 | 17.5 | |
MDRP | 8.3 | 40.8 | |
MRSA | 37.5 | 44.5 | |
VRE | 0.0 | Not available |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishiyama, M.; Praise, S.; Tsurumaki, K.; Baba, H.; Kanamori, H.; Watanabe, T. Prevalence of Antibiotic-Resistant Bacteria ESKAPE among Healthy People Estimated by Monitoring of Municipal Wastewater. Antibiotics 2021, 10, 495. https://doi.org/10.3390/antibiotics10050495
Nishiyama M, Praise S, Tsurumaki K, Baba H, Kanamori H, Watanabe T. Prevalence of Antibiotic-Resistant Bacteria ESKAPE among Healthy People Estimated by Monitoring of Municipal Wastewater. Antibiotics. 2021; 10(5):495. https://doi.org/10.3390/antibiotics10050495
Chicago/Turabian StyleNishiyama, Masateru, Susan Praise, Keiichi Tsurumaki, Hiroaki Baba, Hajime Kanamori, and Toru Watanabe. 2021. "Prevalence of Antibiotic-Resistant Bacteria ESKAPE among Healthy People Estimated by Monitoring of Municipal Wastewater" Antibiotics 10, no. 5: 495. https://doi.org/10.3390/antibiotics10050495
APA StyleNishiyama, M., Praise, S., Tsurumaki, K., Baba, H., Kanamori, H., & Watanabe, T. (2021). Prevalence of Antibiotic-Resistant Bacteria ESKAPE among Healthy People Estimated by Monitoring of Municipal Wastewater. Antibiotics, 10(5), 495. https://doi.org/10.3390/antibiotics10050495