Efficacy of Toluidine Blue—Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Question
2.2. Protocol
2.3. Eligibility Criteria
- Animal studies involving Candida albicans or other non-albicans stains;
- In vitro studies involving Candida albicans or other non-albicans stains;
- Randomized clinical trials involving patients with oral candidiasis or denture stomatitis;
- Candida elimination method used in animal studies, in vitro studies and RCT is TBO-mediated antimicrobial photodynamic therapy.
- Studies published in a non–English language;
- Case reports or serial case;
- Letters to the editor;
- Historic reviews;
- Studies published before 1996;
- Duplicated publications.
2.4. Research Collection Strategy
2.5. Information Sources, Search Strategy, and Study Selection
2.6. Assessing Risk of Bias in Individual Studies
2.7. Quality Assessmentand Risk of Bias across Studies
- Course of aPDT, i.e.,:
- Specified photosensitizer concentration (1) or its absence (0);
- Indicated incubation time (1) or its absence (0);
- Negative control group (1) or no negative control group (0);
- Numerical results available (statistics) (1) or its absence (0);
- Catalogued Candida strain/s used in study (1) only noncatalogued strains used (0).
3. Results
3.1. Study Selection
3.2. General Characteristics of the Included Studies
3.3. Characteristics of Light Sources Used in aPDT
3.4. Characteristics of TBO Used in aPDT
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, L.; He, C.; Zhao, C.; Chen, X.; Hua, H.; Yan, Z. Characterization of oral candidiasis and the Candida species profile in patients with oral mucosal diseases. Microb. Pathog. 2019, 134, 103575. [Google Scholar] [CrossRef]
- Lewis, M.A.O.; Williams, D.W. Diagnosis and management of oral candidosis. Br. Dent. J. 2017, 223, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Gulati, M.; Nobile, C.J. Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes Infect. 2016, 18, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Zomorodian, K.; Kavoosi, F.; Pishdad, G.; Mehriar, P.; Ebrahimi, H.; Bandegani, A.; Pakshir, K. Prevalence of oral Candida colonization in patients with diabetes mellitus. J. Mycol. Médicale 2016, 26, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Kawashita, Y.; Funahara, M.; Yoshimatsu, M.; Nakao, N.; Soutome, S.; Saito, T.; Umeda, M. A retrospective study of factors associated with the development of oral candidiasis in patients receiving radiotherapy for head and neck cancer: Is topical steroid therapy a risk factor for oral candidiasis? Medicine 2018, 97, e13073. [Google Scholar] [CrossRef] [PubMed]
- Jhugroo, C.; Divakar, D.D.; Jhugroo, P.; Al-Amri, S.A.S.; Alahmari, A.D.; Vijaykumar, S.; Parine, N.R. Characterization of oral mucosa lesions and prevalence of yeasts in diabetic patients: A comparative study. Microb. Pathog. 2019, 126, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Gendreau, L.; Loewy, Z.G. Epidemiology and Etiology of Denture Stomatitis. J. Prosthodont. 2011, 20, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Negi, M.; Sepolia, N.; Panwar, S.S.; Kumar, M.; Singla, J.; Aggarwal, R.K. Prevalence of oral parameters in smokeless tobacco-associated precancer. J. Fam. Med. Prim. Care 2019, 8, 3956–3961. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.B.; Gulati, M.; Johnson, A.D.; Nobile, C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Genet. 2018, 16, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slowik, J.; Wnuk, M.A.; Grzech, K.; Golenia, A.; Turaj, W.; Ferens, A.; Jurczak, A.; Chomyszyn-Gajewska, M.; Loster, B.; Slowik, A. Periodontitis affects neurological deficit in acute stroke. J. Neurol. Sci. 2010, 297, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Morio, F.; Jensen, R.H.; Le Pape, P.; Arendrup, M.C. Molecular basis of antifungal drug resistance in yeasts. Int. J. Antimicrob. Agents 2017, 50, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.K.; Singla, R.K. Current Trends in Anti-Candida Drug Development. Curr. Top. Med. Chem. 2019, 19, 2525–2526. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Maruyama, N.; Inoue, S.; Ishibashi, H.; Takizawa, T.; Oshima, H.; Abe, S. The Essential Oil of Melaleuca alternifolia (Tea Tree Oil) and Its Main Component, Terpinen-4-ol Protect Mice from Experimental Oral Candidiasis. Biol. Pharm. Bull. 2012, 35, 861–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninomiya, K.; Hayama, K.; Ishijima, S.A.; Maruyama, N.; Irie, H.; Kurihara, J.; Abe, S. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitro. Biol. Pharm. Bull. 2013, 36, 838–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S.C.; Maree, J.E.; Sibanyoni, M. Treatment of oral thrush in HIV/AIDS patients with lemon juice and lemon grass (Cymbopogon citratus) and gentian violet. Phytomedicine 2009, 16, 118–124. [Google Scholar] [CrossRef]
- Brondani, L.P.; da Silva Neto, T.A.; Freitag, R.A.; Lund, R.G. Evaluation of anti-enzyme properties of Origanum vulgare essential oil against oral Candida albicans. J. Mycol. Médicale 2018, 28, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Bhat, V.; Sharma, S.M.; Shetty, V.; Shastry, C.S.; Rao, C.V.; Shenoy, S.; Saha, S.; Balaji, S. Characterization of Herbal Antifungal Agent, Origanum vulgare against Oral Candida spp. Isolated from Patients with Candida-Associated Denture Stomatitis: An In vitro Study. Contemp. Clin. Dent. 2018, 9, S3–S10. [Google Scholar] [CrossRef]
- Taguchi, Y.; Takizawa, T.; Ishibashi, H.; Sagawa, T.; Arai, R.; Inoue, S.; Yamaguchi, H.; Abe, S. Therapeutic Effects on Murine Oral Candidiasis by Oral Administration of Cassia (Cinnamomum cassia) Preparation. Nippon. Ishinkin Gakkai Zasshi 2010, 51, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Jebali, A.; Hajjar, F.H.; Pourdanesh, F.; Hekmatimoghaddam, S.; Kazemi, B.; Masoudi, A.; Daliri, K.; Sedighi, N. Silver and gold nanostructures: Antifungal property of different shapes of these nanostructures on Candida species. Med. Mycol. 2014, 52, 65–72. [Google Scholar] [CrossRef]
- Szweda, P.; Gucwa, K.; Kurzyk, E.; Romanowska, E.; Dzierżanowska-Fangrat, K.; Jurek, A.Z.; Kuś, P.M.; Milewski, S. Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates. Indian J. Microbiol. 2015, 55, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Arita, M.; Nagayoshi, M.; Fukuizumi, T.; Okinaga, T.; Masumi, S.; Morikawa, M.; Kakinoki, Y.; Nishihara, T. Microbicidal efficacy of ozonated water against Candida albicans adhering to acrylic denture plates. Oral Microbiol. Immunol. 2005, 20, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Moger, G.; Khatri, I.; Kumar, N.A. Evaluation of effect of topical ozone therapy on salivary Candidal carriage in oral candidiasis. Indian J. Dent. Res. 2015, 26, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Faria, I.D.S.D.; Ueno, M.; Koga-Ito, C.Y.; Urrachi, W.I.; Jorge, A.O.C. Effects of ozonated water on Candida albicans oral isolates. Braz. J. Oral Sci. 2005, 4, 783–786. [Google Scholar]
- Murakami, H.; Sakuma, S.; Nakamura, K.; Ito, Y.; Hattori, M.; Asai, A.; Noguchi, T.; Maeda, H.; Kameyama, Y.; Kimura, Y.; et al. Disinfection of Removable Dentures Using Ozone. Dent. Mater. J. 1996, 15, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monzillo, V.; Lallitto, F.; Russo, A.; Poggio, C.; Scribante, A.; Arciola, C.R.; Bertuccio, F.R.; Colombo, M. Ozonized Gel Against Four Candida Species: A Pilot Study and Clinical Perspectives. Materials 2020, 13, 1731. [Google Scholar] [CrossRef] [Green Version]
- Zargaran, M.; Fatahinia, M.; Mahmoudabadi, A.Z. The efficacy of gaseous ozone against different forms of Candida albicans. Curr. Med Mycol. 2017, 3, 26–32. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K.; Nowicka, J.; Pajączkowska, M.; Matys, J.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Dobrzyński, M.; Dominiak, M. Effects of Nd: YAG laser irradiation on the growth of Candida albicans and Streptococcus mutans: In vitro study. Lasers Med. Sci. 2019, 34, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Costa, A.C.B.P.; Rasteiro, V.M.C.; Pereira, C.A.; Rossoni, R.D.; Junqueira, J.C.; Jorge, A.O.C. The effects of rose bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses 2012, 55, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Dovigo, L.N.; Carmello, J.C.; Costa, C.A.D.S.; Vergani, C.E.; Brunetti, I.L.; Bagnato, V.S.; Pavarina, A.C. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med. Mycol. 2013, 51, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Scwingel, A.R.; Barcessat, A.R.P.; Núñez, S.C.; Ribeiro, M.S. Antimicrobial Photodynamic Therapy in the Treatment of Oral Candidiasis in HIV-Infected Patients. Photomed. Laser Surg. 2012, 30, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, J.; Zhang, H.; Zhang, J.; Sun, H. Effect of 5-aminolevulinic acid photodynamic therapy on Candida albicans biofilms: An in vitro study. Photodiagnosis Photodyn. Ther. 2016, 15, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Diaz, M.; Huang, Y.-Y.; Hamblin, M.R. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016, 109, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopka, K.; Goslinski, T. Photodynamic Therapy in Dentistry. J. Dent. Res. 2007, 86, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.; Hamblin, M.R. Antimicrobial Photosensitizers: Drug Discovery under the Spotlight. Curr. Med. Chem. 2015, 22, 2159–2185. [Google Scholar] [CrossRef]
- Demidova, T.N.; Hamblin, M.R. Effect of Cell-Photosensitizer Binding and Cell Density on Microbial Photoinactivation. Antimicrob. Agents Chemother. 2005, 49, 2329–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, R.F.; McCarron, P.A.; Tunney, M.M.; Woolfson, A.D. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J. Photochem. Photobiol. B Biol. 2007, 86, 59–69. [Google Scholar] [CrossRef]
- Dai, T.; De Arce, V.J.B.; Tegos, G.P.; Hamblin, M.R. Blue Dye and Red Light, a Dynamic Combination for Prophylaxis and Treatment of Cutaneous Candida albicans Infections in Mice. Antimicrob. Agents Chemother. 2011, 55, 5710–5717. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, F.P.; Da Silva, S.H.; Roberts, D.W.; Braga, G.U.L. Photodynamic Inactivation of Conidia of the Fungi Metarhizium anisopliae and Aspergillus nidulans with Methylene Blue and Toluidine Blue. Photochem. Photobiol. 2010, 86, 653–661. [Google Scholar] [CrossRef]
- Wiench, R.; Skaba, D.; Stefanik, N.; Kępa, M.; Łukasz, G.; Cieślar, G.; Kawczyk-Krupka, A. Assessment of sensitivity of selected Candida strains on antimicrobial photodynamic therapy using diode laser 635 nm and toluidine blue—In vitro research. Photodiagnosis Photodyn. Ther. 2019, 27, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.A.; Panariello, B.H.D.; Pontes, K.M.D.F.; Duarte, S. Regimen and different surfaces interfere with photodynamic therapy on Candida albicans biofilms. J. Microbiol. Methods 2020, 178, 106080. [Google Scholar] [CrossRef] [PubMed]
- Grzech-Leśniak, K.; Matys, J.; Dominiak, M. Comparison of the clinical and microbiological effects of antibiotic therapy in periodontal pockets following laser treatment: An in vivo study. Adv. Clin. Exp. Med. 2018, 27, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Grzech-Leśniak, K. Making Use of Lasers in Periodontal Treatment: A New Gold Standard? Photomed. Laser Surg. 2017, 35, 513–514. [Google Scholar] [CrossRef]
- Świder, K.; Dominiak, M.; Grzech-Leśniak, K.; Matys, J. Effect of Different Laser Wavelengths on Periodontopathogens in Peri-Implantitis: A Review of In Vivo Studies. Microorganisms 2019, 7, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzech-Leśniak, K.; Gaspirc, B.; Sculean, A. Clinical and microbiological effects of multiple applications of antibacterial photodynamic therapy in periodontal maintenance patients. A randomized controlled clinical study. Photodiagnosis Photodyn. Ther. 2019, 27, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Samaranayake, L.P.; Romanos, G.E. Treatment of oral fungal infections using antimicrobial photodynamic therapy: A systematic review of currently available evidence. Photochem. Photobiol. Sci. 2014, 13, 726–734. [Google Scholar] [CrossRef] [PubMed]
- D’Ilario, L.; Martinelli, A. Toluidine blue: Aggregation properties and structural aspects. Model. Simul. Mater. Sci. Eng. 2006, 14, 581–595. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. 2011. Available online: http://handbook.cochrane.org (accessed on 2 April 2019).
- Watson, P.; Petrie, A. Method agreement analysis: A review of correct methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Jackson, Z.; Meghji, S.; MacRobert, A.; Henderson, B.; Wilson, M. Killing of the Yeast and Hyphal Forms of Candida albicans Using a Light-Activated Antimicrobial Agent. Lasers Med. Sci. 1999, 14, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.G.M.; Carvalho, M.L.; Rosseti, I.B.; Zamuner, S.; Costa, M.S. Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei. Lasers Med. Sci. 2018, 33, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.G.; Felipe, M.P.; Costa, M.S. The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J. Microbiol. 2009, 47, 619–623. [Google Scholar] [CrossRef]
- Souza, R.C.; Junqueira, J.C.; Rossoni, R.D.; Pereira, C.A.; Munin, E.; Jorge, A.O.C. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med. Sci. 2010, 25, 385–389. [Google Scholar] [CrossRef]
- Pinto, A.P.; Rosseti, I.B.; Carvalho, M.L.; da Silva, B.G.M.; Alberto-Silva, C.; Costa, M.S. Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis Photodyn. Ther. 2018, 21, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Shen, M.; Huang, Y.-J.; Lin, H.-C.; Chen, C.-T. Photodynamic Inactivation Potentiates the Susceptibility of Antifungal Agents against the Planktonic and Biofilm Cells of Candida albicans. Int. J. Mol. Sci. 2018, 19, 434. [Google Scholar] [CrossRef] [Green Version]
- Barbério, G.S.; Da Costa, S.V.; Silva, M.D.S.; De Oliveira, T.M.; Silva, T.C.; Machado, M.A.D.A.M. Photodynamic inactivation of Candida albicans mediated by a low density of light energy. Lasers Med. Sci. 2014, 29, 907–910. [Google Scholar] [CrossRef]
- Rosseti, I.B.; Chagas, L.R.; Costa, M.S. Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med. Sci. 2014, 29, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, M.A.; Tufail, S.; Khan, A.A.; Owais, M. Gold Nanoparticle-Photosensitizer Conjugate Based Photodynamic Inactivation of Biofilm Producing Cells: Potential for Treatment of C. albicans Infection in BALB/c Mice. PLoS ONE 2015, 10, e0131684. [Google Scholar] [CrossRef]
- Soares, B.M.; Da Silva, D.L.; Sousa, G.R.; Amorim, J.C.F.; De Resende, M.A.; Pinotti, M.; Cisalpino, P.S. In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J. Photochem. Photobiol. B Biol. 2009, 94, 65–70. [Google Scholar] [CrossRef]
- Merigo, E.; Chevalier, M.; Conti, S.; Ciociola, T.; Fornaini, C.; Manfredi, M.; Vescovi, P.; Doglio, A. Antimicrobial effect on Candida albicans biofilm by application of different wavelengths and dyes and the synthetic killer decapeptide KP. Laser Ther. 2019, 28, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.K.; Garcia, J.; Væth, M.; Schlafer, S. Comparison of Riboflavin and Toluidine Blue O as Photosensitizers for Photoactivated Disinfection on Endodontic and Periodontal Pathogens In Vitro. PLoS ONE 2015, 10, e0140720. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.B.; Dias-Baruffi, M.; Holman, N.; Wainwright, M.; Braga, G.U. In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagnosis Photodyn. Ther. 2013, 10, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.-F.; Chen, C.-P.; Chen, Y.-C.; Chang, P.-H.; Tsai, T.; Chen, C.-T. The Use of Chitosan to Enhance Photodynamic Inactivation against Candida albicans and Its Drug-Resistant Clinical Isolates. Int. J. Mol. Sci. 2013, 14, 7445–7456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-H.; Chien, H.-F.; Lin, M.-H.; Chen, C.-P.; Shen, M.; Chen, C.-T. Chitosan Inhibits the Rehabilitation of Damaged Microbes Induced by Photodynamic Inactivation. Int. J. Mol. Sci. 2018, 19, 2598. [Google Scholar] [CrossRef]
- Decraene, V.; Pratten, J.; Wilson, M. Cellulose Acetate Containing Toluidine Blue and Rose Bengal Is an Effective Antimicrobial Coating when Exposed to White Light. Appl. Environ. Microbiol. 2006, 72, 4436–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eslami, L.M.; Vatanpour, M.; Aminzadeh, N.; Mehrvarzfar, P.; Taheri, S. The comparison of intracanal medicaments, diode laser and photodynamic therapy on removing the biofilm of Enterococcus faecalis and Candida albicans in the root canal system (ex-vivo study). Photodiagnosis Photodyn. Ther. 2019, 26, 157–161. [Google Scholar] [CrossRef]
- Calahorra, M.; Sánchez, N.S.; Peña, A. Influence of phenothiazines, phenazines and phenoxazine on cation transport in Candida albicans. J. Appl. Microbiol. 2018, 125, 1728–1738. [Google Scholar] [CrossRef]
- Richards, D. Does toluidine blue detect more oral cancer? Evid. Based Dent. 2010, 11, 104–105. [Google Scholar] [CrossRef]
- Diogo, P.; Fernandes, C.; Caramelo, F.; Mota, M.; Miranda, I.M.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Uliana, M.P.; De Oliveira, K.T.; Santos, J.M.; et al. Antimicrobial Photodynamic Therapy against Endodontic Enterococcus faecalis and Candida albicans Mono and Mixed Biofilms in the Presence of Photosensitizers: A Comparative Study with Classical Endodontic Irrigants. Front. Microbiol. 2017, 8, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourhajibagher, M.; Ghorbanzadeh, R.; Parker, S.; Chiniforush, N.; Bahador, A. The evaluation of cultivable microbiota profile in patients with secondary endodontic infection before and after photo-activated disinfection. Photodiagnosis Photodyn. Ther. 2017, 18, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Eldeniz, A.U.; Guneser, M.B.; Akbulut, M.B. Comparative antifungal efficacy of light-activated disinfection and octenidine hydrochloride with contemporary endodontic irrigants. Lasers Med. Sci. 2015, 30, 669–675. [Google Scholar] [CrossRef]
- Tardivo, J.P.; Wainwright, M.; Baptista, M.S. Small scale trial of photodynamic treatment of onychomycosis in São Paulo. J. Photochem. Photobiol. B Biol. 2015, 150, 66–68. [Google Scholar] [CrossRef]
- Schlafer, S.; Vaeth, M.; Hørsted-Bindslev, P.; Frandsen, E.V. Endodontic photoactivated disinfection using a conventional light source: An in vitro and ex vivo study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, 634–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroga, E.D.; Cordero, P.; Mora, S.J.; Alvarez, M.G.; Durantini, E.N. Mechanistic aspects in the photodynamic inactivation of Candida albicans sensitized by a dimethylaminopropoxy porphyrin and its equivalent with cationic intrinsic charges. Photodiagnosis Photodyn. Ther. 2020, 31, 101877. [Google Scholar] [CrossRef] [PubMed]
- Diogo, P.; Mota, M.; Fernandes, C.; Sequeira, D.; Palma, P.; Caramelo, F.; Neves, M.G.P.; Faustino, M.A.F.; Gonçalves, T.; Santos, J.M. Is the chlorophyll derivative Zn (II) e6Me a good photosensitizer to be used in root canal disinfection? Photodiagnosis Photodyn. Ther. 2018, 22, 205–211. [Google Scholar] [CrossRef] [PubMed]
Ordinal Number | Reason for Exclusion | Reference Number |
---|---|---|
1 | Review | [48] |
2 | Endodontic model | [69] |
3 | No aPDT evaluated | [70] |
4 | No aPDT evaluated | [71] |
5 | Endodontic model | [72] |
6 | Endodontic model | [73] |
7 | Endodontic model | [74] |
8 | Onychomycosis | [75] |
9 | Endodontic model | [76] |
10 | No TBO photosensitizer | [77] |
11 | Endodontic biofilm model | [78] |
Ordinal Number | Study Design | Candida Species | Study Group | Outcomes | Reference Number |
---|---|---|---|---|---|
1 | In vitrostudies 96 well plates | C. albicansNCPF 3091 C. albicans PHL S3895 C. albicans PHLS 8166 planktonic solution of cells | L+PS+ L+PS− L−PS+ L−PS− | C. albicans and azole-resistant strains, can be killed by aPDTmediated by TBO. Tested by MTT assay. The best TBO concentration −25 µg/mL. | [51] |
2 | In vitrostudies 96 well plates | C. krusei ATCC 6258 Biofilm | L+PS+ L−PS+ L−PS− | aPDT mediated by TBO reduced C. krusei cell growth and biofilm formation. Best TBO concentration 10 µg/mL. Best fluence 40 J/cm2. | [52] |
3 | In vitro studies 96 well plates | C. albicans ATCC 10231 Planktonic solution of cells | L+PS+ L−PS− | aPDT mediated by MB and TBO exhibited an antifungal effect against C.albicans. pH values in abuffered medium and calcium decreased the inhibition of the yeast growth. | [53] |
4 | In vitro studies 96 well plates | C. albicans ATCC 18804 Planktonic solution of cells | L+PS− L−PS+ L+PS+ L−PS− | aPDT mediated by TBO, MB and malachite green had a fungicidal effect on C.albicans. The highest reduction inC. albicans was obtained by TBO with energy density of 39.5 J/cm2. | [54] |
5 | In vitro studies 96 well plates | C. albicans ATCC 10231 Biofilm | L+PS+ L−PS− | aPDT using TBO exhibited antifungal effects against C. albicans biofilm at different stages of development. | [55] |
6 | In vitro studies 96 well plates | C. albicans ATCC MYA-2876D C. albicans 2008 no.22 Planktonic solution of cells, biofilm | L+PS+ L−PS− Flu+ L+PS+Flu+ Pos+ L+PS+Pos+ | TBO-mediated aPDT could partially remove the extracellular polymeric substance of biofilm. Combination of (aPDT and caspofungin) could kill biofilms and (aPDT and fluconazole or posaconazole) could kill planktonic cells. | [56] |
7 | In vitrostudies 96 well plates | C. albicans Planktonic solution of cells | L+PS+ L+PS− L−PS+ L−PS− | A short time (60 s)TBO-mediated aPDT has a fungicidal effect on C. albicans. | [57] |
8 | In vitrostudies Polystyreneor acrylicresin plates | C. albicansSN425 Biofilm | L+PS+ L−PS− CHX+ | Twice-daily aPDT on acrylic resinhas reduced C. albicans below detection limit, similarly to CHX treatment. After aPDT a pseudohyphae were occasionally visible in biofilm. | [41] |
9 | In vitro studies 96 well plates | C. albicans ATCC 10231 Biofilm, planktonic solution of cells | L+PS+ L−PS− | aPDT using TBO can inhibit both cells growth and biofilm formation by a mechanism evolving the increase in the ROS production, which damages the cell membrane, exposing the nuclear contents. | [58] |
10 | In vitrostudies Plastic coverslips mice skin wounds infected with C. albicans (BALB/c mice) | C. albicansATCC 90028 C. glabrata MTCC 3019 Biofilm | GNPs+ MB+ TBO+ GNPs+MB+ GNPs+TBO+ GNPs+MB+TBO+ | The GNPs-PS conjugate combination exhibits synergism in PDT inactivation of C. albicans in in vitro and in animal models. | [59] |
11 | In vitro studies Tubes | C. albicansATCC 18804 C. albicans IB05 C. tropicalis ATCC 750 C. tropicalis CG09 C. parapsilosis ATCC 22019 12 clinical strains Planktonic solution of cells | L+PS+ L+PS− L−PS+ L−PS− | aPDT using TBO can have a significant impact on reducing viability or adhesion of Candida spp. to buccal epithelial cells including fluconazole resistant Candida spp. | [60] |
12 | In vitro studies Cellulose acetate coating containing the photosensitizer | C. albicans Clinical strain | L+PS+ L+PS− L−PS+ L−PS− | The 16 h white light-activated coating with TBO or BR was a simple method of reducing C. albicans on surfaces in hospitals. | [61] |
13 | In vitro studies 96 well plates | C. albicans ATCC 18804 Planktonic solution of cells | L+pL-ce6+ L+TBO+ L+RB+ | The phototoxicity of TBO toward C. albicans was better than RB but much lower than pL-ce6.The highest reduction of C. albicans was with energy density of 40 J/cm2 and concentration of 50 µg/mL. | [36] |
14 | In vitro studies Mucoadhesive patch containing TBO and black-walled 96-well microtiter tray | C. albicans NCYC 1467 Planktonic solution of cells | L+PS+ L−PS− | aPDT mediated by TBO (30 min. incubation, fluence 200 J/cm2 and TBO concentration of 2.0 mg/mL) could total kill of C. albicans. | [37] |
15 | In vitro studies on Sabouraud dextrose agar plates | C. albicans SC5314 Biofilm | L+PS+KP− L+PS+KP+ L+PS−KP+ L+PS−KP− L−PS+KP+ L−PS−KP+ L−PS+KP− | Combination of red light, TBO or red light, TBO and killer peptides exhibited only partial antifungal effect against C.albicans biofilm. Curcumin or erythrosine were significantly better. | [62] |
16 | In vitro studies on an acrylic resin plates | C. albicansATCC 10231 C. krusei ATCC 14243 C. glabrata ATCC 15126 Biofilm | L+PS+ L+PS− L−PS+ L−PS− | The efficacy of aPDT against C. albicans, C. glabrata, and C. krusei biofilm has been confirmed. The highest antimycotic efficacy obtained by using laser beam with the parameters of: power 400 mW, fluence 24 J/cm2 and time 30 s. | [40] |
17 | In vitro studies Eppendorf tubes | C. albicans ATCC 11775 Planktonic solution of cells | L+PS+ L+PS− L−PS+ L−PS− | aPDT with riboflavin/blue light only resulted in minor reduction sin CFU counts, whereas full kills were achieved for all 8 organisms including C.albicans when using TBO/red light. | [68] |
18 | Animal studies Mice skin wounds infected with C. albicans | C. albicans CEC749 Planktonic solution of cells | L+MB+ L+TBO+ L+NMB+ | PDT with TBO significantly reduced C. albicans burden in infected skin abrasion wounds. NMB was superior to MB and TBO in inactivation C. albicans in vitro. | [38] |
19 | In vitro studies 96 well plates | C. albicans Planktonic solution of cells | L+PS+ L+PS+Chitosan+ | Planktonic cells of C. albicans were partially killed by aPDT mediated by 200 µM TBO (fluence 50 J/cm2). 0.25% chitosan added for 30 min. after aPDT killed all C. albicans cells. | [63] |
20 | In vitro studies 96 well plates | C. albicans ATCC 64548 C. glabrata ATCC 90030 C. krusei ATCC 6258 C. parapsilosis ATCC 22019 C. tropicalis ATCC 750 Planktonic solution of cells | L+S136 L+TBO+ L+NMBN+ L+MB+ L+PS− | aPDT mediated by TBO was less effective than NMBN and S136 but more effective than MB. | [64] |
21 | In vitro studies 96 well plates | C. albicans ATCC MYA2876D Clinical strains (2008 no. 19, 22 and 30), planktonic solution of cellsbiofilm | L+PS+ L+PS+Chitosan+ | Chitosan augments the killing efficacy on C. albicans after aPDT mediated byTBO in planktonic cells and in biofilm. | [65] |
Ordinal Number | Light Source | Wavelength (nm) | Energy Density (Fluence) (J/cm2) | Power Output (mW) | Illumination Time (s) | Spot Size/Fiber Surface Area (cm2) | Reference Number |
---|---|---|---|---|---|---|---|
1 | He Ne | 632.8 | 21 (J) | 35 | n.a. | 0.03 | [51] |
2 | LED | 630 | 20, 30, 40 | 68 | n.a. | 0.38 | [52] |
3 | Diode laser | 660 | 28 | 30 | n.a. | 0.38 | [53] |
4 | Diode laser | 660 | 15.8, 26.3, 39.5 | 35 | n.a. | 0.38 | [54] |
5 | LED | 630 | 21.7 | 73 | n.a. | 0.38 | [55] |
6 | LED | 630 ± 5 | 50 | 30 | n.a. | n.a. | [56] |
7 | LED | 637 ± 15 | 18 | 40 | 60 | 0.4 | [57] |
8 | LED | 635 ± 10 | 175.2 | - | 120 | n.a. | [41] |
9 | LED | 630 | 21.47 | 68 | n.a. | 0.38 | [58] |
10 | Noncoherent light source | Full spectrum of visible light with filter probes 635 | 21.6 | 120 | 1200 | n.a. | [59] |
11 | LED | 630 ± 10 | 108 | 100 | 900 | 1.5 | [60] |
12 | fluorescent lamp | 500–675 | - | 28,000 | 216,000 | n.a. | [61] |
13 | Noncoherent light source | 630 ± 20 | 10, 20, 40 | n.a. | n.a. | n.a. | [36] |
14 | LED | 635 | 100, 200 | n.a. | n.a. | n.a. | [37] |
15 | Diode laser | 650 | 10 | 30 | 62 | 0.2 | [62] |
16 | Diode laser | 635 | 12, 18, 24 | 400, 300, 200 | 30 | 0.5 | [40] |
17 | LED | 630 | 37.7 | 400 | 60 | 0.1 | [68] |
18 | Noncoherent light source | Full spectrum of visible light with filter probes 635 ± 15 | 2, 4, 6, 8, 10 | n.a. | n.a. | n.a. | [38] |
19 | LED | 630 ± 5 | 50 | n.a. | 1662 | n.a. | [63] |
20 | LED | 634 631 | 5, 10, 15, 25, 30 | n.a. | n.a. | n.a. | [64] |
21 | LED | 630 | 50 | 30 | n.a. | 1 | [65] |
Ordinal Number | Incubation Time (in Minutes) | Concentration/s of PS Used Reference Number | |
---|---|---|---|
1 | 5 | 3.12, 6.25, 12.5, 25, 50, 100 (µg/mL) | [51] |
2 | 5 | 5, 10, 20, 50 (µg/mL) | [52] |
3 | 5 | 10, 50, 100 (µg/mL) | [53] |
4 | 5 | 100 (µg/mL) | [54] |
5 | 5 | 10, 20, 50, 100 (µg/mL) | [55] |
6 | 30 | 0.1 (mM) | [56] |
7 | n.a. | 50 (µg/mL) | [57] |
8 | 5 | 0.0044 (mM) | [41] |
9 | 10 | 50, 100 (µg/mL) | [58] |
10 | 30 | 1 (mM) | [59] |
11 | 5 | 50, 100 (µg/mL) | [60] |
12 | n.a. | 0.025 (mM) | [61] |
13 | 20 | 0.05 (mM) | [36] |
14 | 0.5, 3, 5, 30 | 2000–5000 (µg/mL) | [37] |
15 | 5 | 0.01 (mM) | [62] |
16 | 1 | commercial product with proprietary information about concentration | [40] |
17 | 1 | 0.266 (mM) | [68] |
18 | 30 | 20 (mM) | [38] |
19 | 30 | 2 (mM) | [63] |
20 | 30 | 2 (mM) | [64] |
21 | 30 | 20 (mM) | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiench, R.; Skaba, D.; Matys, J.; Grzech-Leśniak, K. Efficacy of Toluidine Blue—Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review. Antibiotics 2021, 10, 349. https://doi.org/10.3390/antibiotics10040349
Wiench R, Skaba D, Matys J, Grzech-Leśniak K. Efficacy of Toluidine Blue—Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review. Antibiotics. 2021; 10(4):349. https://doi.org/10.3390/antibiotics10040349
Chicago/Turabian StyleWiench, Rafał, Dariusz Skaba, Jacek Matys, and Kinga Grzech-Leśniak. 2021. "Efficacy of Toluidine Blue—Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review" Antibiotics 10, no. 4: 349. https://doi.org/10.3390/antibiotics10040349
APA StyleWiench, R., Skaba, D., Matys, J., & Grzech-Leśniak, K. (2021). Efficacy of Toluidine Blue—Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review. Antibiotics, 10(4), 349. https://doi.org/10.3390/antibiotics10040349