Evaluation of the Antimicrobial Activity of Some Components of the Essential Oils of Plants Used in the Traditional Medicine of the Tehuacán-Cuicatlán Valley, Puebla, México
Abstract
:1. Introduction
2. Results
2.1. Qualitative Evaluation of Antibacterial Activity
2.2. Quantitative Evaluation
2.3. Time-Killing Curves
3. Discussion
4. Materials and Methods
4.1. Essential Oils Compound
4.2. Microbial Strains
4.3. Antibacterial Activity
4.4. Antifungal Activity
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Eckbo, E.J.; Wong, T.; Bharat, A.; Cameron-Lane, M.; Hoang, L.; Dawar, M.; Charles, M. First reported outbreak of the emerging pathogen Candida auris in Canada. Am. J. Infect. Control. 2021. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Lozano, H.; Treviño-Rangel, R.D.J.; González, G.M.; Ramírez-Elizondo, M.T.; Lara-Medrano, R.; Aleman-Bocanegra, M.C.; Guajardo-Lara, C.E.; Gaona-Chávez, N.; Castilleja-Leal, F.; Torre-Amione, G.; et al. Outbreak of Candida auris infection in a COVID-19 hospital in Mexico. Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.P.; Devkota, H.P.; Nigam, M.; Adetunji, C.O.; Srivastava, N.; Saklani, S.; Shukla, I.; Azmi, L.; Shariati, M.A.; Coutinho, H.D.M.; et al. Combination of essential oils in dairy products: A review of their functions and potential benefits. LWT 2020, 133, 110116. [Google Scholar] [CrossRef]
- Dávila, P.; Arizmendi, M.D.C.; Valiente-Banuet, A.; Villaseñor, J.L.; Casas, A.; Lira, R. Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodivers. Conserv. 2002, 11, 421–442. [Google Scholar] [CrossRef]
- Hernandez, T.; Canales, M.; Avila, J.; Durán, A.; Caballero, J.; De Vivar, A.; Lira, R. Ethnobotany and antibacterial activity of some plants used in traditional medicine of Zapotitlán de las Salinas, Puebla (México). J. Ethnopharmacol. 2003, 88, 181–188. [Google Scholar] [CrossRef]
- Hernandez, T.; Canales, M.; Avila, J.; Garcia, A.; Martinez, A.; Caballero, J.; De Vivar, A.R.; Lira, R. Composition and antibacterial activity of essential oil of Lantana achyranthifolia Desf. (Verbenaceae). J. Ethnopharmacol. 2005, 96, 551–554. [Google Scholar] [CrossRef]
- Hernández, T.; Canales, M.; Avila, J.G.; García, A.M.; Meraz, S.; Duran, A. Antifungal activity of the essential oils of two Verbenaceae: Lantana achyranthifolia Desf. and Lippia graveolens H.B.K. of Zapotitlán de las Salinas, Puebla (México). BLACPMA 2008, 7, 203–207. [Google Scholar]
- Hernández, T.; Canales, M.; Avila, J.G.; García, A.M.; Caballero, J.; Romo de Vivar, A.; Lira, R. Composition and antibacterial activity of essential oil of Lippia graveolens HBK. (Verbenaceae). BLACPMA 2009, 8, 295–300. [Google Scholar]
- Hernandez, T.; Canales, M.; Teran, B.; Avila, O.; Durán, Á.; Garcia, A.M.; Hernandez, H.; Angeles-Lopez, O.; Fernandez-Araiza, M.; Avila, G. Antimicrobial activity of the essential oil and extracts of Cordia curassavica (Boraginaceae). J. Ethnopharmacol. 2007, 111, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Martim, J.K.; Maranho, L.T.; Costa-Casagrande, T.A. Review: Role of the chemical compounds present in the essential oil and in the extract of Cordia verbenacea DC as an anti-inflammatory, antimicrobial and healing product. J. Ethnopharmacol. 2021, 265, 113300. [Google Scholar] [CrossRef] [PubMed]
- Candelaria, S.; Serrano, R.; Avila, M.; Meraz, S.; Orozco, J.; Peña, C.J.; García-Bores, A.M.; Avila, J.G.; Peñalosa, I.; Hernandez, T. Chemical Composition and Antimicrobial Activity of Gymnolaena oaxacana (Greenm.) Rydb. (Asteraceae) Essential Oil. J. Plant Sci. 2015, 3, 241–247. [Google Scholar] [CrossRef]
- Braga, P.C.; Dal Sasso, M.; Culici, M.; Alfieri, M. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia 2007, 78, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef]
- Silva, E.R.; De Carvalho, F.O.; Teixeira, L.G.B.; Santos, N.G.L.; Felipe, F.A.; Santana, H.S.R.; Shanmugam, S.; Júnior, L.J.Q.; Araujo, A.A.d.S.; Nunes, P.S. Pharmacological Effects of Carvacrol in In vitro Studies: A Review. Curr. Pharm. Des. 2018, 24, 3454–3465. [Google Scholar] [CrossRef]
- Sieniawskaa, E.; Losb, R.; Baja, T.; Malmb, A.; Glowniak, K. Antimicrobial efficacy of Mutellina purpurea essential oil and α-pinene against Staphylococcus epidermidis grown in planktonic and biofilmcultures. Ind. Crop. Prod. 2013, 51, 152–157. [Google Scholar] [CrossRef]
- Pandima, D.K.; Arif, N.S.; Sakthivel, R.; Karutha, P.S. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef]
- Constantino, J.A.; Delgado-Rastrollo, M.; Pacha-Olivenza, M.A.; Pérez-Giraldo, C.; Quiles, M.; González-Martín, M.L.; Gallardo-Moreno, A.M. Eficacia bactericida in vivo del farnesol sobre implantes de Ti6Al4V. Rev. SECOT 2016, 60, 260–266. [Google Scholar] [CrossRef]
- Feitosa, D.; Rodrigues, C.; Rose, I.; Oliveira, E.; Luiz, R.; Tavares, J.; Silvino, P.; MLS, Y.; Hs, R.; Datiane, C.; et al. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem. 2020, 337, 127776. [Google Scholar] [CrossRef]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituent. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Guynot, M.E.; Ramos, A.J.; Setó, L.; Purroy, P.; Sanchis, V.; Marín, S. Antifungical activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products. J. Appl. Microbiol. 2003, 94, 893–899. [Google Scholar] [CrossRef]
- Solórzano, S.F.; Miranda, N.M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef]
- Marino, M.; Bersani, C.; Comi, G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 2001, 67, 187–195. [Google Scholar] [CrossRef]
- Pintore, G.; Usai, M.; Bradesi, P.; Juliano, C.; Boatto, G.; Tomi, F.; Chessa, M.; Cerri, R.; Casanova, J. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils form Sardinia and Corsica. Flavour. Frag. J. 2002, 17, 15–19. [Google Scholar] [CrossRef]
- Vaara, M. Agents that increase the permeability of outer membrane. Microbiol. Rev. 1992, 56, 395–411. [Google Scholar] [CrossRef]
- Farag, R.S.; Daw, Z.Y.; Hewedid, F.M.; El-Baroty, G.S.A. Antimicrobial Activity of some egyptyan specie essential oils. J. Food Prot. 1989, 52, 665–667. [Google Scholar] [CrossRef]
- Kim, J.; Marshall, M.R.; Wei, C. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845. [Google Scholar] [CrossRef]
- Davis, B.D.; Dulbecco, R. Tratado de Microbiología, 4th ed.; Masson: Barcelona, Spain, 1996. [Google Scholar]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem. 2006, 54, 6303–6307. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.O.; Holly, R.A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 2006, 108, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, L.; Cefola, M.; Bonifacio, M.A.; Cometa, S.; Bocchino, C.; Pace, B.; De Giglio, E.; Palumbo, M.; Sada, A.; Logrieco, A.F.; et al. Effect of red thyme oil (Thymus vulgaris L.) vapours on fungal decay, quality parameters and shelf-life of oranges during cold storage. Food Chem. 2021, 336, 127590. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.; Bonifacio, M.A.; De Giglio, E.; Cometa, S.; Logrieco, A.F.; Baruzzi, F. Unravelling the Antifungal Effect of Red Thyme Oil (Thymus vulgaris L.) Compounds in Vapor Phase. Molecules 2020, 25, 4761. [Google Scholar] [CrossRef]
- Vanden Berghe, D.A.; Vlietinck, A.J. Screening methods for antibacterial agents from higher plants. In Methods in Plant Biochemistry, Assays for Bioactivity; Dey, P.M., Harborne, J.B., Hostettman, K., Eds.; Academic Press: London, UK, 1991; pp. 47–69. [Google Scholar]
- Montero-Recalde, M.; Vayas, L.; Avilés-Esquivel, D.; Pazmiño, P.; Erazo-Gutierrez, V. Evaluación de dos métodos para medir la sensibilidad de inhibición de crecimiento de la cepa certificada de Staphylococcus aureus subsp. aureus. Rev. Inv. Vet. Perú. 2018, 29, 1543–1547. [Google Scholar] [CrossRef] [Green Version]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. Tech. Rep. M100-S22; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012; 184p. [Google Scholar]
- Koneman, G.W.; Procop, D.L.; Church, G.S.H.; Janda, W.M.; Koneman, E.W.; Schreckenberger, P.C.; Woods, G.L. Koneman Diagnóstico Microbiológico: Texto y Atlas / Koneman Diagnóstico Microbiológico: Texto y Atlas, 7th ed.; Translation: León, R.B., Roig, F.G., Álvarez, L.M.M., Hmilowicz, A.A.R., Mondragón, A.R., Rojas, P.S., Reyes, R.I.V., Eds.; Jones & Barlet: Burlington, MA, USA, 2017. [Google Scholar]
- Avila, J.G.; Martinez, A.; Martinez, G.; Muñoz, J.L.; Arciniegas, A.; Romo de Vivar, A. Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus. J. Ethnopharmacol. 1999, 66, 75–78. [Google Scholar] [CrossRef]
- Durán, D.A.; Vargas, V.A.; Cisneros, C.A.E. Bioestadística. Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2004; pp. 109–114. [Google Scholar]
Strain | Positive Control | α-pinene | β-pinene | Eugenol | Myrcene | Ocimene | Limonene | Carvacrol | Cineole | Methyl Salicylate | Farnesene | Thymol |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B. s FES-C | 16.0 ± 0.5 | 9.6 ± 1.8 | na | 16.3 ± 1.5 | na | na | 8.6 ± 0.5 | » | 9.0 ± 1.0 | na | na | na |
B. s cc | 29.3 ± 2.6 | na | na | 11.3 ± 0.5 | na | 11.0 ± 1.0 | na | 35.6 ± 0.0 | na | na | na | na |
E. f | 21.7 ± 1.7 | na | na | 14.6 ± 1.5 | 9.0 ± 1.0 | 10.0 ± 1.7 | 11.3 ± 0.5 | 24.3 ± 0.0 | 8.3 ± 0.5 | 11.0 ± 0.0 | 8.6 ± 2.3 | » |
M. l | 23.0 ± 0.5 | na | na | na | na | na | na | 15.0 ± 0.0 | na | na | na | na |
S. a ATCC 12398 | 28.0 ± 1.6 | na | na | 11.0 ± 0.0 | na | na | 10.3 ± 1.1 | 32.0 ± 0.0 | 10.0 ± 3.0 | 16.3 ± 0.9 | 13.3 ± 1.5 | 31.6 ± 1.2 |
S. a ATCC 29213 | 27.6 ± 0.1 | na | na | na | na | na | 13.6 ± 0.5 | 27.6 ± 0.0 | na | na | 7.0 ± 1.0 | 30.3 ± 0.4 |
S. a 48 MR | 22.0 ± 0.0 | na | 8.0 ± 2.3 | 18.6 ± 2.0 | na | na | na | » | na | 10.3 ± 0.4 | 8.0 ± 0.0 | na |
S. a 75 MR | 20.0 ± 0.0 | na | 5.0 ± 1.4 | 9.6 ± 1.1 | na | na | 10.3 ± 1.5 | 23.3 ± 0.0 | na | na | 9.0 ± 1.0 | 26.6 ± 1.2 |
S. a 83 MR | 22.0 ± 0.0 | na | na | 13.0 ± 0.0 | na | na | 9.6 ± 1.5 | 26.0 ± 0.0 | na | 11.6 ± 0.4 | 9.0 ± 0.0 | 26.6 ± 1.2 |
S. a cc | 14.0 ± 0.0 | na | na | 12.0 ± 1.0 | na | 7.3 ± 0.5 | na | 17.0 ± 0.0 | na | 14.3 ± 1.6 | 9.6 ± 0.5 | 26.3 ± 1.2 |
S. e FES-C | 6.7 ± 1.2 | na | na | 15.3 ± 0.5 | na | na | 10.3 ± 0.5 | na | na | 8.0 ± 0.8 | na | na |
Strain | Positive Control | α-pinene | β-pinene | Eugenol | Myrcene | Ocimene | Limonene | Carvacrol | Cineole | Methyl Salicylate | Farnesene | Thymol |
---|---|---|---|---|---|---|---|---|---|---|---|---|
E. ae FES-C | 12.0 ± 0.5 | na | na | 13.3 ± 0.5 | na | 9.0 ± 0.0 | 16.3 ± 2.8 | 26.3 ± 1.1 | na | na | 8.6 ± 0.5 | 29.6 ± 0.4 |
E. ae cc | 19.3 ± 0.5 | na | 8.0 ± 3.5 | na | na | na | na | 33.0 ± 1.0 | na | na | na | na |
E. c 10 MR | 22.0 ± 0.0 | na | na | 15.3 ± 1.5 | na | na | 7.0 ± 0.0 | 17.6 ± 0.5 | 8.6 ± 1.1 | 9.3 ± 0.9 | 9.6 ± 0.5 | na |
E. c 1249 MR | 23.0 ± 0.0 | na | na | 14.3 ± 0.5 | na | na | na | 24.3 ± 1.1 | na | na | na | 28.0 ± 1.6 |
E. c 128 MR | 25.0 ± 0.0 | na | na | na | na | na | 8.3 ± 0.5 | 27.3 ± 0.5 | na | na | na | 18.6 ± 0.9 |
E. c 28 MR | 24.0 ± 0.0 | na | na | 20.0 ± 2.0 | na | na | 10.0 ± 0.0 | na | na | na | na | na |
E. c ATCC 53228 | 21.7 ± 1.7 | 11.6 ± 2.0 | na | 15.3 ± 0.5 | 8.3 ± 2.5 | 9.6 ± 1.5 | 25.6 ± 1.1 | 30.0 ± 0.5 | na | na | na | » |
E. c cc | 9.0 ± 0.0 | na | na | na | na | na | 9.6 ± 0.5 | 23.6 ± 0.5 | 7.5 ± 0.7 | na | na | 25.0 ± 3.5 |
P. ae | 7.3 ± 0.6 | na | na | 12.3 ± 1.1 | na | 8.0 ± 2.0 | na | 28.6 ± 1.1 | 8.0 ± 0.0 | 8.0 ± 0.8 | 7.6 ± 0.5 | 28.6 ± 1.2 |
P. m | 13.3 ± 0.5 | na | na | 14.6 ± 2.0 | na | na | na | 20.3 ± 0.5 | 9.6 ± 0.5 | 10.6 ± 0.4 | na | » |
S. t | 25.7 ± 0.5 | na | na | 20.0 ± 1.0 | na | na | 7.6 ± 0.5 | 26.6 ± 1.5 | na | na | na | 33.3 ± 1.2 |
V. ch Tor | 6.7 ± 0.6 | na | na | 12.6 ± 1.1 | na | 9.6 ± 1.5 | na | 29.0 ± 1.7 | na | 8.3 ± 1.24 | 8.3 ± 0.5 | » |
V. ch Agua | 10.0 ± 1.0 | na | na | 13.3 ± 1.1 | 8.0 ± 0.0 | 7.0 ± 0.0 | 10.6 ± 0.5 | 22.3 ± 0.5 | na | 7.3 ± 0.4 | na | 32.3 ± 1.2 |
V. ch cc | 27.7 ± 0.5 | na | na | 13.6 ± 0.5 | na | 6.6 ± 1.5 | 13.0 ± 1.0 | 25.0 ± 0.0 | na | 8.6 ± 0.9 | 8.3 ± 0.5 | 30.3 ± 0.4 |
Y. e CUSI | 8.3 ± 0.1 | na | na | 18.6 ± 5.5 | na | na | 12.3 ± 0.5 | na | 10.3 ± 0.5 | na | na | » |
Y. e HA | 25.7 ± 0.5 | na | na | 24.0 ± 1.0 | 10.3 ± 2.0 | 10.3 ± 1.5 | 9.3 ± 1.1 | 24.3 ± 0.5 | na | na | 10.0 ± 0.0 | » |
Strain | Positive Control | α-pinene | β-pinene | Eugenol | Myrcene | Limonene | Carvacrol | Methyl Salicylate | Thymol |
---|---|---|---|---|---|---|---|---|---|
C a. ATCC 14065 | 10.0 ± 0.0 | 12.0 ± 0.8 | na | 30.3 ± 1.5 | 12.0 ± 1.7 | 15.3 ± 1.5 | 32.3 ± 2.0 | » | » |
C a. CUSI | 10.0 ± 0.0 | na | 7.7 ± 0.9 | 20.0 ± 1.0 | 10.3 ± 1.5 | 14.0 ± 2.6 | 39.0 ± 1.7 | » | » |
C a.cc | 10.0 ± 0.0 | 14.3 ± 2.4 | 9.3 ± 1.8 | 20.6 ± 1.5 | 11.3 ± 1.5 | 21.0 ± 7.81 | » | na | » |
C. glabrata | 8.0 ± 0.0 | na | 10.0 ± 0.0 | 14.3 ± 1.1 | 9.3 ± 1.5 | 14.6 ± 0.5 | 34.6 ± 4.0 | » | » |
C. tropicalis | 9.0 ± 0.0 | na | 11.0 ± 1.4 | 16.0 ± 0.0 | 10.6 ± 1.1 | 16.6 ± 3.5 | 34.0 ± 6.0 | na | » |
C. tropicalis cc | 9.0 ± 0.0 | 9.3 ± 1.2 | na | 13.0 ± 2.0 | 10.6 ± 0.5 | 13.6 ± 0.5 | » | » | » |
C a. 17 MR | 10.0 ± 0.0 | na | 11.3 ± 1.4 | 18.3 ± 3.0 | 10.0 ± 1.0 | 8.3 ± 7.23 | » | na | » |
C a. 18 MR | 10.0 ± 0.0 | 12.3 ± 1.4 | na | 16.3 ± 3.0 | 11.3 ± 0.5 | 7.6 ± 6.6 | » | na | » |
Strain | Positive Control | α-pinene | β-pinene | Eugenol | Myrcene | Ocimene | Limonene | Carvacrol | Cineole | Methyl salicylate | Farnesene | Thymol |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B. s FES-C | 0.002 | >4.00 | nd | 0.25 | nd | nd | 2.00 | 0.125 | 1.00 | nd | nd | nd |
B. s cc | 0.002 | nd | nd | 0.25 | nd | nd | nd | 0.125 | nd | nd | nd | nd |
E. f | 0.003 | nd | nd | 0.75 | 4.00 | 4.00 | 2.00 | 0.030 | 1.00 | >2.00 | nd | nd |
M. l | 0.003 | nd | nd | nd | nd | nd | nd | 0.125 | nd | nd | nd | nd |
S. a ATCC 12398 | 0.001 | nd | nd | 0.50 | nd | nd | 2.00 | 0.125 | 1.00 | >2.00 | nd | 0.25 |
S. a ATCC 29213 | 0.008 | nd | nd | nd | nd | nd | 1.50 | 0.125 | nd | nd | >2.00 | 1.00 |
S. a 48 MR | 0.007 | nd | nd | 0.50 | nd | nd | nd | 0.062 | nd | nd | nd | nd |
S. a 75 MR | 0.007 | nd | >4.00 | 0.50 | nd | nd | nd | 0.125 | nd | nd | >2.00 | 0.50 |
S. a 83 MR | 0.007 | nd | nd | 0.50 | nd | nd | nd | 0.125 | nd | >2.00 | >2.00 | nd |
S. a cc | 0.002 | nd | nd | 0.50 | nd | 1.50 | nd | 0.125 | nd | >2.00 | >2.00 | nd |
S. e FES-C | 0.002 | nd | nd | 0.50 | nd | nd | 2.00 | nd | nd | nd | nd | 0.50 |
Strain | Positive Control | α-pinene | β-pinene | Eugenol | Myrcene | Ocimene | Limonene | Carvacrol | Cineole | Methyl salicylate | Farnesene | Thymol |
---|---|---|---|---|---|---|---|---|---|---|---|---|
E. ae FES-C | 0.004 | nd | nd | 0.50 | nd | 4.00 | nd | 0.125 | nd | nd | nd | nd |
E. ae cc | 0.004 | nd | nd | nd | nd | nd | nd | 0.125 | nd | nd | nd | nd |
E. c 10 MR | 0.004 | nd | nd | 0.25 | nd | nd | 2.00 | 0.125 | nd | >2.00 | >2.00 | nd |
E. c 1249 MR | 0.004 | nd | nd | 0.50 | nd | nd | nd | 0.50 | nd | nd | nd | 0.25 |
E. c 128 MR | 0.004 | nd | nd | 0.25 | nd | nd | nd | 0.125 | nd | nd | nd | 0.25 |
E. c 28 MR | 0.004 | nd | nd | 0.50 | nd | nd | 2.00 | nd | nd | nd | nd | 1.00 |
E. c ATCC 53228 | 0.004 | 0.25 | nd | 0.25 | 2.00 | nd | 0.50 | 0.125 | nd | nd | nd | nd |
E. c cc | 0.004 | nd | nd | 0.25 | nd | nd | 2.00 | 0.25 | nd | nd | nd | nd |
P. ae | 0.008 | nd | nd | nd | nd | nd | nd | 0.125 | nd | nd | nd | 2.00 |
P. m | 0.004 | nd | nd | 0.50 | nd | 4.00 | nd | 0.062 | nd | >2.00 | nd | nd |
S. t | 0.002 | nd | nd | 0.50 | nd | nd | nd | 0.125 | nd | nd | nd | 0.50 |
V. ch Tor | 0.001 | nd | nd | 0.50 | nd | nd | 2.00 | 0.25 | nd | >2.00 | nd | nd |
V. ch Agua | 0.001 | nd | nd | 0.50 | 4.00 | 4.00 | nd | 0.25 | nd | >2.00 | nd | nd |
V. ch cc | 0.001 | nd | nd | 0.50 | nd | 4.00 | 2.00 | 0.25 | nd | >2.00 | nd | nd |
Y. e CUSI | 0.004 | nd | nd | 0.062 | 4.00 | 4.00 | 2.00 | nd | 0.75 | >2.00 | >2.00 | nd |
Y. e HA | 0.004 | nd | nd | 0.50 | nd | nd | 2.00 | 0.25 | nd | nd | nd | nd |
Strain | Positive Control | α-pinene | β-pinene | Eugenol | Myrcene | Limonene | Carvacrol | Methyl salicylate | Thymol |
---|---|---|---|---|---|---|---|---|---|
C a. ATCC 14065 | 0.011 | 0.50 | nd | 0.25 | 2.00 | 2.00 | 0.03 | >2.00 | 0.125 |
C a. CUSI | 0.011 | nd | 0.50 | 0.125 | 2.00 | 2.00 | 0.03 | >2.00 | 0.03 |
C a. cc | 0.011 | 0.50 | 1.50 | 0.25 | 2.00 | 2.00 | 0.03 | nd | 0.25 |
C. glabrata | 0.008 | nd | 2.00 | 0.25 | 2.00 | 2.00 | 0.062 | >2.00 | 0.125 |
C. tropicalis | 0.009 | nd | 4.00 | 0.25 | 3.00 | 2.00 | 0.03 | nd | 0.125 |
C. tropicalis cc | 0.009 | 0.50 | nd | 0.25 | 1.00 | 2.00 | 0.03 | nd | 0.25 |
C a. 17 MR | 0.011 | nd | nd | 0.25 | 2.00 | 2.00 | 0.03 | >2.00 | 0.125 |
C a. 18 MR | 0.011 | nd | nd | 0.25 | 4.00 | 2.00 | 0.03 | nd | 0.125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candelaria-Dueñas, S.; Serrano-Parrales, R.; Ávila-Romero, M.; Meraz-Martínez, S.; Orozco-Martínez, J.; Ávila-Acevedo, J.G.; García-Bores, A.M.; Cespedes-Acuña, C.L.; Peñalosa-Castro, I.; Hernandez-Delgado, T. Evaluation of the Antimicrobial Activity of Some Components of the Essential Oils of Plants Used in the Traditional Medicine of the Tehuacán-Cuicatlán Valley, Puebla, México. Antibiotics 2021, 10, 295. https://doi.org/10.3390/antibiotics10030295
Candelaria-Dueñas S, Serrano-Parrales R, Ávila-Romero M, Meraz-Martínez S, Orozco-Martínez J, Ávila-Acevedo JG, García-Bores AM, Cespedes-Acuña CL, Peñalosa-Castro I, Hernandez-Delgado T. Evaluation of the Antimicrobial Activity of Some Components of the Essential Oils of Plants Used in the Traditional Medicine of the Tehuacán-Cuicatlán Valley, Puebla, México. Antibiotics. 2021; 10(3):295. https://doi.org/10.3390/antibiotics10030295
Chicago/Turabian StyleCandelaria-Dueñas, Sebastián, Rocío Serrano-Parrales, Marisol Ávila-Romero, Samuel Meraz-Martínez, Julieta Orozco-Martínez, José Guillermo Ávila-Acevedo, Ana María García-Bores, Carlos L. Cespedes-Acuña, Ignacio Peñalosa-Castro, and Tzasna Hernandez-Delgado. 2021. "Evaluation of the Antimicrobial Activity of Some Components of the Essential Oils of Plants Used in the Traditional Medicine of the Tehuacán-Cuicatlán Valley, Puebla, México" Antibiotics 10, no. 3: 295. https://doi.org/10.3390/antibiotics10030295
APA StyleCandelaria-Dueñas, S., Serrano-Parrales, R., Ávila-Romero, M., Meraz-Martínez, S., Orozco-Martínez, J., Ávila-Acevedo, J. G., García-Bores, A. M., Cespedes-Acuña, C. L., Peñalosa-Castro, I., & Hernandez-Delgado, T. (2021). Evaluation of the Antimicrobial Activity of Some Components of the Essential Oils of Plants Used in the Traditional Medicine of the Tehuacán-Cuicatlán Valley, Puebla, México. Antibiotics, 10(3), 295. https://doi.org/10.3390/antibiotics10030295