Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans
Abstract
:1. Introduction
2. Results
2.1. Strain Identification
2.2. Virulence Attributes
2.3. In Vitro Susceptibility Testing
2.4. Association between Virulence Attributes and MIC Values in M. canis Strains from Different Origin
3. Discussion
4. Materials and Methods
4.1. Source of Strains and Their Identification
Enzymatic Activity
4.2. Phospholipase Activity
4.3. Detection of Hemolytic Activity
4.4. Lipase Activity
4.5. Catalase Activity
4.6. Thermotolerance Determination
4.7. The Antifungal Susceptibility Testing
4.8. Antifungal Agents
4.9. Inoculum Preparation
4.10. In Vitro Susceptibility Testing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pier, A.C.; Moriello, K.A. Parasitic relationship between Microsporum canis and the cat. Med. Mycol. 1998, 36, 271–275. [Google Scholar] [PubMed]
- Aly, R.; Hay, R.J.; Palacio, A.D.; Galimberti, R. Epidemiology of tinea capitis. Med. Mycol. 2000, 38, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Cafarchia, C.; Romito, D.; Sasanelli, M.; Lia, R.; Capelli, G.; Otranto, D. The epidemiology of canine and feline dermatophytosis in southern Italy. Mycoses 2004, 47, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Romito, D.; Capelli, G.; Guillot, J.; Otranto, D. Isolation of Microsporum canis from the hair coat of pet dogs and cats belonging to owners diagnosed with M. canis tinea corporis. Vet. Dermatol. 2006, 17, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.A.; Schwartz, R.A. Tinea capitis: Still an unsolved problem? Mycoses 2011, 54, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Silveira-Gomes, F.; Oliveira, E.F.D.; Nepomuceno, L.B.; Pimentel, R.F.; Marques-da-Silva, S.H.; Mesquita-da-Costa, M. Der-matophytosis diagnosed at the evandro chagas institute, Pará, Brazil. Braz. J. Microbiol. 2013, 44, 443–446. [Google Scholar]
- Moriello, K.A.; Coyner, K.; Paterson, S. Diagnosis and treatment of dermatophytosis in dogs and cats: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 266–e68. [Google Scholar] [CrossRef]
- Monod, M. Secreted Proteases from Dermatophytes. Mycopathologia 2008, 166, 285–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A. Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. J. Appl. Microbiol. 2020, 129, 212–232. [Google Scholar] [CrossRef] [Green Version]
- Cafarchia, C.; Figueredo, L.A.; Coccioli, C.; Camarda, A.; Otranto, M. Enzymatic activity of Microsporum canis and Trichophyton mentagrophytes from breeding rabbits with and without skin lesions. Mycoses 2011, 55, 45–49. [Google Scholar] [CrossRef]
- Elavarashi, E.; Kindo, A.J.; Rangarajan, S. Enzymatic and Non-Enzymatic Virulence Activities of Dermatophytes on Solid Media. J. Clin. Diagn. Res. 2017, 11, DC23–DC25. [Google Scholar] [CrossRef]
- Chinnapun, D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Tech. 2015, 12, 573–580. [Google Scholar]
- Cafarchia, C.; Romito, D.; Coccioli, C.; Camarda, A.; Otranto, M. Phospholipase activity of yeasts from wild birds and possible implications for human disease. Med. Mycol. 2008, 46, 429–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, M.; Borelli, C.; Korting, H.C.; Hube, B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005, 48, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, F.; Ghasemi, Z.; Familsatarian, B.; Salehi, E.; Sharifynia, S.; Barikani, A.; Mirzadeh, M.; Hosseini, M.A. Relationship between antifungal susceptibility profile and virulence factors in Candida albicans isolated from nail specimens. Rev. Soc. Bras. Med. Trop. 2020, 53, e20190214. [Google Scholar] [CrossRef] [PubMed]
- Mawby, D.I.; Whittemore, J.C.; Fowler, L.E.; Papich, M.G. Comparison of absorption characteristics of oral reference and compounded itraconazole formulations in healthy cats. J. Am. Vet. Med. Assoc. 2018, 252, 195–200. [Google Scholar] [CrossRef]
- Bueno, J.G.; Martinez, C.; Zapata, B.; Sanclemente, G.; Gallego, M.; Mesa, A.C. In vitro activity of fluconazole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis. Clin. Exp. Dermatol. 2009, 35, 658–663. [Google Scholar] [CrossRef]
- Aneke, C.I.; Rhimi, W.; Otranto, D.; Cafarchia, C. Synergistic Effects of Efflux Pump Modulators on the Azole Antifungal Susceptibility of Microsporum canis. Mycopathology 2020, 185, 1–10. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; Chen, C.; Han, H.S.; Kano, R. The first report of terbinafine resistance Microsporum canis from a cat. J. Vet.-Med. Sci. 2018, 80, 898–900. [Google Scholar] [CrossRef] [Green Version]
- Aneke, C.I.; Otranto, D.; Cafarchia, C. Therapy and Antifungal Susceptibility Profile of Microsporum canis. J. Fungi 2018, 4, 107. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Torres, B.; Carrillo-Muñoz, A.; Ortoneda, M.; Pujol, I.; Pastor, F.J.; Guarro, J. Interlaboratory evaluation of the Etest® for antifungal susceptibility testing of dermatophytes. Med. Mycol. 2003, 41, 125–130. [Google Scholar]
- Abastabar, M.; Jedi, A.; Guillot, J.; Ilkit, M.; Eidi, S.; Hedayati, M.T.; Shokohi, T.; Ghazvini, R.D.; Rezaei-Matehkolaei, A.; Katiraee, F.; et al. In vitro activities of 15 antifungal drugs against a large collection of clinical isolates of Microsporum canis. Mycoses 2019, 62, 1069–1078. [Google Scholar] [CrossRef]
- Ghannoum, M. Azole Resistance in Dermatophytes: Prevalence and Mechanism of Action. J. Am. Podiatr. Med. Assoc. 2015, 106, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Gasser, R.B.; Figueredo, L.A.; Weigl, S.; Danesi, P.; Capelli, G.; Otranto, D. An improved molecular diagnostic assay for canine and feline dermatophytosis. Med. Mycol. 2013, 51, 136–143. [Google Scholar] [CrossRef]
- Vermout, S.; Tabart, J.; Baldo, A.; Mathy, A.; Losson, B.; Mignon, B. Pathogenesis of Dermatophytosis. Mycopathologia 2008, 166, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Döğen, A.; Gümral, R.; Ilkit, M. Haemolytic and co-haemolytic (CAMP-like) activity in dermatophytes. Mycoses 2014, 58, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, D.; Muñoz, J.F.; Almeida, A.J.; Puerta, J.D.; Restrepo, Á.; Cuomo, C.A.; McEwen, J.G.; Hernández, O. Paracoccidioides spp. catalases and their role in antioxidant defense against host defense responses. Fungal Genet. Biol. 2017, 100, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellgren, L.; Vincent, L. Lipolytic activity of some dermatophytes. J. Med. Microbiol. 1980, 13, 155–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Martinez, R.; Manzano-Gayosso, P.; Miert, M.; Mendez-Tovar, L.J.; Hernandez-Hernandez, F. Exoenzimes de der-matofitos aislados de tinas agudas y cronicas. Rev. Latin. Am. Microbiol. 1994, 36, 17–20. [Google Scholar]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Zięba, P. Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humans. J. Appl. Microbiol. 2018, 125, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Muhsin, T.M.; Aubaid, A.H.; Al-Duboon, A.H. Extracellular enzyme activities of dermatophytes and yeast isolates on solid media. Mycoses 1997, 40, 465–469. [Google Scholar] [CrossRef]
- Viani, F.C.; Dos Santos, M.; Paula, C.R.; Larson, C.E.; Gambale, W. Production of extracellular enzymes by Microsporum canis and their role in its virulence. Med. Mycol. 2001, 39, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Stoytcheva, M.; Montero, G.; Zlatev, R.; Leon, J.A.; Gochew, V. Analytical methods for lipase activity determination: A re-view. Curr. Anal. Chem. 2012, 8, 400–407. [Google Scholar] [CrossRef]
- Aktas, E.; Yıgıt, N. Hemolytic activity of dermatophytes species isolated from clinical specimens. J. Med. Mycol. 2015, 25, e25–e30. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Paes, R.; de Oliveira, L.C.; Oliveira, M.M.E.; Gutierrez-Galhardo, M.C.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Phenotypic Characteristics Associated with Virulence of Clinical Isolates from the SporothrixComplex. BioMed. Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Torres, B.; Carrillo, A.J.; Martín, E.; Del Palacio, A.; Moore, M.K.; Valverde, A.; Serrano, M.; Guarro, J. In Vitro Activities of 10 Antifungal Drugs against 508 Dermatophyte Strains. Antimicrob. Agents Chemother. 2001, 45, 2524–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea, S.; Fothergill, A.W.; Sutton, D.A.; Rinaldi, M.G. Comparison of In Vitro Activities of Voriconazole and Five Established Antifungal Agents against Different Species of Dermatophytes Using a Broth Macrodilution Method. J. Clin. Microbiol. 2001, 39, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Saunte, D.M.; Simmel, F.; Frimodt-Moller, N.; Stolle, L.B.; Svejgaard, E.L.; Haedersdal, M.; Kloft, C.; Arendrup, M.C. In Vivo Efficacy and Pharmacokinetics of Voriconazole in an Animal Model of Dermatophytosis. Antimicrob. Agents Chemother. 2007, 51, 3317–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchiesi, F.; Arzeni, D.; Camiletti, V.; Simonetti, O.; Cellini, A.; Offidani, A.M.; Scalise, G. In Vitro Activity of Posaconazole against Clinical Isolates of Dermatophytes. J. Clin. Microbiol. 2001, 39, 4208–4209. [Google Scholar] [CrossRef] [Green Version]
- Badali, H.; Mohammadi, R.; Mashedi, O.; De Hoog, G.S.; Meis, J.F. In vitrosusceptibility patterns of clinically importantTrichophytonandEpidermophytonspecies against nine antifungal drugs. Mycoses 2015, 58, 303–307. [Google Scholar] [CrossRef]
- De Hoog, G.S.; Guarro, J.; Gené, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed.; Amer Society for Microbiology: Utrecht, The Netherlands, 2000. [Google Scholar]
- Hubka, V.; Nováková, A.; Jurjević, Ž.; Sklenář, F.; Frisvad, J.C.; Houbraken, J.; Arendrup, M.C.; Jørgensen, K.M.; Siqueira, J.P.; Gené, J.; et al. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 995–1011. [Google Scholar] [CrossRef] [PubMed]
- Hubka, V.; Barrs, V.; Dudová, Z.; Sklenář, F.; Kubátová, A.; Matsuzawa, T.; Yaguchi, T.; Horie, Y.; Nováková, A.; Frisvad, J.; et al. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): Opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia Mol. Phylogeny Evol. Fungi 2018, 41, 142–174. [Google Scholar] [CrossRef] [PubMed]
- Price, M.F.; Wilkinson, I.D.; Gentry, L.O. Plate method for detection of phospholipase activity in Candida albicans. Med. Mycol. 1982, 20, 7–14. [Google Scholar] [CrossRef]
- Boechat, J.S.; Oliveira, M.M.E.; Almeida-Paes, R.; Gremião, I.D.F.; Machado, A.C.D.S.; Oliveira, R.D.V.C.; Figueiredo, A.B.F.; Rabello, V.B.D.S.; Silva, K.B.D.L.; Zancopé-Oliveira, R.M.; et al. Feline sporotrichosis: Associations between clinical-epidemiological profiles and phenotypic-genotypic characteristics of the etiological agents in the Rio de Janeiro epizootic area. Memórias Inst. Oswaldo Cruz 2018, 113, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Aneke, C.I.; Rhimi, W.; Pellicoro, C.; Cantacessi, C.; Otranto, D.; Cafarchia, C. The best type of inoculum for testing the antifungal drug susceptibility of Microsporum canis: In vivo and in vitro results. Mycoses 2020, 63, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Torres, B.; Cabanes, F.J.; Carrillo-Munoz, A.J.; Esteban, A.; Inza, I.; Abarca, L.; Guarro, J. Collaborative Evaluation of Optimal Antifungal Susceptibility Testing Conditions for Dermatophytes. J. Clin. Microbiol. 2002, 40, 4121–4125. [Google Scholar] [CrossRef] [Green Version]
- Ghannoum, M.A.; Chaturvedi, V.; Espinel-Ingroff, A.; Pfaller, M.A.; Rinaldi, M.G.; Lee-Yang, W.; Warnock, D.W. Intra- and inter-laboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J. Clin. Microbiol. 2004, 42, 2977–2979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
M. canis Source | Phospholipase | Catalase | Lipase | Hemolysis | Thermotolerance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pos/Tot (%) | Mean Pz (sd) | Pos/Tot (%) | Number of Strains (%) with High CA Value (>45 mm) | Pos/Tot (%) | Mean Lz (sd) | Pos/Tot (%) | Mean Hz (sd) | Diameter (mm) Mean at 28 °C (sd) | Diameter (mm) Mean at 35 °C (sd) | Number of Strains (%) with High GI% Value (>50) | |
Animals without lesions | 24/26 (92.3) | 0.4 (0.2) | 26/26 (100) | 2/26 (7.7) a b | 26/26 (100) | 0.6 (0.04) c d | 20/26 (77) | 0.6 (0.3) | 73.7 (8.9) | 45 (5.7) | 6/26 (23) e |
Animals with lesions | 60/64 (94) | 0.5 (0.2) | 64/64 (100) | 40/64 (62.5) a | 64/64 (100) | 0.8 (0.4) c | 62/64 (97) | 0.7 (0.1) | 79.2 (4.4) | 36.1 (6.2) | 48/64 (75) e |
Humans | 10/10 (100) | 0.5 (0.1) | 10/10 (100) | 10/10 (100) b | 10/10 (100) | 0.7 (0.03) d | 10/10 (100) | 0.7 (0.1) | 79 (4.2) | 35.4 (7.0) | 8/10 (80) |
Total | 94/100 (94) | 0.5 (0.2) | 100/100 (100) | 52 (52) | 100/100 (100) | 0.8 (0.4) | 92 (92) | 0.6 (0.2) | 77.7 (6.2) | 38.3 (7.2) | 64/100 (64) |
Drugs | Animals without Skin Lesions (n = 26) | Animals with Skin Lesions (n = 64) | Humans (n = 10) | Total (n = 100) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC Range | MIC50 | MIC90 | MIC Mean (sd) | MIC Range | MIC50 | MIC90 | MIC Mean (sd) | MIC Range | MIC50 | MIC90 | MIC Mean (sd) | MIC Range | MIC50 | MIC90 | MIC Mean (sd) | |
ITZ | 0.03–2 | 1 | 1 | 0.9 (0.6) a | 0.125–8 | 2 | 4 | 2.4 (2.3) a | 0.25–4 | 1 | 4 | 1.5 (1.5) | 0.03–8 | 1 | 4 | 2.0 (2.0) |
KTZ | 0.125–1 | 0.5 | 1 | 0.6 (0.4) | 0.008–4 | 0.25 | 1 | 0.7 (0.9) | 0.06–2 | 0.25 | 1 | 0.7(0.8) | 0.08–4 | 0.5 | 1 | 0.6 (0.7) |
VOR | 0.008–0.5 | 0.008 | 0.03 | 0.1 (0.1) | 0.008–0.5 | 0.008 | 0.03 | 0.04 (0.1) | 0.008–0.06 | 0.016 | 0.06 | 0.03 (0.02) | 0.08–0.5 | 0.008 | 0.06 | 0.03 (0.1) |
PSZ | 0.008–2 | 0.25 | 0.5 | 0.4 (0.5) | 0.008–2 | 0.25 | 1 | 0.6 (0.7) | 0.008–0.125 | 0.008 | 0.125 | 0.03 (0.05) | 0.08–2 | 0.25 | 1 | 0.5 (0.6) |
TER | 0.008–0.5 | 0.125 | 0.125 | 0.1 (0.1) | 0.008–0.5 | 0.06 | 0.25 | 0.1 (0.1) | 0.008–0.25 | 0.008 | 0.25 | 0.06 (0.1) | 0.08–0.5 | 0.03 | 0.25 | 0.1 (0.1) |
FLZ | 4–64 | 16 | 32 | 19.7 (16.4) | 4–128 | 32 | 64 | 39.5 (38.6) | 4–64 | 8 | 64 | 20 (23.6) | 4–128 | 16 | 64 | 34.8 (35.4) |
GRI | 0.125–2 | 0.5 | 1 | 0.8 (0.6) | 0.06–2 | 0.5 | 1 | 0.6 (0.4) | 0.125–0.5 | 0.5 | 0.5 | 0.4 (0.2) | 0.06–2 | 0.5 | 1 | 0.6 (0.5) |
Antifungal Drugs | With Skin Lesions | Without Skin Lesions | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos/Tot (%) | Pz (sd) | Lz (sd) | Hz (sd) | Ca (sd) | GI% (sd) | Pos/Tot (%) | Pz (sd) | Lz (sd) | Hz (sd) | Ca (sd) | GI% (sd) | |||
ITZ | LS MIC > 4 | 8/74 (11) | 0.5 (0.1) | 0.7 (0.1) | 0.7 (0.05) | 43 (13) | 53.6 (6.3) | LS MIC > 1 | 4/26 (15) | 0.6 (0.02) | 0.5 d (0.05) | 0.7 (0.06) | 35 (5) | 47.8 (6.2) |
HS MIC ≤ 4 | 66/74 (89) | 0.5 (0.2) | 0.8 (0.5) | 0.7 (0.1) | 46 (11) | 54.9 (6.2) | HS MIC ≤ 1 | 22/26 (85) | 0.5 (0.2) | 0.7 d (0.04) | 0.5 (0.3) | 36 (8) | 36.3 (10) | |
KTZ | LS MIC > 1 | 4/74 (5.4) | 0.5 (0.2) | 0.7 (0.3) | 0.5 (0.01) | 31 (1) a | 62.7 (0) | LS MIC > 1 | 0/26 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
HS MIC ≤ 1 | 70/74 (9.5) | 0.5 (0.2) | 0.8 (0.5) | 0.7 (0.09) | 46 (11) a | 54.3 (6.1) | HS MIC ≤ 1 | 26/26 (100) | 0.5 (0.2) | 0.7 (0.04) | 0.6 (0.3) | 35 (8) | 38.1 (10.4) | |
VOR | LS MIC > 0.03 | 8/74 (11) | 0.5 (0.1) | 1.5 (1.2) | 0.6 (0.06) b | 40 (11) c | 55.6 (6.9) | LS MIC > 0.03 | 2/26 (7.7) | 0.5 (0) | 0.7 (0) | 0.7 (0) | 40 (0) | 38.1 (9.5) |
HS MIC ≤ 0.03 | 66/74 (89) | 0.5 (0.2) | 0.7 (0.1) | 0.7 (0.09) b | 46 (11) c | 54.7 (6.2) | HS MIC ≤ 0.03 | 24/26 (92.3) | 0.5 (0.2) | 0.7 (0.04) | 0.5 (0.3) | 34 (8) | 36.8 (9.7) | |
PSZ | LS MIC > 1 | 10/74 (13.5) | 0.4 (0.2) | 0.8 (0.04) | 0.7 (0.05) | 41 (12) d | 54.7 (4.2) | LS MIC > 0.5 | 2/26 (7.7) | 0.6 (0) | 0.7 (0) | 0.8 (0) | 40 (0) | 41.9 (11.1) |
HS MIC ≤ 1 | 64/74 (86.5) | 0.5 (0.2) | 0.8 (0.5) | 0.7 (0.09) | 46 (12)d | 54.8 (6.5) | HS MIC ≤ 0.5 | 24/26 (92.3) | 0.5 (0.2) | 0.7 (0.04) | 0.5 (0.3) | 34 (8) | 38.4 (10.7) | |
TER | LS MIC > 0.25 | 4/74 (5.4) | 0.5 (0.05) | 0.8 (0.1) | 0.7 (0.01) | 41 (12) e | 61.9 (1.4) | LS MIC > 0.125 | 1/26 (3.8) | 0.6 (0) | 0.7 (0) | 0.8 (0) | 50 (0) | 34.6 (0) |
HS MIC ≤ 0.25 | 70/74 (9.5) | 0.5 (0.2) | 0.8 (0.5) | 0.7 (0.09) | 45 (11) e | 54.4 (6.2) | HS MIC ≤ 0125 | 25/26 (96.2) | 0.5 (0.2) | 0.7 (0.04) | 0.5 (0.3) | 34 (8) | 38.3 (9.0) | |
FLZ | LS MIC > 64 | 8/74 (11) | 0.4 (0.3) | 0.7 (0.03) | 0.6 (0.1) f | 47 (11) | 59.7 (4.3) | LS MIC > 32 | 2/26 (7.7) | 0.6 (0) | 0.7 (0) | 0 (0) | 48 (0) | 34.6 (0) |
HS MIC ≤ 64 | 66/74 (89) | 0.5 (0.2) | 0.8 (0.5) | 0.7 (0.1) f | 45 (11) | 53.4 (6.2) | HS MIC ≤ 32 | 24/26 (92.3) | 0.5 (0.2) | 0.7 (0.04) | 0.6 (0.3) | 37 (4) | 38.4 (10.7) | |
GRI | LS MIC > 1 | 2/74 (2.7) | 0.4 (0) | 0.8 (0) | 0.5 (0) | 60 (0) | 52.9 (0) | LS MIC > 1 | 4/26 (15.4) | 0.7 (0.1) | 0.7 (0.05) | 0.7 (0.03) | 27 (3) g | 26.2 (0) |
HS MIC ≤ 1 | 72/74 (97.3) | 0.5 (0.2) | 0.8 (0.4) | 0.7 (0.09) | 45 (11) | 54.8 (6.3) | HS MIC ≤ 1 | 22/26 (84.6) | 0.5 (0.2) | 0.7 (0.04) | 0.5 (0.3) | 36 (7) g | 40.2 (10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aneke, C.I.; Rhimi, W.; Hubka, V.; Otranto, D.; Cafarchia, C. Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans. Antibiotics 2021, 10, 296. https://doi.org/10.3390/antibiotics10030296
Aneke CI, Rhimi W, Hubka V, Otranto D, Cafarchia C. Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans. Antibiotics. 2021; 10(3):296. https://doi.org/10.3390/antibiotics10030296
Chicago/Turabian StyleAneke, Chioma Inyang, Wafa Rhimi, Vit Hubka, Domenico Otranto, and Claudia Cafarchia. 2021. "Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans" Antibiotics 10, no. 3: 296. https://doi.org/10.3390/antibiotics10030296
APA StyleAneke, C. I., Rhimi, W., Hubka, V., Otranto, D., & Cafarchia, C. (2021). Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans. Antibiotics, 10(3), 296. https://doi.org/10.3390/antibiotics10030296