An Assessment of the Viability of Lytic Phages and Their Potency against Multidrug Resistant Escherichia coli O177 Strains under Simulated Rumen Fermentation Conditions
Abstract
:1. Introduction
2. Results
2.1. Viability of Phages and Time-Induced Changes in Total E. coli O177 Cell Counts
2.2. Efficacy of Phages against E. coli O177 Cells
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Preparation of Grass Hay Substrate for Ex Vivo Rumen Fermentation
4.3. Bacterial Strain
4.4. Propagation of Phage Lysates
4.5. Efficacy of Phages Against E. coli O177 Strain in Ex Vivo Rumen Fermentation Conditions
4.5.1. Collection of Rumen Fluid
4.5.2. E. coli O177 and Phage Inoculation
4.6. Determination of Phage Titres and E. coli O177 Cell Counts
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Ingle, D.J.; Tauschek, M.; Edwards, D.J.; Hocking, D.M.; Pickard, D.J.; Azzopardi, K.I.; Amarasena, T.; Bennett-Wood, V.; Pearson, J.S.; Tamboura, B. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants. Nat. Microbiol. 2016, 1, 15010. [Google Scholar] [CrossRef]
- Montso, P.K.; Mlambo, V.; Ateba, C.N. The First Isolation and Molecular Characterization of Shiga Toxin-Producing Virulent Multi-drug Resistant Atypical Enteropathogenic Escherichia coli O177 Serogroup From South African Cattle. Front. Cell. Infect. Microbiol. 2019, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Rasmussen, M.A.; Cray, W.C., Jr.; Casey, T.A.; Whipp, S.C. Rumen contents as a reservoir of enterohemorrhagic Escherichia coli. FEMS Microbiol. Lett. 1993, 114, 79–84. [Google Scholar] [CrossRef]
- Tkalcic, S.; Brown, C.A.; Harmon, B.G.; Jain, A.V.; Mueller, E.P.; Parks, A.; Jacobsen, K.L.; Martin, S.A.; Zhao, T.; Doyle, M.P. Effects of diet on rumen proliferation and faecal shedding of Escherichia coli O157: H7 in calves. J. Food Protec. 2000, 63, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Trabulsi, L.R.; Keller, R.; Gomes, T.A.T. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 2002, 8, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Laven, R.; Ashmore, A.; Stewart, C. Escherichia coli in the rumen and colon of slaughter cattle, with particular reference to E. coli O157. Vet. J. 2003, 165, 78–83. [Google Scholar] [CrossRef]
- Khafipour, E.; Plaizier, J.; Aikman, P.C.; Krause, D. Population structure of rumen Escherichia coli associated with subacute ruminal acidosis (SARA) in dairy cattle. J. Dairy Sci. 2011, 94, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Ateba, C.N.; Mbewe, M. Detection of Escherichia coli O157: H7 virulence genes in isolates from beef, pork, water, human and animal species in the North West province, South Africa: Public health implications. Res. Microbiol. 2011, 162, 240–248. [Google Scholar] [CrossRef]
- Álvarez-Suárez, M.-E.; Otero, A.; García-López, M.-L.; Dahbi, G.; Blanco, M.; Mora, A.; Blanco, J.; Santos, J.A. Genetic characterization of Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic Escherichia coli (EPEC) isolates from goat’s milk and goat farm environment. Int. J. Food Microbiol. 2016, 236, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Brauer, A.; Frail, S.; Shan, P.; Tran, T. Biocontrol for foodborne zoonotic pathogens in animal reservoirs and food products. In Safety and Practice for Organic Food; Academic Press: Cambridge, MA, USA, 2019; pp. 377–395. [Google Scholar] [CrossRef]
- Duc, H.M.; Son, H.M.; Yi, H.P.S.; Sato, J.; Ngan, P.H.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157: H7 in different food matrices. Food Res. Int. 2020, 131, 108977. [Google Scholar] [CrossRef]
- Carter, C.D.; Parks, A.; Abuladze, T.; Li, M.; Woolston, J.; Magnone, J.; Senecal, A.; Kropinski, A.M.; Sulakvelidze, A. Bacteriophage cocktail significantly reduces Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2012, 2, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Moye, Z.; Woolston, J.; Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.; Jeon, B.; Ryu, S. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food Microbiol. 2019, 77, 52–60. [Google Scholar] [CrossRef]
- Buncic, S.; Sofos, J. Interventions to control Salmonella contamination during poultry, cattle and pig slaughter. Food Res. Int. 2012, 45, 641–655. [Google Scholar] [CrossRef]
- Rozema, E.A.; Stephens, T.P.; Bach, S.J.; Okine, E.K.; Johnson, R.P.; Stanford, K.; Mcallister, T.A. Oral and rectal administration of bacteriophages for control of Escherichia coli O157: H7 in feedlot cattle. J. Food Protect. 2009, 72, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; Del Fiol, F.S.; Vila, M.; Dąbrowska, K.; Krylov, V.N.; Balcão, V.M. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Altamirano, F.L.G.; Barr, J.J. Phage therapy in the post-antibiotic era. Clin. Microbiol. Rev. 2019, 32, e00066-18. [Google Scholar] [CrossRef] [Green Version]
- Sillankorva, S.M.; Oliveira, H.; Azeredo, J. Bacteriophages and their role in food safety. Int. J. Microbiol. 2012, 2012, 863945. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, U.; Ukhanova, M.; Moye, Z.D.; Sulakvelidze, A.; Mai, V. Bacteriophages reduce pathogenic Escherichia coli counts in mice without distorting gut microbiota. Front. Microbiol. 2019, 10, 1984. [Google Scholar] [CrossRef]
- Mangieri, N.; Picozzi, C.; Cocuzzi, R.; Foschino, R. Evaluation of a Potential Bacteriophage Cocktail for the Control of Shiga-Toxin Producing Escherichia coli in Food. Front. Microbiol. 2020, 11, 1801. [Google Scholar] [CrossRef]
- Nikolich, M.P.; Filippov, A.A. Bacteriophage therapy: Developments and directions. Antibiotics 2020, 9, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endersen, L.; O’mahony, J.; Hill, C.; Ross, R.P.; Mcauliffe, O.; Coffey, A. Phage therapy in the food industry. Ann. Rev. Food Sci. Technol. 2014, 5, 327–349. [Google Scholar] [CrossRef]
- Tolen, T.N.; Xie, Y.; Hairgrove, T.B.; Gill, J.J.; Taylor, T.M. Evaluation of commercial prototype bacteriophage intervention designed for reducing O157 and non-O157 shiga-toxigenic Escherichia coli on beef cattle hide. Foods 2018, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wakushima, M.; Aota, T.; Yoshida, Y.; Kita, T.; Maehara, T.; Ogasawara, J.; Choi, C.; Kamata, Y.; Hara-Kudo, Y. Specific properties of enteropathogenic Escherichia coli isolates from diarrheal patients and comparison to strains from foods and fecal specimens from cattle, swine, and healthy carriers in Osaka City, Japan. Appl. Environ. Microbiol. 2013, 79, 1232–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, F.H.; Guth, B.E.; Piazza, R.M.; Elias, W.P.; Leão, S.C.; Marzoa, J.; Dahbi, G.; Mora, A.; Blanco, M.; Blanco, J. Lambs are an important source of atypical enteropathogenic Escherichia coli in southern Brazil. Vet. Microbiol. 2016, 196, 72–77. [Google Scholar] [CrossRef]
- Munhoz, D.D.; Nara, J.M.; Freitas, N.C.; Moraes, C.T.; Nunes, K.O.; Yamamoto, B.B.; Vasconcellos, F.M.; Martínez-Laguna, Y.; Girón, J.A.; Martins, F.H.; et al. Distribution of major pilin subunit genes among atypical enteropathogenic Escherichia coli and influence of growth media on expression of the ecp operon. Front. Microbiol. 2018, 9, 942. [Google Scholar] [CrossRef]
- Endersen, L.; Coffey, A. The use of bacteriophages for food safety. Curr. Opin. Food Sci. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Qu, K.; Li, X.; Cao, Z.; Wang, X.; Li, Z.; Song, Y.; Xu, Y. Use of bacteriophages to control Escherichia coli O157: H7 in domestic ruminants, meat products, and fruits and vegetables. Foodborne Path. Dis. 2017, 14, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Nitin, N. Antimicrobial particle-based novel sanitizer for enhanced decontamination of fresh produce. Appl. Environ. Microbiol. 2019, 85, e02599-18. [Google Scholar] [CrossRef] [Green Version]
- Menge, C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins 2020, 12, 607. [Google Scholar] [CrossRef]
- Goodridge, L.D.; Bisha, B. Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 2011, 1, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Sheng, H.; Knecht, H.J.; Kudva, I.T.; Hovde, C.J. Application of bacteriophages to control intestinal Escherichia coli O157: H7 levels in ruminants. Appl. Environ. Microbiol. 2006, 72, 5359–5366. [Google Scholar] [CrossRef] [Green Version]
- Rivas, L.; Coffey, B.; Mcauliffe, O.; Mcdonnell, M.J.; Burgess, C.M.; Coffey, A.; Ross, R.P.; Duffy, G. In vivo and ex vivo evaluations of bacteriophages e11/2 and e4/1c for use in the control of Escherichia coli O157: H7. Appl. Environ. Microbiol. 2010, 76, 7210–7216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, S.J.; Mcallister, T.A.; Veira, D.M.; Gannon, V.P.; Holley, R.A. Effect of bacteriophage DC22 on Escherichia coli O157: H7 in an artificial rumen system (Rusitec) and inoculated sheep. Anim. Res. 2003, 52, 89–101. [Google Scholar] [CrossRef]
- Raya, R.R.; Oot, R.A.; Moore-Maley, B.; Wieland, S.; Callaway, T.R.; Kutter, E.M.; Brabban, A.D. Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157: H7 levels in sheep guts. Bacteriophage 2011, 1, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Chen, P.; Lin, Z.; Wang, T. Characterization of two Pseudomonas aeruginosa viruses vB_PaeM_SCUT-S1 and vB_PaeM_SCUT-S2. Viruses 2019, 11, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosznik-Kwaśnicka, K.; Ciemińska, K.; Grabski, M.; Grabowski, Ł.; Górniak, M.; Jurczak-Kurek, A.; Węgrzyn, G.; Węgrzyn, A. Characteristics of a Series of Three Bacteriophages Infecting Salmonella enterica Strains. Int. J. Mol. Sci. 2020, 21, 6152. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Cooper, I.R. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J. Microbiol. Methods 2016, 130, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Chen, L.; Fan, J.; Yan, T.; Liu, Q.; Yuan, S.; Deng, D. Isolation and characterization of specific phages to prepare a cocktail preventing Vibrio sp. Va-F3 infections in shrimp (Litopenaeus vannamei). Front. Microbiol. 2019, 10, 2337. [Google Scholar] [CrossRef] [Green Version]
- Montso, P.K.; Mlambo, V.; Ateba, C.N. Characterisation of lytic bacteriophages infecting multi-drug resistant shiga-toxigenic atypical Escherichia coli O177 strains isolated from cattle faeces. Front. Public Health 2019, 7, 355. [Google Scholar] [CrossRef] [PubMed]
- Montso, P.K.; Mlambo, V.; Ateba, C.N. Efficacy of novel phages for control of multi-drug resistant Escherichia coli O177 on artificially contaminated beef and their potential to disrupt biofilm formation. Food Microbiol. 2021, 94, 103647. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- O’Toole, G.A. Classic spotlight: Plate counting you can count on. J. Bacteriol. 2016, 198, 3127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, M.H. Assay of phage by agar layer method. In Bacteriophages; Interscience Publishers Inc.: New York, NY, USA, 1959; pp. 450–454. [Google Scholar]
- SAS Institute. SAS User’s Guide: Statistics Version 9.4; SAS. Institute, Inc.: Cary, NC, USA, 2010. [Google Scholar]
Single Phage | Regression Equation | R2 | p-Value | Predicted Time to Peak Titre (h) |
---|---|---|---|---|
vB_EcoM_10C2 | y = 1.128 (±0.2139) + 0.501 (±0.0237)x − 0.005 (±0.0005)x2 | 0.985 | <0.001 | 50 |
vB_EcoM_10C3 | y = 0.752 (±0.1727) + 0.525 (±0.0191)x − 0.005 (±0.0004)x2 | 0.991 | <0.001 | 53 |
vB_EcoM_118B | y = 1.149 (±0.1815) + 0.496 (±0.0201)x − 0.005 (±0.0004)x2 | 0.989 | <0.001 | 50 |
vB_EcoM_11B2 | y = 1.036 (±0.1403) + 0.502 (±0.0155)x − 0.005 (±0.0003)x2 | 0.994 | <0.001 | 50 |
vB_EcoM_12A1 | y = 0.730 (±0.1725) + 0.521 (±0.0191)x − 0.005 (±0.0004)x2 | 0.991 | <0.001 | 52 |
vB_EcoM_366B | y = 1.014 (±0.2037) + 0.503 (±0.0226)x − 0.005 (±0.0005)x2 | 0.987 | <0.001 | 50 |
vB_EcoM_366V | y = 1.088 (±0.2153) + 0.503 (±0.0238)x − 0.005 (±0.0005)x2 | 0.985 | <0.001 | 50 |
vB_EcoM_3A1 | y = 1.041 (±0.2006) + 0.489 (±0.0222)x − 0.005 (±0.0004)x2 | 0.811 | <0.001 | 49 |
Phage Cocktail | Regression Equation | R2 | p-Value | Predicted Time to Peak Titre (h) |
---|---|---|---|---|
vB_EcoMC1 | y = 0.981 (±0.1845) + 0.514 (±0.0204)x − 0.005 (±0.0004)x2 | 0.990 | <0.001 | 51 |
vB_EcoMC2 | y = 0.682 (±0.1525) + 0.535 (±0.0169)x − 0.005 (±0.0003)x2 | 0.993 | <0.001 | 54 |
vB_EcoMC3 | y = 0.919 (±0.1368) + 0.532 (±0.0151)x − 0.005 (±0.0003)x2 | 0.995 | <0.001 | 53 |
vB_EcoMC4 | y = 0.531 (±0.1548) + 0.548 (±0.0171)x − 0.005 (±0.0003)x2 | 0.994 | <0.001 | 55 |
vB_EcoMC5 | y = 1.020 (±0.2435) + 0.519 (±0.0270)x − 0.005 (±0.0005)x2 | 0.982 | <0.001 | 52 |
vB_EcoMC6 | y = 1.145 (±0.2101) + 0.527 (±0.0233)x − 0.005 (±0.0005)x2 | 0.987 | <0.001 | 53 |
Time (h) | Single Phages | ||||||||
---|---|---|---|---|---|---|---|---|---|
vB_EcoM_10C2 | vB_EcoM_10C3 | vB_EcoM_118B | vB_EcoM_11B2 | vB_EcoM_12A1 | vB_EcoM_366B | vB_EcoM_366V | vB_EcoM_3A1 | SEM | |
6 | 17.25 c | 16.58 abc | 16.31 ab | 16.89 bc | 16.03 a | 19.41 e | 18.09 d | 16.46 ab | 0.168 |
12 | 27.03 b | 28.59 d | 25.86 a | 27.66 bc | 28.05 cd | 28.61 d | 27.92 cd | 27.54 bc | 0.194 |
24 | 48.37 a | 48.53 b | 49.56 f | 50.10 g | 49.60 f | 49.52 e | 49.07 c | 49.50 d | 0.123 |
36 | 54.37 a | 54.43 a | 55.13 ab | 55.62 bc | 54.96 ab | 56.10 c | 55.78 bc | 56.42 c | 0.207 |
48 | 61.02 a | 61.12 a | 61.69 ab | 61.73 ab | 61.89 b | 62.31 bc | 61.90 b | 62.74 c | 0.180 |
Time (h) | Phage Cocktails | ||||||
---|---|---|---|---|---|---|---|
vB_EcoMC1 | vB_EcoMC2 | vB_EcoMC3 | vB_EcoMC4 | vB_EcoMC5 | vB_EcoMC6 | SEM | |
6 | 21.79 b | 20.65 a | 24.38 c | 26.63 d | 21.05 a | 24.65 c | 0.168 |
12 | 32.52 b | 30.29 a | 34.83 c | 36.75 d | 30.73 a | 34.69 c | 0.194 |
24 | 50.81 b | 51.51 c | 54.34 e | 53.51 d | 50.27 a | 55.19 f | 0.123 |
36 | 58.60 b | 58.67 b | 59.84 c | 59.81 c | 56.41 a | 60.69 d | 0.207 |
48 | 65.34 b | 62.82 a | 66.67 c | 66.92 c | 62.35 a | 66.42 c | 0.180 |
Single Phages | Regression Equation | R2 | p-Value | Time to Maximum Effect (h) |
---|---|---|---|---|
vB_EcoM_10C2 | y = 1.212 (±0.6744) + 2.548 (±0.0746)x − 0.027 (±0.0015)x2 | 0.993 | <0.001 | 48 |
vB_EcoM_10C3 | y = 1.258 (±0.650) + 2.583 (±0.0720)x − 0.028 (±0.0014)x2 | 0.994 | <0.001 | 47 |
vB_EcoM_118B | y = 0.476 (±0.7273) + 2.599 (±0.0805)x − 0.027 (±0.0016)x2 | 0.993 | <0.001 | 48 |
vB_EcoM_11B2 | y = 1.054 (±0.6771) + 2.646 (±0.0749)x − 0.029 (±0.0015)x2 | 0.993 | <0.001 | 47 |
vB_EcoM_12A1 | y = 0.715 (±0.677) + 2.636 (±0.0749)x − 0.028 (±0.0015)x2 | 0.993 | <0.001 | 48 |
vB_EcoM_366B | y = 1.930 (±0.7607) + 2.621 (±0.084)x − 0.028 (±0.0017)x2 | 0.992 | <0.001 | 47 |
vB_EcoM_366V | y = 1.317 (±0.6620) + 2.616 (±0.0732)x − 0.028 (±0.0014)x2 | 0.994 | <0.001 | 47 |
vB_EcoM_3A1 | y = 0.680 (±0.5571) + 2.636 (±0.0616)x − 0.028 (±0.0012)x2 | 0.996 | <0.001 | 47 |
Phage Cocktails | Regression Equation | R2 | p-Value | Time to Maximum Effect (h) |
---|---|---|---|---|
vB_EcoMC1 | y = 3.359 (±0.938) + 2.697 (±0.1038)x − 0.029 (±0.0021)x2 | 0.988 | <0.001 | 46 |
vB_EcoMC2 | y = 1.887 (±0.734) + 2.815 (±0.0813)x − 0.032 (±0.0016)x2 | 0.993 | <0.001 | 44 |
vB_EcoMC3 | y = 3.803 (±1.2326) + 2.905 (±0.1364)x − 0.034 (±0.0027)x2 | 0.981 | <0.001 | 43 |
vB_EcoMC4 | y = 5.049 (±1.510) + 2.864 (±0.167)x − 0.033 (±0.0033)x2 | 0.970 | <0.001 | 44 |
vB_EcoMC5 | y = 2.671 (±0.899) + 2.692 (±0.0995)x − 0.030 (±0.0020)x2 | 0.988 | <0.001 | 45 |
vB_EcoMC6 | y = 3.606 (±1.1709) + 2.977 (±0.1296)x − 0.035 (±0.0026)x2 | 0.983 | <0.001 | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montso, P.K.; Mnisi, C.M.; Ateba, C.N.; Mlambo, V. An Assessment of the Viability of Lytic Phages and Their Potency against Multidrug Resistant Escherichia coli O177 Strains under Simulated Rumen Fermentation Conditions. Antibiotics 2021, 10, 265. https://doi.org/10.3390/antibiotics10030265
Montso PK, Mnisi CM, Ateba CN, Mlambo V. An Assessment of the Viability of Lytic Phages and Their Potency against Multidrug Resistant Escherichia coli O177 Strains under Simulated Rumen Fermentation Conditions. Antibiotics. 2021; 10(3):265. https://doi.org/10.3390/antibiotics10030265
Chicago/Turabian StyleMontso, Peter Kotsoana, Caven Mguvane Mnisi, Collins Njie Ateba, and Victor Mlambo. 2021. "An Assessment of the Viability of Lytic Phages and Their Potency against Multidrug Resistant Escherichia coli O177 Strains under Simulated Rumen Fermentation Conditions" Antibiotics 10, no. 3: 265. https://doi.org/10.3390/antibiotics10030265
APA StyleMontso, P. K., Mnisi, C. M., Ateba, C. N., & Mlambo, V. (2021). An Assessment of the Viability of Lytic Phages and Their Potency against Multidrug Resistant Escherichia coli O177 Strains under Simulated Rumen Fermentation Conditions. Antibiotics, 10(3), 265. https://doi.org/10.3390/antibiotics10030265