Comparison of the Staphylococcal Chromosome Cassette (SCC) mec in Methicillin-Resistant Staphylococcus aureus (MRSA) and Non-aureus Staphylococci (MRNAS) from Animals and Humans
Abstract
:1. Introduction
2. Results
2.1. Screening and Identification
2.2. SCCmec PCR
2.3. Whole Genomic Analysis
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Isolate Collections and MRS Phenotypic Identification
5.2. MRS Species Identification
5.3. PCR for mec Gene and SCCmec Identification
5.4. WGS
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jessen, O.; Rosendal, K.; Bülow, P.; Faber, V.; Eriksen, K.R. Changing staphylococci and staphylococcal infections, a ten-year study of bacteria and cases of bacteremia. N. Engl. J. Med. 1969, 281, 627–635. [Google Scholar] [CrossRef]
- Rolinson, G.N.; Jevons, M.P.; Rolinson, G.N. “Celbenin”-resistant staphylococci. Br. Med. J. 1961, 1, 125. [Google Scholar] [CrossRef]
- Itou, T.; Katayama, Y.; Hiramatsu, K. A new mobile genetic element, staphylococcal cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Nippon Saikingaku Zasshi. Jpn. J. Bacteriol. 2000, 55, 483–498. [Google Scholar] [CrossRef]
- Otter, J.A.; French, G.L. Community-associated meticillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J. Hosp. Infect. 2011, 79, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.A.; Hommez, J. Epidemiology of methicillin-resistant Staphylococcus aureus in dairy herds. Res. Vet. Sci. 1975, 19, 23–27. [Google Scholar] [CrossRef]
- Spiliopoulou, I.; Petinaki, E. Methicillin-resistant Staphylococcus aureus colonization and infection risks from companion animals: Current perspectives. Vet. Med. Res. Rep. 2015, 6, 373–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, T.; Kuwahara-Arai, K.; Uchiyama, I.; Takeuchi, F.; Ito, T.; Hiramatsu, K. Complete genome sequence of Macrococcus caseolyticus strain JSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. J. Bacteriol. 2009, 191, 1180–1190. [Google Scholar] [CrossRef] [Green Version]
- García-Álvarez, L.; Holden, M.T.G.; Lindsay, H.; Webb, C.R.; Brown, D.F.J.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Schwendener, S.; Cotting, K.; Perreten, V. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsubakishita, S.; Kuwahara-Arai, K.; Sasaki, T.; Hiramatsu, K. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 2010, 54, 4352–4359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K.; Namikawa, H.; Fujimoto, H.; Nakaie, K.; Takizawa, E.; Okada, Y.; Fujita, A.; Kawaguchi, H.; Nakamura, Y.; Abe, J.; et al. Clinical characteristics of methicillin-resistant coagulase-negative staphylococcal bacteremia in a tertiary hospital. Intern. Med. 2017, 56, 781–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urushibara, N.; Aung, M.S.; Kawaguchiya, M.; Kobayashi, N. Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J. Antimicrob. Chemother. 2020, 75, 46–50. [Google Scholar] [CrossRef]
- Stefani, S.; Varaldo, P.E. Epidemiology of methicillin-resistant staphylococci in Europe. Clin. Microbiol. Infect. 2003, 9, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.P. Methicillin-resistant Staphylococcus aureus: The European landscape. J. Antimicrob. Chemother. 2011, 66, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—A review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [Green Version]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolo, J.; Worning, P.; Nielsen, J.B.; Bowden, R.; Bouchami, O.; Damborg, P.; Guardabassi, L.; Perreten, V.; Tomasz, A.; Westh, H.; et al. Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec). Antimicrob. Agents Chemother. 2016, 61. [Google Scholar] [CrossRef] [Green Version]
- Franklin, D. Lowy Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, B.; Allesøe, L. SCCmecFinder, a Web-based tool for typing of Cassette Chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denis, O.; Jans, B.; Deplano, A.; Nonhoff, C.; De Ryck, R.; Suetens, C.; Struelens, M.J. Epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) among residents of nursing homes in Belgium. J. Antimicrob. Chemother. 2009, 64, 1299–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardiau, M.; Yamazaki, K.; Duprez, J.N.; Taminiau, B.; Mainil, J.G.; Ote, I. Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk of bovine mastitis. Lett. Appl. Microbiol. 2013, 57, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Chongtrakool, P.; Ito, T.; Ma, X.X.; Trakulsomboon, S.; Tiensasitorn, C.; Jamklang, M.; Chavalit, T.; Song, J.; Kondo, Y. Staphylococcal Cassette Chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus: A proposal for a new nomenclature for SCCmec elements. Antimicrob. Agents Chemother. 2006, 50, 1001–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buntaran, L.; Hatta, M.; Sultan, A.R.; Dwiyanti, R.; Sabir, M. SCCmec type II gene is common among clinical isolates of methicillin-resistant Staphylococcus aureus in Jakarta, Indonesia. BMC Res. Notes 2013, 6, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Hiramatsu, K.; Oliveira, D.C.; De Lencastre, H.; Zhang, K.; Westh, H.; O’Brien, F.; Giffard, P.M.; Coleman, D.; Tenover, F.C.; et al. Classification of staphylococcal cassette chromosome mec (SCCmec): Guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [Google Scholar] [CrossRef] [Green Version]
- Reyher, K.K.; Dohoo, I.R.; Scholl, D.T.; Keefe, G.P. Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens. J. Dairy Sci. 2012, 95, 3766–3780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, A.; Awad, W.; Abdou, N.-E.; Castañeda Vázquez, H. Molecular biological tools applied for identification of mastitis causing pathogens. Int. J. Vet. Sci. Med. 2017, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Garza-González, E.; Morfín-Otero, R.; Llaca-Díaz, J.M.; Rodriguez-Noriega, E. Staphylococcal cassette chromosome mec (SCCmec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol. Infect. 2010, 138, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Van Griethuysen, A.; Van Loo, I.; Van Belkum, A.; Vandenbroucke-Grauls, C.; Wannet, W.; Van Keulen, P.; Kluytmans, J. Loss of the mecA gene during storage of methicillin-resistant Staphylococcus aureus strains. J. Clin. Microbiol. 2005, 43, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- Anand, K.B.; Agrawal, P.; Kumar, S.; Kapila, K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J. Med. Microbiol. 2009, 27, 27–29. [Google Scholar]
- Pantosti, A.; Sanchini, A.; Monaco, M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007, 2, 323–334. [Google Scholar] [CrossRef]
- Ote, I.; Taminiau, B.; Duprez, J.N.; Dizier, I.; Mainil, J.G. Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis. Vet. Microbiol. 2011, 153, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Ngassam Tchamba, C.; Rao, A.S.; Boyen, F.; Haesebrouck, F.; Duprez, J.N.; Théron, L.; Thiry, D.; Mainil, J.G. Comparison of quantitative PCR and MALDI-TOF mass spectrometry assays for identification of bacteria in milk samples from cows with subclinical mastitis. J. Appl. Microbiol. 2019, 127, 683–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardiau, M.; Caplin, J.; Detilleux, J.; Graber, H.; Moroni, P.; Taminiau, B.; Mainil, J.G. Existence of two groups of Staphylococcus aureus strains isolated from bovine mastitis based on biofilm formation, intracellular survival, capsular profile and agr-typing. Vet. Microbiol. 2016, 185, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bardiau, M.; Yamazaki, K.; Ote, I.; Misawa, N.; Mainil, J. Characterization of methicillin-resistant Staphylococcus pseudintermedius isolated from dogs and cats. Microbiol. Immunol. 2013, 57, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Issa, A.; Bada-alambedji, R.; Duprez, J.; Djika, M. Bacterial mastitis in the Azawak zebu breed at the Sahelian experimental station in Toukounous (Niger): Identification and typing of Staphylococcus aureus. Int. Res. J. Microbiol. 2013, 4, 168–178. [Google Scholar]
- Kadja, M.; Kpodekon, M.; Kane, Y.; Tchassou, K.; Kaboret, Y.; Maini, J.; Taminiau, B. Typing of Staphylococcus aureus strains isolated from milk cows with subclinical mastitis in Dakar, Senegal. Bull. Anim. Health Prod. Afr. 2010, 195–205. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Zone Diameter and MIC Interpretative Standards for Staphylococcus spp.; (M100-S23.); CLSI: Annapolis Junction, MD, USA, 2013; Volume 33. [Google Scholar]
- Cameron, M.; Barkema, H.W.; De Buck, J.; De Vliegher, S.; Chaffer, M.; Lewis, J.; Keefe, G.P. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J. Dairy Sci. 2017, 100, 2137–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unal, S.; Hoskins, J.; Flokowitsch, J.E.; Wu, C.Y.; Preston, D.A.; Skatrud, P.L. Detection of methicillin-resistant staphylococci by using the polymerase chain reaction. J. Clin. Microbiol. 1992, 30, 1685–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argudín, M.A.; Dodémont, M.; Vandendriessche, S.; Rottiers, S.; Tribes, C.; Roisin, S.; de Mendonça, R.; Nonhoff, C.; Deplano, A.; Denis, O. Low occurrence of the new species Staphylococcus argenteus in a Staphylococcus aureus collection of human isolates from Belgium. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1017–1022. [Google Scholar] [CrossRef]
- Maes, N.; Magdalena, J.; De Gheldre, Y.; Struelens, M.J. Evaluation of a triplex PCR assay to discriminate Staphylococcus aureus from coagulase-negative staphylococci and determine methicillin resistance from blood cultures. J. Clin. Microbiol. 2002, 40, 1514–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urushibara, N.; Paul, S.K.; Hossain, M.A.; Kawaguchiya, M.; Kobayashi, N. Analysis of staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: Identification of a novel ccr gene complex with a newly identified ccrA allotype (ccrA7). Microb. Drug Resist. 2011, 17, 291–297. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
Country | Host Species | Staphylococcus Species | Cefoxitin R 1 | Cefoxitin S 2 | Total | ||
---|---|---|---|---|---|---|---|
mecA+ | mecA− | mecA+ | mecA− | ||||
Belgium | Cow | aureus | 26 | 2 3 | 3 | 31 | |
epidermidis | 1 | 1 | |||||
haemolyticus | 1 | 1 | |||||
Boar | aureus | 1 | 1 | ||||
Horse | aureus | 1 | 1 | ||||
Human | aureus | 25 | 1 4 | 26 | |||
capitis | 1 | 1 | |||||
epidermidis | 5 | 5 | |||||
Fomites | aureus | 2 | 2 | ||||
Canada | Cow | aureus | 1 | 1 | |||
Japan | Dog | aureus | 1 | 1 | |||
Cat | aureus | 4 | 4 | ||||
Niger | Cow | aureus | 3 | 3 | |||
Total | 68 | 3 | 0 | 7 | 78 |
Country | Host Species | Staphylococcus Species | SCCmec Type | Not Typeable | TOTAL mecA+ Isolates | ||||
---|---|---|---|---|---|---|---|---|---|
II | III | IV | V | VII | |||||
Belgium | Cow | aureus | 6 | 13 (2 1) | 4 | 3 | 26 | ||
epidermidis | 1 | 1 | |||||||
haemolyticus | 1 2 | 1 | |||||||
Boar | aureus | 1 | 1 | ||||||
Horse | aureus | 1 | 1 | ||||||
Human | aureus | 1 | 22 (4) | 2 | 25 | ||||
capitis | 1 | 1 | |||||||
epidermidis | 2 | 3 | 5 | ||||||
Fomites | aureus | 2 | 2 | ||||||
Japan | Dog | aureus | 1 | 1 | |||||
Cat | aureus | 3 (1) | 1 (1) | 4 | |||||
Total | 10 (1) | 2 | 41 (7) | 11 | 3 | 1 | 68 |
Genes | Primers | Primer Sequence 5′-3′ | PCR Product Length (bp 1) | References |
---|---|---|---|---|
mecA | mecA1 | AAAATCGATGGTAAAGGTTGGC | 533 | [43] |
mecA2 | AGTTCTGCAGTACCGGATTTGC | |||
nuc | nuc1 | GCGATTGATGGTGATACGGTT | 279 | [43] |
nuc2 | AGCCAAGCCTTGACGAACTAAAGC | |||
mecC | mecC454-F | GTCCCTAACAAAACACCCAAAGA | 454 | This study |
mecC454-R | GAAGATCTTTTCCGTTTTCAGC | [42] | ||
16S rDNA staph | 16S RNA1 | GTTATTAGGGAAGAACATATGTG | 750 | [43] |
16S RNA2 | CCACCTTCCTCCGGTTTGTCACC | |||
mecB | mecB-for | TTAACATATACACCCGCTTG | 279 | [9] |
mecB-rev | TAAAGTTCATTAGGCACCTCC |
mPCR 1 | Genes | Primers | Primer Sequence 5′-3′ 3 | PCR Product Lengths (bp 4) | References |
---|---|---|---|---|---|
PCR1a | Type 1 ccr 2 | α1-dege | AACCTATATCATYAATCAGTRCGT | 695 | [44] |
βc | ATTGCCTTGATAATAGCCITCT | ||||
Type 2 ccr | α2 | TAAAGGCATCAATGCACAAACACT | 937 | [44] | |
βc | ATTGCCTTGATAATAGCCITCT | ||||
Type 3 ccr | α3 | AGCTCAAAAGCAAGCAATAGAAT | 1791 | [44] | |
βc | ATTGCCTTGATAATAGCCITCT | ||||
Type 7 ccr | α1-dege | AACCTATATCATYAATCAGTRCGT | 417 | [44] | |
ccr7.4-rev | ACATGCGCTGTAGTGCAGGG | ||||
PCR1b | mecA | mA1 | TGCTATCCACCCTCAAACAGG | 286 | [44] |
mA2 | AACGTTGTAACCACCCCAAGA | ||||
Type 4 ccr | α4.2 | GTATCAATGCACCAGAACTT | 1287 | [44] | |
β4.2 dege | TTGCGACTCTCTTGRCGTTT | ||||
Type 5 ccr | γR | CCTTTATAGACTGGATTATTCAAAATAT | 518 | [44] | |
γF | CGTCTATTACAAGATGTTAAGGATAAT | ||||
PCR2 | class A mec | mI6 | CATAACTTCCCATTCTGCAGATG | 1963 | [44] |
mA7 | ATATACCAAACCCGACAACTACA | ||||
class B mec | IS7 | ATGCTTAATGATAGCATCCGAATG | 2827 | [44] | |
mA7 | ATATACCAAACCCGACAACTACA | ||||
class C2 mec | IS2 | TGAGGTTATTCAGATATTTCGATGT | 804 | [44] | |
mA7 | ATATACCAAACCCGACAACTACA | ||||
PCR3 | mecA | mecA 1 | AAAATCGATGGTAAAGGTTGGC | 533 | [43] |
mecA 2 | AGTTCTGCAGTACCGGATTTGC | ||||
class C1a/C1b mec | ISF4 | CGGATTTTCGCCATGCCACGA | 1232/286 | [46] | |
mA7 | ATATACCAAACCCGACAACTACA | ||||
PCR4 | Type 8 ccr | ccr8.4-fw | CTCAAGCGATACGGTCACAA | 1388 | [42] |
ccr8.3-rev | TCAGGCCTTTACGACGTTTT | ||||
class E mec | mecC-fw | TTTTGCCTCGCTCTGATTTT | 1083 | [42] | |
mecR1-rv | GCCAAAAGACCATTGGATTC | ||||
mec C | mecALGA251MultiFP | GAAAAAAAGGCTTAGAACGCCTC | 138 | [45] | |
mecALGA251MultiRP | GAAGATCTTTTCCGTTTTCAGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngassam Tchamba, C.; Duprez, J.-N.; Lucas, P.; Blanchard, Y.; Boyen, F.; Haesebrouck, F.; Argudín, M.A.; Mainil, J.; Thiry, D. Comparison of the Staphylococcal Chromosome Cassette (SCC) mec in Methicillin-Resistant Staphylococcus aureus (MRSA) and Non-aureus Staphylococci (MRNAS) from Animals and Humans. Antibiotics 2021, 10, 256. https://doi.org/10.3390/antibiotics10030256
Ngassam Tchamba C, Duprez J-N, Lucas P, Blanchard Y, Boyen F, Haesebrouck F, Argudín MA, Mainil J, Thiry D. Comparison of the Staphylococcal Chromosome Cassette (SCC) mec in Methicillin-Resistant Staphylococcus aureus (MRSA) and Non-aureus Staphylococci (MRNAS) from Animals and Humans. Antibiotics. 2021; 10(3):256. https://doi.org/10.3390/antibiotics10030256
Chicago/Turabian StyleNgassam Tchamba, Cyrille, Jean-Noël Duprez, Pierrick Lucas, Yannick Blanchard, Filip Boyen, Freddy Haesebrouck, Maria A. Argudín, Jacques Mainil, and Damien Thiry. 2021. "Comparison of the Staphylococcal Chromosome Cassette (SCC) mec in Methicillin-Resistant Staphylococcus aureus (MRSA) and Non-aureus Staphylococci (MRNAS) from Animals and Humans" Antibiotics 10, no. 3: 256. https://doi.org/10.3390/antibiotics10030256
APA StyleNgassam Tchamba, C., Duprez, J. -N., Lucas, P., Blanchard, Y., Boyen, F., Haesebrouck, F., Argudín, M. A., Mainil, J., & Thiry, D. (2021). Comparison of the Staphylococcal Chromosome Cassette (SCC) mec in Methicillin-Resistant Staphylococcus aureus (MRSA) and Non-aureus Staphylococci (MRNAS) from Animals and Humans. Antibiotics, 10(3), 256. https://doi.org/10.3390/antibiotics10030256