Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Antimicrobial Susceptibility Test
4.3. Phenotypic Detection of ESBLs
4.4. Phenotypic Detection of Carbapenemases
4.5. Detection of Selected Resistance Genes
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podschun, R.; Ullmann, U. Klebsiella Spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella Pneumoniae: A Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Mil-Homens, D.; Martins, M.; Barbosa, J.; Serafim, G.; Sarmento, M.J.; Pires, R.F.; Rodrigues, V.; Bonifácio, V.D.; Pinto, S.N. Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates: In Vivo Virulence Assessment in Galleria mellonella and Potential Therapeutics by Polycationic Oligoethyleneimine. Antibiotics 2021, 10, 56. [Google Scholar] [CrossRef]
- Abdelwahab, R.; Yasir, M.; Godfrey, R.E.; Christie, G.S.; Element, S.J.; Saville, F.; Hassan, E.A.; Ahmed, E.H.; Abu-Faddan, N.H.; Daef, E.A.; et al. Antimicrobial Resistance and Gene Regulation in Enteroaggregative Escherichia coli from Egyptian Children with Diarrhoea: Similarities and Differences. Virulence 2021, 12, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic Resistance: A Rundown of a Global Crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Sultan, I.; Rahman, S.; Jan, A.T.; Siddiqui, M.T.; Mondal, A.H.; Haq, Q.M.R. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front. Microbiol. 2018, 9, 2066. [Google Scholar] [CrossRef] [Green Version]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Svara, F.; Rankin, D.J. The Evolution of Plasmid-Carried Antibiotic Resistance. BMC Evol. Biol. 2011, 11, 130. [Google Scholar] [CrossRef] [Green Version]
- Redondo-Salvo, S.; Fernández-López, R.; Ruiz, R.; Vielva, L.; de Toro, M.; Rocha, E.P.C.; Garcillán-Barcia, M.P.; de la Cruz, F. Pathways for Horizontal Gene Transfer in Bacteria Revealed by a Global Map of Their Plasmids. Nat. Commun. 2020, 11, 3602. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Abushaheen, M.A.; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo, C. Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon. 2020, 66, 100971. [Google Scholar] [CrossRef]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug Efflux Pumps: Structure, Function and Regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Schweizer, H.P. Bacterial Resistance to Antibiotics: Active Efflux and Reduced Uptake. Adv. Drug Deliv. Rev. 2005, 57, 1486–1513. [Google Scholar] [CrossRef]
- Alibert, S.; N’gompaza Diarra, J.; Hernandez, J.; Stutzmann, A.; Fouad, M.; Boyer, G.; Pagès, J.-M. Multidrug Efflux Pumps and Their Role in Antibiotic and Antiseptic Resistance: A Pharmacodynamic Perspective. Expert Opin. Drug Metab. Toxicol. 2017, 13, 301–309. [Google Scholar] [CrossRef] [PubMed]
- King, D.T.; Sobhanifar, S.; Strynadka, N.C.J. The Mechanisms of Resistance to β-Lactam Antibiotics. In Handbook of Antimicrobial Resistance; Springer: New York, NY, USA, 2017; pp. 177–201. [Google Scholar]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Mojica, M.F.; Bonomo, R.A.; Fast, W. B1-Metallo-Beta-Lactamases: Where Do We Stand? Curr Drug Targets 2016, 17, 1029–1050. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Interplay between β-Lactamases and New β-Lactamase Inhibitors. Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar] [CrossRef]
- Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance. Antimicrob. Agents Chemother. 2000, 44, 3249–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, M.S.; Tolmasky, M.E. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017, 22, 2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6′)-Ib-cr Encoding a Ciprofloxacin-Modifying Enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 15 October 2020).
- Duan, N.; Du, J.; Huang, C.; Li, H. Microbial Distribution and Antibiotic Susceptibility of Lower Respiratory Tract Infections Patients From Pediatric Ward, Adult Respiratory Ward, and Respiratory Intensive Care Unit. Front. Microbiol. 2020, 11, 1480. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Troeger, C.; Blacker, B.; Khalil, I.A.; Rao, P.C.; Cao, J.; Zimsen, S.R.M.; Albertson, S.B.; Deshpande, A.; Farag, T.; Abebe, Z.; et al. Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of Lower Respiratory Infections in 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1191–1210. [Google Scholar] [CrossRef] [Green Version]
- Jit, M.; Ng, D.H.L.; Luangasanatip, N.; Sandmann, F.; Atkins, K.E.; Robotham, J.V.; Pouwels, K.B. Quantifying the Economic Cost of Antibiotic Resistance and the Impact of Related Interventions: Rapid Methodological Review, Conceptual Framework and Recommendations for Future Studies. BMC Med. 2020, 18. [Google Scholar] [CrossRef] [Green Version]
- Ventola, C.L. The Antibiotic Resistance Crisis. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Li, B.; Webster, T.J. Bacteria Antibiotic Resistance: New Challenges and Opportunities for Implant-Associated Orthopaedic Infections. J. Orthop. Res. 2018, 36, 22. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.L.; Oliver, K.B.; Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. Am. Fam. Physician 2014, 89, 938–941. [Google Scholar]
- Golkar, Z.; Bagasra, O.; Pace, D.G. Bacteriophage Therapy: A Potential Solution for the Antibiotic Resistance Crisis. J. Infect. Dev. Ctries 2014, 8, 129–136. [Google Scholar] [CrossRef]
- Siwakoti, S.; Subedi, A.; Sharma, A.; Baral, R.; Bhattarai, N.R.; Khanal, B. Incidence and outcomes of multidrug-resistant gram-negative bacteria infections in intensive care unit from Nepal- a prospective cohort study. Antimicrob. Resist. Infect. Control. 2018, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sokkary, R.H.; Ramadan, R.A.; El-Shabrawy, M.; El-Korashi, L.A.; Elhawary, A.; Embarak, S.; Tash, R.M.E.; Elantouny, N.G. Community Acquired Pneumonia among Adult Patients at an Egyptian University Hospital: Bacterial Etiology, Susceptibility Profile and Evaluation of the Response to Initial Empiric Antibiotic Therapy. Infect. Drug Resist. 2018, 11, 2141–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; Havumaki, J.; Wijegoonewardena, M.; González, I.J.; Dittrich, S. Antimicrobial Resistance in Africa: A Systematic Review. BMC Infect. Dis. 2017, 17, 616. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, A.; Nag, V.L. Bacterial Pathogens from Lower Respiratory Tract Infections: A Study from Western Rajasthan. J. Fam. Med. Prim. Care 2020, 9, 1407. [Google Scholar] [CrossRef]
- Vijay, S.; Dalela, G. Prevalence of LRTI in Patients Presenting with Productive Cough and Their Antibiotic Resistance Pattern. J. Clin. Diagn. Res. 2016, 10, DC09–DC12. [Google Scholar] [CrossRef]
- Abbas, S.; Sabir, A.U.; Khalid, N.; Sabir, S.; Khalid, S.; Haseeb, S.; Numair Khan, M.; Ajmal, W.M.; Azhar, F.; Saeed, M.T. Frequency of Extensively Drug-Resistant Gram-Negative Pathogens in a Tertiary Care Hospital in Pakistan. Cureus 2020, 12, e11914. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Zheng, W.; Kong, Z.; Jiang, F.; Gu, B.; Ma, P.; Ma, X. Disease burden and molecular epidemiology of carbapenem-resistant Klebsiella pneumonia infection in a tertiary hospital in China. Ann. Transl. Med. 2020, 8, 605. [Google Scholar] [CrossRef]
- Tian, D.; Pan, F.; Wang, C.; Sun, Y.; Zhang, H. Resistance Phenotype and Clinical Molecular Epidemiology of Carbapenem-Resistant Klebsiella Pneumoniae among Pediatric Patients in Shanghai. Infect. Drug Resist. 2018, 11, 1935–1943. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Q.; Yin, Y.; Chen, H.; Jin, L.; Gu, B.; Xie, L.; Yang, C.; Ma, X.; Li, H.; et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae Infections: Report from the China CRE Network. Antimicrob. Agents Chemother. 2017, 62. [Google Scholar] [CrossRef] [Green Version]
- Buehrle, D.J.; Shields, R.K.; Clarke, L.G.; Potoski, B.A.; Clancy, C.J.; Nguyen, M.H. Carbapenem-Resistant Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Microbiologic Treatment Failure. Antimicrob. Agents Chemother. 2016, 61, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Li, X.; Yang, F.; Chen, W.; Zhao, Y.; Bai, G.; Zhang, Z. Molecular Epidemiology and Risk Factors of Ventilator-Associated Pneumonia Infection Caused by Carbapenem-Resistant Enterobacteriaceae. Front. Pharmacol. 2019, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Kumudunie, W.G.M.; Wijesooriya, L.I.; Wijayasinghe, Y.S. Comparison of Four Low-Cost Carbapenemase Detection Tests and a Proposal of an Algorithm for Early Detection of Carbapenemase-Producing Enterobacteriaceae in Resource-Limited Settings. PLoS ONE 2021, 16, e0245290. [Google Scholar] [CrossRef] [PubMed]
- Perez, F.; El Chakhtoura, N.G.; Papp-Wallace, K.; Wilson, B.M.; Bonomo, R.A. Treatment Options for Infections Caused by Carbapenem-Resistant Enterobacteriaceae: Can We Apply “Precision Medicine” to Antimicrobial Chemotherapy? Expert Opin. Pharmacother. 2016, 17, 761–781. [Google Scholar] [CrossRef] [Green Version]
- Limbago, B.M.; Rasheed, J.K.; Anderson, K.F.; Zhu, W.; Kitchel, B.; Watz, N.; Munro, S.; Gans, H.; Banaei, N.; Kallen, A.J. IMP-Producing Carbapenem-Resistant Klebsiella Pneumoniae in the United States. J. Clin. Microbiol. 2011, 49, 4239–4245. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S.; Vickers, A.; Doumith, M.; Ellington, M.J.; Woodford, N.; Livermore, D.M. Activity of β-lactam/taniborbactam (VNRX-5133) combinations against carbapenem-resistant Gram-negative bacteria. J. Antimicrob. Chemother. 2021, 76, 160–170. [Google Scholar] [CrossRef]
- Grundmann, H.; Livermore, D.M.; Giske, C.G.; Cantón, R.; Rossolini, G.M.; Campos, J.; Vatopoulos, A.; Gniadkowski, M.; Toth, A.; Pfeifer, Y.; et al. Carbapenem-non-susceptible Enterobacteriaceae in Europe: Conclusions from a meeting of national experts. Eurosurveillance 2010, 15, 19711. [Google Scholar] [CrossRef] [Green Version]
- Oteo, J.; Saez, D.; Bautista, V.; Fernández-Romero, S.; Hernández-Molina, J.M.; Pérez-Vázquez, M.; Aracil, B.; Campos, J. Carbapenemase-Producing Enterobacteriaceae in Spain in 2012. Antimicrob. Agents Chemother. 2013, 57, 6344–6347. [Google Scholar] [CrossRef] [Green Version]
- Balkan, I.I.; Aygün, G.; Aydın, S.; Mutcalı, S.I.; Kara, Z.; Kuşkucu, M.; Midilli, K.; Şemen, V.; Aras, S.; Yemişen, M.; et al. Blood Stream Infections Due to OXA-48-like Carbapenemase-Producing Enterobacteriaceae: Treatment and Survival. Int. J. Infect. Dis. 2014, 26, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Hammoudi, D.; Ayoub Moubareck, C.; Aires, J.; Adaime, A.; Barakat, A.; Fayad, N.; Hakime, N.; Houmani, M.; Itani, T.; Najjar, Z.; et al. Countrywide Spread of OXA-48 Carbapenemase in Lebanon: Surveillance and Genetic Characterization of Carbapenem-Non-Susceptible Enterobacteriaceae in 10 Hospitals over a One-Year Period. Int. J. Infect. Dis. 2014, 29, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Zowawi, H.M.; Sartor, A.L.; Balkhy, H.H.; Walsh, T.R.; Al Johani, S.M.; AlJindan, R.Y.; Alfaresi, M.; Ibrahim, E.; Al-Jardani, A.; Al-Abri, S.; et al. Molecular Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella Pneumoniae in the Countries of the Gulf Cooperation Council: Dominance of OXA-48 and NDM Producers. Antimicrob. Agents Chemother. 2014, 58, 3085–3090. [Google Scholar] [CrossRef] [Green Version]
- Verma, N.; Prahraj, A.K.; Mishra, B.; Behera, B.; Gupta, K. Detection of Carbapenemase-Producing Pseudomonas aeruginosa by Phenotypic and Genotypic Methods in a Tertiary Care Hospital of East India. J. Lab. Physicians 2019, 11, 287–291. [Google Scholar] [CrossRef]
- Gilbert, D.N.; Leggett, J.E.; Wang, L.; Ferdosian, S.; Gelfer, G.D.; Johnston, M.L.; Footer, B.W.; Hendrickson, K.W.; Park, H.S.; White, E.E.; et al. Enhanced Detection of Community-Acquired Pneumonia Pathogens With the BioFire® Pneumonia FilmArray® Panel. Diagn. Microbiol. Infect. Dis. 2021, 99, 115246. [Google Scholar] [CrossRef] [PubMed]
- Moffa, M.A.; Bremmer, D.N.; Carr, D.; Buchanan, C.; Shively, N.R.; Elrufay, R.; Walsh, T.L. Impact of a Multiplex Polymerase Chain Reaction Assay on the Clinical Management of Adults Undergoing a Lumbar Puncture for Suspected Community-Onset Central Nervous System Infections. Antibiotics 2020, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- The BioFire® FilmArray® Pneumonia Panel. Available online: https://www.biofiredx.com/products/the-filmarray-panels/filmarray-pneumonia/ (accessed on 20 February 2021).
- Hattoufi, K.; Tligui, H.; Obtel, M.; El Ftouh, S.; Kharbach, A.; Barkat, A. Molecular Diagnosis of Pneumonia Using Multiplex Real-Time PCR Assay RespiFinder® SMART 22 FAST in a Group of Moroccan Infants. Available online: https://www.hindawi.com/journals/av/2020/6212643/ (accessed on 20 February 2021).
- Luyt, C.-E.; Hékimian, G.; Bonnet, I.; Bréchot, N.; Schmidt, M.; Robert, J.; Combes, A.; Aubry, A. Usefulness of Point-of-Care Multiplex PCR to Rapidly Identify Pathogens Responsible for Ventilator-Associated Pneumonia and Their Resistance to Antibiotics: An Observational Study. Crit. Care 2020, 24, 378. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Al Mana, H.; Young, V.; Tang, P.; Thomas, E.; Tan, R.; Tilley, P. A Novel Real-Time PCR Assay Panel for Detection of Common Respiratory Pathogens in a Convenient, Strip-Tube Array Format. J. Virol. Methods 2019, 265, 42–48. [Google Scholar] [CrossRef]
- Caliendo, A.M. Multiplex PCR and Emerging Technologies for the Detection of Respiratory Pathogens. Clin. Infect. Dis. 2011, 52, S326–S330. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; Document M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016; ISBN 1-56238-924-6. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarlier, V.; Nicolas, M.; Fournier, G.; Philippon, A. Extended Broad-Spectrum β-Lactamases Conferring Transferable Resistance to Newer β-Lactam Agents in Enterobacteriaceae: Hospital Prevalence and Susceptibility Patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Sambrook, J.J.; Russell, D.D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; ISBN 0-87969-577-3. [Google Scholar]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel Carbapenem-Hydrolyzing Beta-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Senda, K.; Arakawa, Y.; Ichiyama, S.; Nakashima, K.; Ito, H.; Ohsuka, S.; Shimokata, K.; Kato, N.; Ohta, M. PCR Detection of Metallo-Beta-Lactamase Gene (BlaIMP) in Gram-Negative Rods Resistant to Broad-Spectrum Beta-Lactams. J. Clin. Microbiol. 1996, 34, 2909–2913. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Naas, T.; Nicolas, D.; Collet, L.; Bellais, S.; Cavallo, J.-D.; Nordmann, P. Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-β-Lactamase and Its Plasmid- and Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in France. Antimicrob. Agents Chemother. 2000, 44, 891–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Poirel, L.; Carrër, A.; Toleman, M.A.; Walsh, T.R. How To Detect NDM-1 Producers. J. Clin. Microbiol. 2011, 49, 718–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for Detection of Acquired Carbapenemase Genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, R.; Dutour, C.; Sampaio, J.L.; Chanal, C.; Sirot, D.; Labia, R.; De Champs, C.; Sirot, J. Novel Cefotaximase (CTX-M-16) with Increased Catalytic Efficiency Due to Substitution Asp-240→Gly. Antimicrob. Agents Chemother. 2001, 45, 2269–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, J.K.; Jay, C.; Metchock, B.; Berkowitz, F.; Weigel, L.; Crellin, J.; Steward, C.; Hill, B.; Medeiros, A.A.; Tenover, F.C. Evolution of Extended-Spectrum β-Lactam Resistance (SHV-8) in a Strain of Escherichia coli during Multiple Episodes of Bacteremia. Antimicrob. Agents Chemother. 1997, 41, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Hamed, S.M.; Aboshanab, K.M.A.; Elkhatib, W.F.; Ashour, M.S. Aminoglycoside Resistance Patterns of Certain Gram Negative Uropathogens Recovered from Hospitalized Egyptian Patients. Br. Microbiol. Res. J. 2013, 3, 678–691. [Google Scholar] [CrossRef]
- Dumas, J.-L.; van Delden, C.; Perron, K.; Köhler, T. Analysis of Antibiotic Resistance Gene Expression in Pseudomonas aeruginosa by Quantitative Real-Time-PCR. FEMS Microbiol. Lett. 2006, 254, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular Typing and Virulence Analysis of Multidrug Resistant Klebsiella Pneumoniae Clinical Isolates Recovered from Egyptian Hospitals. Sci. Rep. 2016, 6, srep38929. [Google Scholar] [CrossRef] [PubMed]
Gene | K. pneumoniae (n = 22) n° (%) | P. aeruginosa (n = 12) n° (%) |
---|---|---|
blaKPC | 0 (0) | 0 (0) |
blaIMP | 0 (0) | 0 (0) |
blaVIM | 4 (18) | 3 (25) |
blaNDM | 14 (64) | 1 (8) |
blaOXA | 11 (50) | 3 (25) |
blaCTX-M | 15 (68) | 8 (67) |
blaSHV | 10 (45) | 11 (92) |
blaTEM | 10 (45) | 7 (58) |
aac(6’)-Ib-cr | 20 (91) | 10 (83) |
mexA | - | 12 (100) |
acrA | 19 (86) | - |
n° of Resistance Genes/Isolate | K. pneumoniae | P. aeruginosa | Total Isolates | |
---|---|---|---|---|
n° | % | |||
7 | 3 | 9 | ||
6 | 6 | 2 | 8 | 23 |
5 | 4 | 6 | 10 | 29 |
4 | 3 | 2 | 5 | 15 |
3 | 3 | 1 | 4 | 12 |
2 | 2 | 1 | 3 | 9 |
1 | 1 | — | 1 | 3 |
Genotype | No. | ≈% |
---|---|---|
mexA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib | 5 | 14 |
acrA/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib or mexA/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib | 3 | 8 |
acrA/blaNDM/blaOXA/blaCTX-M/blaSHV/aac(6’)-Ib or mexA/blaNDM/blaOXA/blaCTX-M/blaSHV/aac(6’)-Ib | 2 | 6 |
acrA/blaNDM/blaCTX-M/blaSHV/aac(6’)-Ib | 2 | 6 |
acrA/blaNDM/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib | 1 | 3 |
acrA/blaVIM/blaNDM/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib | 1 | 3 |
acrA/blaVIM/blaOXA/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib | 1 | 3 |
acrA/blaVIM/blaNDM/blaSHV/blaTEM/aac(6’)-Ib | 1 | 3 |
acrA/blaNDM/blaCTX-M/blaSHV/blaTEM/aac(6’)-Ib | 1 | 3 |
acrA/blaNDM/blaOXA/blaCTX-M/blaTEM/aac(6’)-Ib | 1 | 3 |
acrA/blaNDM/blaOXA/blaCTX-M/aac(6’)-Ib | 1 | 3 |
acrA/blaOXA/blaCTX-M/blaTEM/aac(6’)-Ib | 1 | 3 |
mexA/blaOXA/blaSHV/blaTEM/aac(6’)-Ib | 1 | 3 |
acrA/blaVIM/blaNDM/aac(6’)-Ib | 1 | 3 |
blaNDM/blaOXA/blaCTX-M/aac(6’)-Ib | 1 | 3 |
acrA/blaNDM/blaOXA/aac(6’)-Ib | 1 | 3 |
mexA/blaVIM/blaSHV/aac(6’)-Ib | 1 | 3 |
mexA/blaCTX-M/blaSHV/aac(6’)-Ib | 1 | 3 |
acrA/blaCTX-M/aac(6’)-Ib | 1 | 3 |
acrA/blaNDM/blaCTX-M | 1 | 3 |
blaNDM/blaCTX-M/blaTEM | 1 | 3 |
mexA/blaVIM/blaSHV | 1 | 3 |
blaOXA/aac(6’)-Ib | 1 | 3 |
acrA/aac(6’)-Ib | 1 | 3 |
mexA/blaVIM | 1 | 3 |
acrA | 1 | 3 |
Significant Associations (Genotype and MIC of the Antibiotic) | Pearson Chi-Square |
---|---|
blaSHV/amoxicillin | 0.015 |
blaSHV/co-amoxiclav | 0.015 |
blaSHV/cefadroxil | 0.015 |
blaSHV/cefuroxime | 0.015 |
blaSHV/cefotaxime | 0.015 |
blaSHV/cefepime | 0.015 |
blaSHV/meropenem | 0.015 |
blaSHV/ciprofloxacin | 0.015 |
blaSHV/levofloxacin | 0.015 |
blaSHV/amikacin | 0.019 |
blaSHV/tobramycin | 0.00 |
blaSHV/co-trimoxazole | 0.049 |
mexA/amoxicillin | 0.00 |
mexA/co-amoxiclav | 0.00 |
mexA/cefadroxil | 0.00 |
mexA/cefuroxime | 0.00 |
mexA/cefotaxime | 0.00 |
mexA/cefepime | 0.00 |
mexA/meropenem | 0.00 |
mexA/ciprofloxacin | 0.00 |
mexA/levofloxacin | 0.00 |
mexA/tobramycin | 0.015 |
mexA/co-trimoxazole | 0.002 |
aac6’-Ib/amikacin | 0.040 |
aac6’-Ib/gentamicin | 0.012 |
aac6’-Ib/tobramycin | 0.005 |
blaSHV/amikacin | 0.019 |
blaSHV/tobramycin | 0.000 |
blaCTX-M/gentamicin | 0.015 |
blaTEM/gentamicin | 0.002 |
acrA/amoxicillin | 0.026 |
acrA/co-amoxiclav | 0.026 |
acrA/cefadroxil | 0.026 |
acrA/cefuroxime | 0.026 |
acrA/cefotaxime | 0.026 |
acrA/meropenem | 0.026 |
aac6’-Ib/ciprofloxacin | 0.012 |
aac6’-Ib/azithromycin | 0.005 |
aac6’-Ib/amoxicillin | 0.008 |
aac6’-Ib/co-amoxiclav | 0.008 |
aac6’-Ib/cefadroxil | 0.008 |
aac6’-Ib/cefuroxime | 0.008 |
aac6’-Ib/cefotaxime | 0.008 |
aac6’-Ib/meropenem | 0.008 |
blaSHV/blaCTX-M | 0.047 |
blaSHV/blaTEM | 0.036 |
blaCTX-M/aac6’-Ib | 0.027 |
blaSHV/aac6’-Ib | 0.016 |
Modified Hodge test/meropenem | 0.001 |
Target Gene | Primer Sequence (5’→3’) | Size (bp) | Ta (°C) | Reference | |
---|---|---|---|---|---|
blaKPC | Pf | TGTCACTGTATCGCCGTC | 1100 | 50 | [66] |
Pr | CTCAGTGCTCTACAGAAAACC | ||||
blaIMP | Pf | CTACCGCAGCAGAGTCTTTG | 587 | 50 | [67] |
Pr | AACCAGTTTTGCCTTACCAT | ||||
blaVIM | Pf | TCTACATGACCGCGTCTGTC | 748 | 50 | [68] |
Pr | TGTGCTTTGACAACGTTCGC | ||||
blaNDM | Pf | GGTTTGGCGATCTGGTTTTC | 621 | 50 | [69] |
Pr | CGGAATGGCTCATCACGAT | ||||
blaOXA | Pf | GCGTGGTTAAGGATGAACAC | 438 | 50 | [70] |
Pr | CATCAAGTTCAACCCAACCG | ||||
blaCTX-M | Pf | CGCTTTGCGATGTGCAG | 550 | 50 | [71] |
Pr | ACCGCGATATCGTTGGT | ||||
blaSHV | Pf | GGTTATGCGTTATATTCGCC | 867 | 50 | [72] |
Pr | TTAGCGTTGCCAGTGCTC | ||||
blaTEM | Pf | ATGAGTATTCAACATTTCCG | 867 | 50 | [72] |
Pr | CTGACAGTTACCAATGCTTA | ||||
aac(6’)-Ib-cr | Pf | TTGCGATGCTCTATGAGTGG | 358 | 50 | [73] |
Pr | CGTTTGGATCTTGGTGACCT | ||||
mexA | Pf | CGACCAGGCCGTGAGCAAGCAGC | 316 | 65 | [74] |
Pr | GGAGACCTTCGCCGCGTTGTCGC | ||||
acrA | Pf | ATCAGCGGCCGGATTGGTAAA | 312 | 50 | [75] |
Pr | CGGGTTCGGGAAAATAGCGCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaziz, S.M.; Aboshanab, K.M.; Yahia, I.S.; Yassien, M.A.; Hassouna, N.A. Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics 2021, 10, 255. https://doi.org/10.3390/antibiotics10030255
Abdelaziz SM, Aboshanab KM, Yahia IS, Yassien MA, Hassouna NA. Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics. 2021; 10(3):255. https://doi.org/10.3390/antibiotics10030255
Chicago/Turabian StyleAbdelaziz, Salma M., Khaled M. Aboshanab, Ibrahim S. Yahia, Mahmoud A. Yassien, and Nadia A. Hassouna. 2021. "Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens" Antibiotics 10, no. 3: 255. https://doi.org/10.3390/antibiotics10030255
APA StyleAbdelaziz, S. M., Aboshanab, K. M., Yahia, I. S., Yassien, M. A., & Hassouna, N. A. (2021). Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics, 10(3), 255. https://doi.org/10.3390/antibiotics10030255