Characterization of a Novel Variant of the Quinolone-Resistance Gene qnrB (qnrB89) Carried by a Multi-Drug Resistant Citrobacter gillenii Strain Isolated from Farmed Salmon in Chile
Abstract
:1. Introduction
2. Results
2.1. Bacterial Identification
2.2. Molecular Analysis
2.3. Microbial Susceptibility Profile and Minimum Inhibitory Concentrations (MICs)
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain
4.2. Bacterial Identification
4.3. Molecular Analysis of the qnrB89 Gene
4.4. Antimicrobial Resistance Pattern
4.5. Minimum Inhibitory Concentrations (MICs)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rozas, M.; Enríquez, R. Piscirickettsiosis and Piscirickettsia salmonis in fish: A review. J. Fish Dis. 2014, 37, 163–188. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R. Salmon aquaculture, Piscirickettsia salmonis virulence, and one health: Dealing with harmful synergies between heavy antimicrobial use and piscine and human health comment on. Aquaculture 2020, 532, 736062. [Google Scholar] [CrossRef]
- SERNAPESCA. Informe Sanitario de Salmonicultura en Centros Marinos 2019; Servicio Nacional de Pesca y Acuicultura: Valparaíso, Chile, 2019; 38p, Available online: http://www.sernapesca.cl/sites/default/files/informe_sanitario_salmonicultura_2019_final_julio_2020.pdf (accessed on 22 September 2020).
- SERNAPESCA. Informe sobre Uso de Antimicrobianos en la Salmonicultura Nacional; Servicio Nacional de Pesca y Acuicul-tura: Valparaíso, Chile, 2019; 11p, Available online: http://www.sernapesca.cl/sites/default/files/informe_atb_2019.pdf (accessed on 22 September 2020).
- Miranda, C.D.; Godoy, F.A.; Lee, M.R. Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Front. Microbiol. 2018, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, J.S.; Hooper, D.C. The fluoroquinolones: Structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother. 1985, 28, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.C. Mechanisms of Action and Resistance of Older and Newer Fluoroquinolones. Clin. Infect. Dis. 2000, 31, S24–S28. [Google Scholar] [CrossRef] [PubMed]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, P.; Hunter, P. The fluoroquinolone antibacterials: Past, present and future perspectives. Int. J. Antimicrob. Agents 2000, 16, 5–15. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Y.; Jiang, S.; Shen, P.; Lu, X.; Xiao, Y. Association between the rate of fluoroquinolones-resistant gram-negative bacteria and antibiotic consumption from China based on 145 tertiary hospitals data in 2014. BMC Infect. Dis. 2020, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Pons, M.J.; Gomes, C. Transferable mechanisms of quinolone resistance. Int. J. Antimicrob. Agents 2012, 40, 196–203. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.M.; Machuca, J.; Cano, M.E.; Calvo, J.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist. Updat. 2016, 29, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-Mediated Quinolone Resistance: A Multifaceted Threat. Clin. Microbiol. Rev. 2009, 22, 664–689. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.; Strahilevitz, J.; Hooper, D.C. Plasmid-Mediated Quinolone Resistance. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.-Y.; Kim, E.S.; Choi, S.-H.; Kwon, H.-H.; Lee, S.-R.; Lee, S.-O.; Kim, M.-N.; Woo, J.H.; Kim, Y.S. Effects of a plasmid-encoded qnrA1 determinant in Escherichia coli strains carrying chromosomal mutations in the acrAB efflux pump genes. Diagn. Microbiol. Infect. Dis. 2008, 60, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Vinothkumar, K.; Kumar, G.N.; Bhardwaj, A.K. Characterization of Vibrio fluvialis qnrVC5 Gene in Native and Heterologous Hosts: Synergy of qnrVC5 with other Determinants in Conferring Quinolone Resistance. Front. Microbiol. 2016, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Ahmed, A.M.; Mahfouz, N.B.; Kimura, T.; El-Khodery, S.A.; Moawad, A.A.; Shimamoto, T. Molecular Analysis of Antimicrobial Resistance in Gram-Negative Bacteria Isolated from Fish Farms in Egypt. J. Vet. Med. Sci. 2010, 72, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.-X.; Tang, D.; Liu, Y.-H.; Zhang, X.-H.; Zeng, Z.-L.; Xu, L.; Hawkey, P.M. Prevalence and characteristics of -lactamase and plasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish in China. J. Antimicrob. Chemother. 2012, 67, 2350–2353. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, V.; Manageiro, V.; Bandarra, N.M.; Reis, L.; Ferreira, E.; Caniça, M. Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture. Microorganisms 2020, 8, 1343. [Google Scholar] [CrossRef]
- Tomova, A.; Ivanova, L.; Buschmann, A.H.; Rioseco, M.L.; Kalsi, R.K.; Godfrey, H.P.; Cabello, F.C. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia colifrom a region of intensive aquaculture. Environ. Microbiol. Rep. 2015, 7, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; O’Hara, C.M.; Grimont, P.A.D.; Janda, J.M.; Falsen, E.; Aldova, E.; Ageron, E.; Schindler, J.; Abbott, S.L.; Steigerwalt, A.G. Biochemical Identification of Citrobacter Species Defined by DNA Hybridization and Description of Citrobacter gillenii sp. nov. (FormerlyCitrobacter Genomospecies 10) and Citrobacter murliniae sp. nov. (Formerly Citrobacter Genomospecies 11). J. Clin. Microbiol. 1999, 37, 2619–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duman, M.; Saticioglu, I.B.; Buyukekiz, A.G.; Balta, F.; Altun, S. Molecular characterization and antimicrobial resistance profile of atypical Citrobacter gillenii and Citrobacter sp. isolated from diseased rainbow trout (Oncorhynchus mykiss). J. Glob. Antimicrob. Resist. 2017, 10, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M.; Abbott, S.L.; Cheung, W.K.; Hanson, D.F. Biochemical identification of citrobacteria in the clinical laboratory. J. Clin. Microbiol. 1994, 32, 1850–1854. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore/ (accessed on 28 November 2020).
- National Center for Biotechnology Information Protein Database. Available online: http://www.ncbi.nlm.nih.gov/protein/ (accessed on 5 October 2012).
- Ribeiro, T.G.; Novais, Â.; Branquinho, R.; Machado, E.; Peixe, L. Phylogeny and Comparative Genomics Unveil Independent Diversification Trajectories of qnrB and Genetic Platforms within Particular Citrobacter Species. Antimicrob. Agents Chemother. 2015, 59, 5951–5958. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated from Aquatic Animals; Second Informational Supplement; CLSI Document VET03/VET04-S2; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2014. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty Seventh Informational Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Available online: https://mic.eucast.org/Eucast2/ (accessed on 22 November 2019).
- Jacoby, G.A.; Griffin, C.M.; Hooper, D.C. Citrobacter spp. as a Source of qnrB Alleles. Antimicrob. Agents Chemother. 2011, 55, 4979–4984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borenshtein, D.; Schauer, D.B. The Genus Citrobacter. In The Prokaryotes: A Handbook on the Biology of Bacteria: Proteo-Bacteria: Gamma Subclass; Dworkin, M., Falkow, S., Rosenberg, E., Scheleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 90–98. [Google Scholar] [CrossRef]
- Sato, N.; Yamane, N.; Kawamura, T. Systemic Citrobacter freundii infection among sunfish Mola mola in Matsushima Aquarium. Nippon. Jpn. Soc. Sci. Fish. 1982, 48, 1551–1557. [Google Scholar] [CrossRef]
- Sanz, F. Rainbow trout mortalities associated with a mixed infection with Citrobacter freundii and IPN virus. Bull. Eur. Assoc. Fish Pathol. 1991, 11, 222–224. [Google Scholar]
- Austin, B.; Stobie, M.; Robertson, P.A.W. Citrobacter freundii: The cause of gastroenteritis leading to progressive low level mortalities in farmed rainbow trout, Oncorhynchus mykiss Walbaum, in Scotland. Bull. Eur. Assoc. Fish Pathol. 1992, 12, 166–167. [Google Scholar]
- Jeremić, S.; Jakić-Dimić, D.; Veljović, L.J. Citrobacter freundii as a cause of disease in fish. Acta Vet. 2003, 53, 399–410. [Google Scholar] [CrossRef]
- Baeck, G.-W.; Kim, J.H.; Choresca, C., Jr.; Gómez, D.; Shin, S.P.; Han, J.E.; Park, S.-C. Mass mortality of doctor fish (Garra rufa obtusa) caused by Citrobacter freundii infection. J. Vet. Clin. 2009, 26, 150–154. [Google Scholar]
- Navarrete, P.; Magne, F.; Mardones, P.; Riveros, M.; Opazo, R.; Suau, A.; Pochart, P.; Romero, J. Molecular analysis of intestinal microbiota of rainbow trout (Oncorhynchus mykiss). FEMS Microbiol. Ecol. 2009, 71, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Lü, A.; Hu, X.; Zheng, L.; Zhu, A.; Cao, C.; Jiang, J. Isolation and characterization of Citrobacter spp. from the intestine of grass carp Ctenopharyngodon idellus. Aquaculture 2011, 313, 156–160. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Friederichs, S.; Schwarz, S.; De Jong, A. Novel Variant of the qnrB Gene, qnrB12, in Citrobacter werkmanii. Antimicrob. Agents Chemother. 2007, 52, 1206–1207. [Google Scholar] [CrossRef] [Green Version]
- Albornoz, E.; Tijet, N.; De Belder, D.; Gomez, S.; Martino, F.; Corso, A.; Melano, R.G.; Petroni, A. qnrE1, a Member of a New Family of Plasmid-Located Quinolone Resistance Genes, Originated from the Chromosome of Enterobacter Species. Antimicrob. Agents Chemother. 2017, 61, e02555-16. [Google Scholar] [CrossRef] [Green Version]
- Quiroga, M.P.; Andres, P.; Petroni, A.; Bistué, A.J.C.S.; Guerriero, L.; Vargas, L.J.; Zorreguieta, A.; Tokumoto, M.; Quiroga, C.; Tolmasky, M.E.; et al. Complex Class 1 Integrons with Diverse Variable Regions, Including aac(6′)-Ib-cr, and a Novel Allele, qnrB10, Associated with ISCR1 in Clinical Enterobacterial Isolates from Argentina. Antimicrob. Agents Chemother. 2007, 51, 4466–4470. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Kim, M.-N.; Park, K.S.; Lee, J.H.; Karim, A.M.; Park, M.; Kim, J.H.; Lee, S.H. Complex Class 1 Integron Carrying qnrB62 and blaVIM-2 in a Citrobacter freundii Clinical Isolate. Antimicrob. Agents Chemother. 2016, 60, 6937–6940. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.; Paradela, A.; Velez, J.; Ramalheira, E.; Walsh, T.R.; Mendo, S. Carriage of qnrA1 and qnrB2, blaCTX-M15, and complex class 1 integron in a clinical multiresistant Citrobacter freundii isolate. Diagn. Microbiol. Infect. Dis. 2010, 67, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Yim, G.; Kwong, W.; Davies, J.; Miao, V. Complex integrons containing qnrB4-ampC (blaDHA-1) in plasmids of multidrug-resistant Citrobacter freundii from wastewater. Can. J. Microbiol. 2013, 59, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, M.; Miranda, C.D.; Fuentes, O.; De La Fuente, M.; Godoy, F.A.; Bello-Toledo, H.; González-Rocha, G. Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Front. Microbiol. 2019, 10, 748. [Google Scholar] [CrossRef]
- Lin, M.; Wu, X.; Yan, Q.; Ma, Y.; Huang, L.; Qin, Y.; Xu, X. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds. Dis. Aquat. Org. 2016, 120, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomova, A.; Ivanova, L.; Buschmann, A.H.; Godfrey, H.P.; Cabello, F.C. Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area. Microb. Ecol. 2017, 75, 104–112. [Google Scholar] [CrossRef]
- Jacoby, G.A.; Walsh, K.E.; Mills, D.M.; Walker, V.J.; Oh, H.; Robicsek, A.; Hooper, D.C. qnrB, Another Plasmid-Mediated Gene for Quinolone Resistance. Antimicrob. Agents Chemother. 2006, 50, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Jung, H.J.; Lee, J.Y.; Kim, H.R.; Lee, J.N.; Chang, C.L. High Rates of Plasmid-Mediated Quinolone Resistance QnrB Variants Among Ciprofloxacin-Resistant Escherichia coli and Klebsiella pneumoniae from Urinary Tract Infections in Korea. Microb. Drug Resist. 2008, 14, 221–226. [Google Scholar] [CrossRef]
- Doma, A.O.; Popescu, R.; Mitulețu, M.; Muntean, D.; Dégi, J.; Boldea, M.V.; Radulov, I.; Dumitrescu, E.; Muselin, F.; Puvača, N.; et al. Comparative Evaluation of qnrA, qnrB, and qnrS Genes in Enterobacteriaceae Ciprofloxacin-Resistant Cases, in Swine Units and a Hospital from Western Romania. Antibiotics 2020, 9, 698. [Google Scholar] [CrossRef] [PubMed]
- Halová, D.; Papousek, I.; Jamborova, I.; Masarikova, M.; Cizek, A.; Janecko, N.; Oravcova, V.; Zurek, L.; Clark, A.B.; Townsend, A.; et al. Plasmid-mediated quinolone resistance genes in Enterobacteriaceae from American crows: High prevalence of bacteria with variable qnrB genes. Antimicrob. Agents Chemother. 2014, 58, 1257–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aedo, S.; Ivanova, L.; Tomova, A.; Cabello, F.C. Plasmid-Related Quinolone Resistance Determinants in Epidemic Vibrio parahaemolyticus, Uropathogenic Escherichia coli, and Marine Bacteria from an Aquaculture Area in Chile. Microb. Ecol. 2014, 68, 324–328. [Google Scholar] [CrossRef]
- Buller, N.B. Bacteriological Culture Techniques: Microscopy, Culture and Identification. In Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual, 1st ed.; Buller, N.B., Ed.; CABI Publishing: Cambridge, MA, USA, 2004; pp. 83–116. [Google Scholar]
- O’Hara, C.M.; Roman, S.B.; Miller, J.M. Ability of commercial identification systems to identify newly recognized species of Citrobacter. J. Clin. Microbiol. 1995, 33, 242–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, G.I.; Feltham, R.K.A. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed.; Cambridge University Press: Cambridge, UK, 1993; 331p. [Google Scholar]
- Ribosomal Database Project. Available online: http://rdp.cme.msu.edu/ (accessed on 22 April 2013).
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- CLSI. Methods for Antimicrobial Disk Susceptibility Testing of Bacteria Isolated from Aquatic Animals; Approved Guideline VET03-A; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2006; Volume 26. [Google Scholar]
- Concha, C.; Miranda, C.D.; Hurtado, L.; Romero, J. Characterization of Mechanisms Lowering Susceptibility to Flumequine among Bacteria Isolated from Chilean Salmonid Farms. Microorganisms 2019, 7, 698. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Test, 12th ed.; Approved Standard M02-A12; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2015. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 10th ed.; Approved Standard M07-A10; CLSI Standards Centre: Wayne, PA, USA, 2015. [Google Scholar]
Species | Phenotypic Properties | Reference | |||||
---|---|---|---|---|---|---|---|
IND | URE | ODC | SUC | ACE | MAL | ||
FP75 | +/delayed | − | − | − | − | + | |
C. gillenii | +/delayed | − | − | −/+ | − | + | [23,24] |
C. freundii | + | + | + | + | + | − | [23,25] |
Sequence | Percentage of Identity (%) | Reference | ||||||
---|---|---|---|---|---|---|---|---|
qnrA | qnrB | qnrC | qnrD | qnrE | qnrS | qnrVC | ||
Nucleotide * | 46.20 | 81.24 | 47.13 | 64.50 | 75.04 | 49.30 | 49.15 | [26] |
Amino acid ** | 40.19 | 91.59 | 42.52 | 65.42 | 83.64 | 40.65 | 42.52 | [27] |
Strain | MIC (µg/mL) of: | Antimicrobial Resistance to: | |
---|---|---|---|
FLQ | CIP | ||
C. gillenii FP75 | 0.25 | 0.015 | AMO, STR, ERY, OXY, CHL, FLO, FR, SFX, TMP |
E. coli UC238 | 0.5 | 0.25 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concha, C.; Miranda, C.D.; Rojas, R.; Godoy, F.A.; Romero, J. Characterization of a Novel Variant of the Quinolone-Resistance Gene qnrB (qnrB89) Carried by a Multi-Drug Resistant Citrobacter gillenii Strain Isolated from Farmed Salmon in Chile. Antibiotics 2021, 10, 236. https://doi.org/10.3390/antibiotics10030236
Concha C, Miranda CD, Rojas R, Godoy FA, Romero J. Characterization of a Novel Variant of the Quinolone-Resistance Gene qnrB (qnrB89) Carried by a Multi-Drug Resistant Citrobacter gillenii Strain Isolated from Farmed Salmon in Chile. Antibiotics. 2021; 10(3):236. https://doi.org/10.3390/antibiotics10030236
Chicago/Turabian StyleConcha, Christopher, Claudio D. Miranda, Rodrigo Rojas, Felix A. Godoy, and Jaime Romero. 2021. "Characterization of a Novel Variant of the Quinolone-Resistance Gene qnrB (qnrB89) Carried by a Multi-Drug Resistant Citrobacter gillenii Strain Isolated from Farmed Salmon in Chile" Antibiotics 10, no. 3: 236. https://doi.org/10.3390/antibiotics10030236
APA StyleConcha, C., Miranda, C. D., Rojas, R., Godoy, F. A., & Romero, J. (2021). Characterization of a Novel Variant of the Quinolone-Resistance Gene qnrB (qnrB89) Carried by a Multi-Drug Resistant Citrobacter gillenii Strain Isolated from Farmed Salmon in Chile. Antibiotics, 10(3), 236. https://doi.org/10.3390/antibiotics10030236