Poultry and Wild Birds as a Reservoir of CMY-2 Producing Escherichia coli: The First Large-Scale Study in Greece
Abstract
:1. Introduction
2. Results
2.1. Detection of pAmpC Genes in E. coli Isolates
2.2. Molecular Typing
2.3. Detection of Additional Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation, Identification and Antimicrobial Susceptibility Testing of pAmpC-producing E. coli
4.3. DNA Extraction of the AmpC-Producing E.coli
4.4. Molecular Confirmation of PAmpC Production and Screening of Insertion Sequence
4.5. Molecular Typing of Isolates
4.6. Molecular Detection of Additional Resistance Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019.
- Jacoby, G.A. AmpC Β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Mammeri, H.; Guillon, H.; Eb, F.; Nordmann, P. Phenotypic and Biochemical Comparison of the Carbapenem-Hydrolyzing Activities of Five Plasmid-Borne AmpC β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 4556–4560. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietsch, M.; Irrgang, A.; Roschanski, N.; Michael, G.B.; Hamprecht, A.; Rieber, H.; Käsbohrer, A.; Schwarz, S.; Rösler, U. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genom. 2018, 19, 601. [Google Scholar] [CrossRef]
- Hansen, K.H.; Bortolaia, V.; Nielsen, C.A.; Nielsen, J.B.; Schønning, K.; Agersø, Y.; Guardabassi, L. Host-Specific Patterns of Genetic Diversity among IncI1-Iγ and IncK Plasmids Encoding CMY-2 β-Lactamase in Escherichia coli Isolates from Humans, Poultry Meat, Poultry, and Dogs in Denmark. Appl. Environ. Microbiol. 2016, 82, 4705–4714. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, S.N.; Carattoli, A.; Schwendener, S.; Collaud, A.; Endimiani, A.; Perreten, V. Plasmids Carrying blaCMY -2/4 in Escherichia coli from Poultry, Poultry Meat, and Humans Belong to a Novel IncK Subgroup Designated IncK2. Front. Microbiol. 2017, 8, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toleman, M.A.; Walsh, T.R. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol. Rev. 2011, 35, 912–935. [Google Scholar] [CrossRef] [Green Version]
- Verdet, C.; Gautier, V.; Chachaty, E.; Ronco, E.; Hidri, N.; Decré, D.; Arlet, G. Genetic Context of Plasmid-Carried blaCMY-2-Like Genes in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 4002–4006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madec, J.-Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: A threat for humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, E.; Wester, A.; Ahrenfeldt, J.; Mo, S.; Slettemeås, J.; Steinbakk, M.; Samuelsen, Ø.; Grude, N.; Simonsen, G.; Løhr, I.; et al. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/ bla CMY-2 resistance plasmids. Clin. Microbiol. Infect. 2017, 23, 407.e9–407.e15. [Google Scholar] [CrossRef] [Green Version]
- The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Ani-mals and Food in 2017/2018; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2020; Volume 18.
- Veldman, K.; van Tulden, P.; Kant, A.; Testerink, J.; Mevius, D. Characteristics of Cefotaxime-Resistant Escherichia coli from Wild Birds in The Netherlands. Appl. Environ. Microbiol. 2013, 79, 7556–7561. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Call, D.R.; Besser, T.E.; Liu, J.; Jones, L.; Wang, H.; Davis, M.A. β-lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. Water Res. 2019, 161, 335–340. [Google Scholar] [CrossRef]
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. Upsala J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loncaric, I.; Stalder, G.L.; Mehinagic, K.; Rosengarten, R.; Hoelzl, F.; Knauer, F.; Walzer, C. Comparison of ESBL—And AmpC Producing Enterobacteriaceae and Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Migratory and Resident Population of Rooks (Corvus frugilegus) in Austria. PLoS ONE 2013, 8, e84048. [Google Scholar] [CrossRef] [Green Version]
- Jamborova, I.; Janecko, N.; Halova, D.; Sedmik, J.; Mezerova, K.; Papousek, I.; Kutilova, I.; Dolejska, M.; Cizek, A.; Literak, I. Molecular characterization of plasmid-mediated AmpC beta-lactamase- and extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae among corvids (Corvus brachyrhynchos and Corvus corax) roosting in Canada. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef] [Green Version]
- Dorado-García, A.; Smid, J.H.; van Pelt, W.; Bonten, M.J.M.; Fluit, A.C.; Bunt, G.V.D.; Wagenaar, J.A.; Hordijk, J.; Dierikx, C.M.; Veldman, K.T.; et al. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J. Antimicrob. Chemother. 2018, 73, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Surveillance of Antimicrobial Resistance in Europe 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 2 November 2020).
- European Centre for Disease Prevention and Control (ECDC) Rates by Country. Available online: https://www.ecdc.europa.eu/en/antimicrobial-consumption/database/rates-country (accessed on 28 November 2020).
- Kazmierczak, K.M.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftazidime/avibactam against isolates of Enterobacteriaceae collected in European countries: INFORM global surveillance 2012–15. J. Antimicrob. Chemother. 2018, 73, 2782–2788. [Google Scholar] [CrossRef]
- Vingopoulou, E.I.; Siarkou, V.I.; Batzias, G.; Kaltsogianni, F.; Sianou, E.; Tzavaras, I.; Koutinas, A.; Saridomichelakis, M.N.; Sofianou, D.; Tzelepi, E.; et al. Emergence and maintenance of multidrug-resistant Escherichia coli of canine origin harbouring a blaCMY-2-IncI1/ST65 plasmid and topoisomerase mutations. J. Antimicrob. Chemother. 2014, 69, 2076–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liakopoulos, A.; Betts, J.; la Ragione, R.; van Essen-Zandbergen, A.; Ceccarelli, D.; Petinaki, E.; Koutinas, C.K.; Mevius, D.J. Occurrence and characterization of extended-spectrum cephalosporin-resistant Enterobacteriaceae in healthy household dogs in Greece. J. Med. Microbiol. 2018, 67, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Investigation of Antimicrobial Resistance Patterns in Commensal Escherichia coli Isolates from Broilers in Greece. Available online: http://ecvmicro.org/Files/ICECVM_2019_Abstract_Book_ver3.pdf#page=119 (accessed on 11 January 2021).
- Apostolakos, I.; Mughini-Gras, L.; Fasolato, L.; Piccirillo, A. Assessing the occurrence and transfer dynamics of ESBL/pAmpC-producing Escherichia coli across the broiler production pyramid. PLoS ONE 2019, 14, e0217174. [Google Scholar] [CrossRef] [PubMed]
- Maamar, E.; Hammami, S.; Alonso, C.A.; Dakhli, N.; Abbassi, M.S.; Ferjani, S.; Hamzaoui, Z.; Saidani, M.; Torres, C.; Boubaker, I.B.-B. High prevalence of extended-spectrum and plasmidic AmpC beta-lactamase-producing Escherichia coli from poultry in Tunisia. Int. J. Food Microbiol. 2016, 231, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Päivärinta, M.; Latvio, S.; Fredriksson-Ahomaa, M.; Heikinheimo, A. Whole genome sequence analysis of antimicrobial resistance genes, multilocus sequence types and plasmid sequences in ESBL/AmpC Escherichia coli isolated from broiler caecum and meat. Int. J. Food Microbiol. 2020, 315, 108361. [Google Scholar] [CrossRef] [PubMed]
- Aslantaş, Özkan High occurrence of CMY-2-type beta-lactamase-producing Escherichia coli among broiler flocks in Turkey. Trop. Anim. Heal. Prod. 2019, 52, 1681–1689. [CrossRef]
- Maciuca, I.E.; Williams, N.J.; Tuchilus, C.; Dorneanu, O.; Guguianu, E.; Carp-Carare, C.; Rimbu, C.; Timofte, D. High Prevalence of Escherichia coli-Producing CTX-M-15 Extended-Spectrum Beta-Lactamases in Poultry and Human Clinical Isolates in Romania. Microb. Drug Resist. 2015, 21, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.; Ricci, A.; Auce, Z.; Beechinor, J.G.; Bergendahl, H.; Breathnach, R.; Bureš, J.; da Silva, J.P.D.; Hederová, J.; Hekman, P.; et al. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J. 2017, 15, e04666. [Google Scholar] [CrossRef] [PubMed]
- Dorado-García, A.; Mevius, D.J.; Jacobs, J.J.H.; van Geijlswijk, I.M.; Mouton, J.W.; Wagenaar, J.A.; Heederik, D.J. Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. J. Antimicrob. Chemother. 2016, 71, 3607–3619. [Google Scholar] [CrossRef] [Green Version]
- Huijbers, P.M.; Graat, E.A.; van Hoek, A.H.; Veenman, C.; de Jong, M.C.; van Duijkeren, E. Transmission dynamics of extended-spectrum β-lactamase and AmpC β-lactamase-producing Escherichia coli in a broiler flock without antibiotic use. Prev. Veter. Med. 2016, 131, 12–19. [Google Scholar] [CrossRef]
- Nilsson, O.; Börjesson, S.; Landén, A.; Bengtsson, B. Vertical transmission of Escherichia coli carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. J. Antimicrob. Chemother. 2014, 69, 1497–1500. [Google Scholar] [CrossRef]
- Jamborova, I.; Dolejska, M.; Vojtech, J.; Guenther, S.; Uricariu, R.; Drozdowska, J.; Papousek, I.; Pasekova, K.; Meissner, W.; Hordowski, J.; et al. Plasmid-Mediated Resistance to Cephalosporins and Fluoroquinolones in Various Escherichia coli Sequence Types Isolated from Rooks Wintering in Europe. Appl. Environ. Microbiol. 2014, 81, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Sen, K.; Berglund, T.; Soares, M.A.; Taheri, B.; Ma, Y.; Khalil, L.; Fridge, M.; Lu, J.; Turner, R.J. Antibiotic Resistance of E. coli Isolated from a Constructed Wetland Dominated by a Crow Roost, With Emphasis on ESBL and AmpC Containing E. coli. Front. Microbiol. 2019, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Jamborova, I.; Dolejska, M.; Zurek, L.; Townsend, A.K.; Clark, A.B.; Ellis, J.C.; Papousek, I.; Cizek, A.; Literak, I. Plasmid-mediated resistance to cephalosporins and quinolones in Escherichia coli from American crows in the USA. Environ. Microbiol. 2017, 19, 2025–2036. [Google Scholar] [CrossRef]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 2015, 72, 861–869. [Google Scholar] [CrossRef]
- Poirel, L.; Potron, A.; de la Cuesta, C.; Cleary, T.; Nordmann, P.; Munoz-Price, L.S. Wild Coastline Birds as Reservoirs of Broad-Spectrum-β-Lactamase-Producing Enterobacteriaceae in Miami Beach, Florida. Antimicrob. Agents Chemother. 2012, 56, 2756–2758. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Decousser, J.-W.; Nordmann, P. Insertion Sequence ISEcp1B Is Involved in Expression and Mobilization of a blaCTX-M β-Lactamase Gene. Antimicrob. Agents Chemother. 2003, 47, 2938–2945. [Google Scholar] [CrossRef] [Green Version]
- Saladin, M.; Cao, V.T.B.; Lambert, T.; Donay, J.-L.; Herrmann, J.-L.; Ould-Hocine, Z.; Verdet, C.; Delisle, F.; Philippon, A.; Arlet, G. Diversity of CTX-M β-lactamases and their promoter regions fromEnterobacteriaceaeisolated in three Parisian hospitals. FEMS Microbiol. Lett. 2002, 209, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Koga, V.L.; Maluta, R.P.; Da Silveira, W.D.; Ribeiro, R.A.; Hungria, M.; Vespero, E.C.; Nakazato, G.; Kobayashi, R.K.T. Characterization of CMY-2-type beta-lactamase-producing Escherichia coli isolated from chicken carcasses and human infection in a city of South Brazil. BMC Microbiol. 2019, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Chanoine, M.-H.; Blanco, J.; Leflon-Guibout, V.; Demarty, R.; Alonso, M.P.; Caniça, M.M.; Park, Y.-J.; Lavigne, J.-P.; Pitout, J.; Johnson, J.R. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2007, 61, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.; Finn, T.J. The evolutionary puzzle of Escherichia coli ST131. Infect. Genet. Evol. 2020, 81, 104265. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do Human Extraintestinal Escherichia coli Infections Resistant to Expanded-Spectrum Cephalosporins Originate from Food-Producing Animals? A Systematic Review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster-Nyarko, E.; Alikhan, N.-F.; Ravi, A.; Thomson, N.M.; Jarju, S.; Kwambana-Adams, B.A.; Secka, A.; O’Grady, J.; Antonio, M.; Pallen, M.J. Genomic diversity of Escherichia coli isolates from backyard chickens and guinea fowl in the Gambia. Microb. Genom. 2021, 7, mgen000484. [Google Scholar] [CrossRef]
- Papouskova, A.; Masarikova, M.; Valcek, A.; Senk, D.; Cejkova, D.; Jahodarova, E.; Cizek, A. Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC Veter. Res. 2020, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lin, W.; Chen, Y.; He, F. Genomic and phylogenetic analysis of a community-acquired extended-spectrum β-lactamase-producing Escherichia coli ST429 strain recovered from a urinary tract infection. J. Glob. Antimicrob. Resist. 2020, 22, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Maluta, R.P.; Logue, C.M.; Casas, M.R.T.; Meng, T.; Guastalli, E.A.L.; Rojas, T.C.G.; Montelli, A.C.; Sadatsune, T.; Ramos, M.D.C.; Nolan, L.K.; et al. Overlapped Sequence Types (STs) and Serogroups of Avian Pathogenic (APEC) and Human Extra-Intestinal Pathogenic (ExPEC) Escherichia coli Isolated in Brazil. PLoS ONE 2014, 9, e105016. [Google Scholar] [CrossRef]
- Hall, M.L.-V.; Dierikx, C.; Stuart, J.C.; Voets, G.; Munckhof, M.V.D.; van Essen-Zandbergen, A.; Platteel, T.; Fluit, A.; van de Sande-Bruinsma, N.; Scharinga, J.; et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 2011, 17, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Manges, A.R.; Harel, J.; Masson, L.; Edens, T.J.; Portt, A.; Reid-Smith, R.J.; Zhanel, G.G.; Kropinski, A.M.; Boerlin, P. Multilocus Sequence Typing and Virulence Gene Profiles Associated with Escherichia coli from Human and Animal Sources. Foodborne Pathog. Dis. 2015, 12, 302–310. [Google Scholar] [CrossRef]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Sheikh, A.A.; Checkley, S.; Avery, B.; Chalmers, G.; Bohaychuk, V.; Boerlin, P.; Reid-Smith, R.; Aslam, M. Antimicrobial Resistance and Resistance Genes in Escherichia coli Isolated from Retail Meat Purchased in Alberta, Canada. Foodborne Pathog. Dis. 2012, 9, 625–631. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shimamoto, T.; Shimamoto, T. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Int. J. Med. Microbiol. 2013, 303, 475–483. [Google Scholar] [CrossRef]
- Navia, M.A. A Chicken in Every Pot, Thanks to Sulfonamide Drugs. Science 2000, 288, 2132–2133. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Silversides, F.G.; Diarrassouba, F.; Pritchard, J.; Masson, L.; Brousseau, R.; Bonnet, C.; Delaquis, P.; Bach, S.; Skura, B.J.; et al. Impact of Feed Supplementation with Antimicrobial Agents on Growth Performance of Broiler Chickens, Clostridium perfringens and Enterococcus Counts, and Antibiotic Resistance Phenotypes and Distribution of Antimicrobial Resistance Determinants in Escherichia coli Isolates. Appl. Environ. Microbiol. 2007, 73, 6566–6576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcelino, V.R.; Wille, M.; Hurt, A.C.; González-Acuña, D.; Klaassen, M.; Schlub, T.E.; Eden, J.-S.; Shi, M.; Iredell, J.R.; Sorrell, T.C.; et al. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol. 2019, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ecanton, R.; Egonzalez-Alba, J.M.; Egalán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [Green Version]
- Mavroidi, A.; Miriagou, V.; Liakopoulos, A.; Tzelepi, Ε.; Stefos, A.; Dalekos, G.N.; Petinaki, E. Ciprofloxacin-resistant Escherichia coli in Central Greece: Mechanisms of resistance and molecular identification. BMC Infect. Dis. 2012, 12, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baez, M.; Espinosa, I.; Collaud, A.; Miranda, I.; Montano, D.; Feria, A.; Hernández-Fillor, R.; Obregón, D.; Alfonso, P.; Perreten, V. Genetic Features of Extended-Spectrum β-lactamase-Producing Escherichia coli from Poultry in Mayabeque Province, Cuba. Antibiot. 2021, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-Y.; Kwon, Y.K.; Tamang, M.D.; Jang, H.-K.; Jeong, O.-M.; Lee, H.-S.; Kang, M.-S. Plasmid-Mediated Quinolone Resistance in Escherichia coli Isolates from Wild Birds and Chickens in South Korea. Microb. Drug Resist. 2016, 22, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Réglier-Poupet, H.; Naas, T.; Carrer, A.; Cady, A.; Adam, J.-M.; Fortineau, N.; Poyart, C.; Nordmann, P. Performance of chromID ESBL, a chromogenic medium for detection of Enterobacteriaceae producing extended-spectrum β-lactamases. J. Med. Microbiol. 2008, 57, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 10.0; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2020; pp. 1–77. [Google Scholar]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of Plasmid-Mediated AmpC-Lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Sherwood, J.; Logue, C. Characterization of antimicrobial resistant Escherichia coli isolated from processed bison carcasses. J. Appl. Microbiol. 2007, 103, 2361–2369. [Google Scholar] [CrossRef]
Isolate | Host | Sequence Type | Resistance Profile | ||
---|---|---|---|---|---|
Phenotype | Resistance Determinants | Mutations (gyrA/parC) | |||
C46 | Chicken | ST429 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX | blaCMY-2 | - |
C70 | Chicken | ST131 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX, FLU | blaCMY-2 | S83L+D87N/S80I+E84V |
C79 | Chicken | ST131 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX, FLU | blaCMY-2 | S83L+D87N/S80I+E84V |
C83 | Chicken | ST117 | AMP, AMC, TZP, CEX, CF, CFIX, CAZ, CTRX, FLU, TET, SXT | blaCMY-2, tetM, sulI, sulII | S83L+D87N |
C88 | Chicken | ST117 | AMP, AMC, TZP, CEX, CF, CFIX, CAZ, CTRX, FLU, TET | blaCMY-2, tetM | S83L+D87N |
C103 | Chicken | ST117 | AMP, AMC, TZP, CEX, CF, CFIX, CAZ, CTRX, FLU, TET | blaCMY-2, tetM | S83L+D87N |
C117 | Chicken | ST117 | AMP, AMC, TZP, CEX, CF, CFIX, CAZ, CTRX, FLU, TET | blaCMY-2, tetM | S83L+D87N |
C119 | Chicken | ST117 | AMP, AMC, TZP, CEX, CF, CFIX, CAZ, CTRX, FLU, TET, SXT | blaCMY-2, tetM,sulI, sulII | S83L+D87N |
C136 | Chicken | ST131 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX, FLU | blaCMY-2 | S83L+D87N/S80I+E84V |
C138 | Chicken | ST1415 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX, TET | blaCMY-2, tetB, tetC, tetD | - |
C147 | Chicken | ST131 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX, FLU | blaCMY-2 | S83L+D87N/S80I+E84V |
C156 | Chicken | ST155 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX | blaCMY-2 | - |
WB105 | Eurasian magpie (Pica pica) | ST117 | AMP, AMC, TZP, CEX, CF, CEF, CFIX, CTX, CAZ, CTRX, FLU, TET, SXT | blaCMY-2, tetM, sulI, sulII | S83L+D87N |
Common Name | Scientific Name | Number of Samples |
---|---|---|
Common blackbird | Turdus merula | 4 |
Common buzzard | Buteo buteo | 5 |
Common pheasant | Phasianus colchicus | 7 |
Common starling | Sturnus vulgaris) | 9 |
Common swift | Apus apus | 1 |
Common whitethroat | Sylvia communis | 2 |
Common wood pigeon | Columba palumbus | 3 |
Domestic Muscovy duck | Cairina moschata domestica | 1 |
Domestic goose | Anser cygnoides domesticus | 1 |
Eurasian collared dove | Streptopelia decaocto | 2 |
Eurasian eagle-owl | Bubo bubo | 3 |
European goldfinch | Carduelis carduelis | 6 |
Eurasian scops owl | Otus scops | 1 |
Eurasian tree sparrow | Passer montanus | 9 |
Eurasian woodcock | Scolopax rusticola | 11 |
Golden pheasant | Chrysolophus pictus | 2 |
Great tit | Parus major | 5 |
House sparrow | Passer domesticus | 14 |
Lesser kestrel | Falco naumanni | 1 |
Leaf warbler | Phylloscopus spp. | 1 |
Little owl | Athene noctua | 2 |
Long-eared owl | Asio otus | 2 |
Eurasian Magpie | Pica pica | 52 |
Mallard | Anas platyrhynchos | 3 |
Redwing | Turdus iliacus | 1 |
Rock partridge | Alectoris graeca | 3 |
Sardinian warbler | Sylvia melanocephala | 1 |
Short-toed snake eagle | Circaetus gallicus | 1 |
Song thrush | Turdus philomelos | 14 |
Yellow-legged gull | Larus michahellis | 1 |
Target | Primer Sequence (5′-3′) | Amplicon Size (bp) | Annealing Temperature (°C) | Reference |
---|---|---|---|---|
MOX (MOX-1, MOX-2, CMY-1, CMY-8 to CMY-11) | F: GCTGCTCAAGGAGCACAGGAT | 520 | 55 | [63] |
R:CACATTGACATAGGTGTGGTGC | ||||
CIT (LAT-1 to LAT-4, CMY-2 to CMY-7, BIL-1) | F: TGGCCAGAACTGACAGGCAAA | 462 | 55 | [63] |
R: TTTCTCCTGAACGTGGCTGGC | ||||
DHA (DHA-1, DHA-2) | F: AACTTTCACAGGTGTGCTGGGT | 405 | 56 | [63] |
R: CCGTACGCATACTGGCTTTGC | ||||
ACC | F: AACAGCCTCAGCAGCCGGTTA | 346 | 55 | [63] |
R: TTCGCCGCAATCATCCCTAGC | ||||
EBC (MIR-1T ACT-1) | F: TCGGTAAAGCCGATGTTGCGG | 302 | 58 | [63] |
R: CTTCCACTGCGGCTGCCAGTT | ||||
FOX (FOX-1 to FOX-5b) | F:AACATGGGGTATCAGGGAGATG | 190 | 55 | [63] |
R: CAAAGCGCGTAACCGGATTGG | ||||
tetA | F: GCCTTTCCTTTGGGTTCTCT | 402 | 55 | [64] |
R: TGTCCGACAAGTTGCATGAT | ||||
tetB | F: CACCACCAGCCAATAAAATT | 319 | 52 | This study |
R: TTTATTTAAAACGATGCCCA | ||||
tetC | F: TCACTGGTTAACTCAGCACG | 319 | 52 | This study |
R: TCAAGTTCATTCCAACCAAT | ||||
tetD | F: CTCCAATTCCCATAATTTAT | 379 | 52 | This study |
R: ATCAAAATAAAGCTAATAAC | ||||
tetM | F: TTATCAACGGTTTATCAGG | 398 | 57 | This study |
R: CGTATATATGCAAGACG | ||||
qnrA | F: AGAGGATTTCTCACGCCAGG | 580 | 55 | [58] |
R: CCAGGCACAGATCTTGAC | ||||
qnrB | F: GGGTATGGATATTATTGATAAAG | 264 | 55 | [58] |
R: CTAATCCGGCAGCACTATTA | ||||
qnrS | F: GCAAGTTCATTGAACAGGGT | 428 | 55 | [58] |
R: TCTAAACCGTCGAGTTCGGC | ||||
gyrA | F: TTAATGATTGCCGCCGTCGG | 648 | 54 | [58] |
R: TACACCGGTCAACATTGAGG | ||||
parC | F: GTGGTGCCGTTAAGCAAA | 395 | 55 | [58] |
R: AAACCTGTTCAGCGCCGCATT | ||||
sulI | F: ACG AGA TTG TGC GGT TCT TC | 347 | 55 | [64] |
R: GGT TTC CGA GAT GGT GAT TG | ||||
sulII | F: CCG TCT CGC TCG ACA GTT AT | 506 | 55 | [64] |
R: GTG TGT GCG GAT GAA GTC AG | ||||
ISEcp1 – CMY | F- AAAAATGATTGAAAGGTGGT | 546 | 52 | [41] |
R- TTTCTCCTGAACGTGGCTGGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasakopoulou, Z.; Tsilipounidaki, K.; Sofia, M.; Chatzopoulos, D.C.; Giannakopoulos, A.; Karakousis, I.; Giannakis, V.; Spyrou, V.; Touloudi, A.; Satra, M.; et al. Poultry and Wild Birds as a Reservoir of CMY-2 Producing Escherichia coli: The First Large-Scale Study in Greece. Antibiotics 2021, 10, 235. https://doi.org/10.3390/antibiotics10030235
Athanasakopoulou Z, Tsilipounidaki K, Sofia M, Chatzopoulos DC, Giannakopoulos A, Karakousis I, Giannakis V, Spyrou V, Touloudi A, Satra M, et al. Poultry and Wild Birds as a Reservoir of CMY-2 Producing Escherichia coli: The First Large-Scale Study in Greece. Antibiotics. 2021; 10(3):235. https://doi.org/10.3390/antibiotics10030235
Chicago/Turabian StyleAthanasakopoulou, Zoi, Katerina Tsilipounidaki, Marina Sofia, Dimitris C. Chatzopoulos, Alexios Giannakopoulos, Ioannis Karakousis, Vassilios Giannakis, Vassiliki Spyrou, Antonia Touloudi, Maria Satra, and et al. 2021. "Poultry and Wild Birds as a Reservoir of CMY-2 Producing Escherichia coli: The First Large-Scale Study in Greece" Antibiotics 10, no. 3: 235. https://doi.org/10.3390/antibiotics10030235
APA StyleAthanasakopoulou, Z., Tsilipounidaki, K., Sofia, M., Chatzopoulos, D. C., Giannakopoulos, A., Karakousis, I., Giannakis, V., Spyrou, V., Touloudi, A., Satra, M., Galamatis, D., Diamantopoulos, V., Mpellou, S., Petinaki, E., & Billinis, C. (2021). Poultry and Wild Birds as a Reservoir of CMY-2 Producing Escherichia coli: The First Large-Scale Study in Greece. Antibiotics, 10(3), 235. https://doi.org/10.3390/antibiotics10030235