Antimicrobial Resistance in Salmonella Isolated from Food Workers and Chicken Products in Japan
Abstract
:1. Introduction
2. Results
2.1. Salmonella Prevalence in Human Stools and Local Chicken Products
2.2. Antimicrobial Susceptibility
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Salmonella Isolation
4.2. Local Chicken Products and Salmonella Isolation
4.3. Serotyping
4.4. Antimicrobial Susceptibility Testing
4.5. Determination of Antimicrobial Resistance Genes and Sequence Types Based on MLST in Cefotaxime-Resistant Salmonella Strains by WGS Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ao, T.T.; Feasey, N.A.; Gordon, M.A.; Keddy, K.H.; Angulo, F.J.; Crump, J.A. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg. Infect. Dis. 2015, 21, 941–949. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Hohmann, E.L. Nontyphoidal salmonellosis. Clin. Infect. Dis. 2001, 32, 263–269. [Google Scholar]
- Yoshikura, H. Declining Vibrio parahaemolyticus and Salmonella, increasing Campylobacter and persisting norovirus food poisonings: Inference derived from food poisoning statistics of Japan. Jpn. J. Infect. Dis. 2020, 73, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Okamura, N.; Kishino, K.; Wada, S.; Zou, B.; Nanba, T.; Ito, T. Prevalence and antimicrobial resistance of Salmonella serotypes isolated from poultry meat in Japan. Food Saf. 2018, 6, 126–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, S.; Koori, Y.; Ohsaki, Y.; Osaka, S.; Oana, K.; Nagano, Y.; Arakawa, Y.; Nagano, N. Third-generation cephalosporin-resistant non-typhoidal Salmonella isolated from human feces in Japan. Jpn. J. Infect. Dis. 2017, 70, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Kutsuna, S.; Yonetani, S.; Araki, K.; Izumiya, H. A case of pediatric with acute enteritis sue to CTX-M-15 extended-spectrum β-lactamese-producing Salmoenlla Blockley. Jpn. J. Antimbiot. 2016, 69, 343–346. [Google Scholar]
- Hiki, M.; Usui, M.; Kojima, A.; Ozawa, M.; Ishii, Y.; Asai, T. Diversity of plasmid replicons encoding the blaCMY-2 gene in broad-spectrum cephalosporin-resistant Escherichia coli from livestock animals in Japan. Foodborne Pathog. Dis. 2013, 10, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, W.; Zhang, K.; Zhang, Y.; Wang, Z.; Zhang, W.; Li, Y.; Li, Q. Characterization of Salmonella serotypes prevalent in asymptomatic people and patients. BMC Infect. Dis. 2021, 21, 632. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, S.; Mbae, C.; Puyvelde, S.V.; Onsare, R.; Kavai, S.; Wairimu, C.; Ngetich, R.; Clemens, J.; Dougan, G. High relatedness of invasive multi-drug resistant non-typhoidal Salmonella genotypes among patients and asymptomatic carriers in endemic informal settlements in Kenya. PLoS Negl. Trop. Dis. 2020, 14, e0008440. [Google Scholar] [CrossRef]
- Sasaki, Y.; Murakami, M.; Maruyama, N.; Tsujiyama, Y.; Kusukawa, M.; Asai, T.; Yamada, Y. Risk factors for Salmonella prevalence in laying-hen farms in Japan. Epidemiol. Infect. 2012, 140, 982–990. [Google Scholar] [CrossRef]
- Sasaki, Y.; Ikeda, A.; Ishikawa, K.; Murakami, M.; Kusukawa, M.; Asai, T.; Yamada, Y. Prevalence and antimicrobial susceptibility of Salmonella in Japanese broiler flocks. Epidemiol. Infect. 2012, 140, 2074–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimojima, Y.; Nishino, Y.; Fukui, R.; Kuroda, S.; Suzuki, J.; Sadamasu, K. Salmonella serovars isolated from retail meats in Tokyo, Japan and their antimicrobial susceptibility. Shokuhin Eiseigaku Zasshi J. Food Hyg. Soc. Jpn. 2020, 61, 211–217. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries of Japan. The 94th Statistical Yearbook of Ministry of Agriculture, Forestry and Fisheries; Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2020.
- Kijima, M.; Shirakawa, T.; Uchiyama, M.; Kawanishi, M.; Ozawa, M.; Koike, R. Trends in the serovar and antimicrobial resistance in clinical isolates of Salmonella enterica from cattle and pigs between 2002 and 2016 in Japan. J. Appl. Microbiol. 2019, 127, 1869–1875. [Google Scholar] [CrossRef]
- Shigemura, H.; Matsui, M.; Sekizuka, T.; Onozuka, D.; Noda, T.; Yamashita, A.; Kuroda, M.; Suzuki, S.; Kimura, H.; Fujimoto, S.; et al. Decrease in the prevalence of extended-spectrum cephalosporin-resistant Salmonella following cessation of ceftiofur use by the Japanese poultry industry. Int. J. Food. Microbiol. 2018, 274, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Voss-Rech, D.; Vaz, C.S.; Alves, L.; Coldebella, A.; Leão, J.A.; Rodrigues, D.P.; Back, A. A temporal study of Salmonella enterica serotypes from broiler farms in Brazil. Poult. Sci. 2015, 94, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.I.S.; Saraiva, M.M.S.; Casas, M.R.T.; Oliveira, G.M.; Cardozo, M.V.; Benevides, V.P.; Barbosa, F.O.; Freitas Neto, O.C.; Almeida, A.M.; Berchieri, A., Jr. High occurrence of beta-lactamase-producing Salmonella Heidelberg from poultry origin. PLoS ONE 2020, 15, e0230676. [Google Scholar] [CrossRef]
- Gelinski, J.M.; Bombassaro, A.; Baratto, C.M.; Vicente, V.A. Resistance to extended-spectrum beta-lactamases in Salmonella from a broiler supply chain. Int. J. Environ. Res. Public Health 2014, 11, 11718–11726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos Bersot, L.; Carbonera, N.R.; Rodrigues Valcanaia, C.D.; Viana, C.; Nero, L.A. Multidrug-resistant and extended-spectrum beta-lactamase-producing Salmonella enterica serotype Heidelberg is widespread in a poultry processing facility in southern Brazil. J. Food Prot. 2021, 84, 2053–2058. [Google Scholar] [CrossRef]
- Perin, A.P.; Martins, B.T.F.; Barreiros, M.A.B.; Yamatogi, R.S.; Nero, L.A.; Dos Santos Bersot, L. Occurrence, quantification, pulse types, and antimicrobial susceptibility of Salmonella sp. isolated from chicken meat in the State of Parana, Brazil. Braz. J. Microbiol. 2020, 51, 335–345. [Google Scholar] [CrossRef]
- Shigemura, H.; Sakatsume, E.; Sekizuka, T.; Yokoyama, H.; Hamada, K.; Etoh, Y.; Carle, Y.; Mizumoto, S.; Hirai, S.; Matsui, M.; et al. Food workers as a reservoir of extended-spectrum cephalosporin-resistant Salmonella strains in Japan. Appl. Environ. Microbiol. 2020, 86, e00072-20. [Google Scholar] [CrossRef]
- Murakami, K.; Horikawa, K.; Ito, K.; Otsuki, K. Environmental survey of Salmonella and comparison of genotypic character with human isolates in Western Japan. Epidemiol. Infect. 2001, 126, 159–171. [Google Scholar] [CrossRef]
- Grimont, P.A.D.; Weil, F. Antigenic Formulas of the Salmonella Serovars, 9th ed.; WHO Collaborating Centre for Reference and Research on Salmonella: Paris, France; Institute Pasteur: Paris, France, 2007. [Google Scholar]
- Echeita, M.A.; Herrera, S.; Usera, M.A. Atypical, fljB-negative Salmonella enterica subsp. enterica strain of serovar 4,5,12:i: Appears to be a monophasic variant of serovar Typhimurium. J. Clin. Microbiol. 2001, 39, 2981–2983. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; VET08; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI: Wayne, PA, USA, 2018; Volume M100. [Google Scholar]
- National Veterinary Assay Laboratory of Japan. Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System 2016–2017; National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2020.
- Sekizuka, T.; Yatsu, K.; Inamine, Y.; Segawa, T.; Nishio, M.; Kishi, N.; Kuroda, M. Complete genome sequence of a blaKPC-2-positive Klebsiella pneumoniae strain isolated from the effluent of an urban sewage treatment plant in Japan. mSphere 2018, 3, e00314-18. [Google Scholar] [PubMed] [Green Version]
- Coil, D.; Jospin, G.; Darling, A.E. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015, 31, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Ohnishi, M.; Kawanishi, M.; Akiba, M.; Kuroda, M. Investigation of a plasmid genome database for colistin-resistance gene mcr-1. Lancet Infect. Dis. 2016, 16, 284–285. [Google Scholar] [PubMed] [Green Version]
Serovar | Human | Chicken | ||
---|---|---|---|---|
N | % | N | % | |
Schwarzengrund | 99 | 17.0 | 146 | 73.0 |
Infantis | 50 | 8.6 | 30 | 15.0 |
Typhimurium monophasic variant | 37 | 6.3 | 0 | 0.0 |
Thompson | 36 | 6.2 | 0 | 0.0 |
Cubana | 26 | 4.5 | 0 | 0.0 |
Manhattan | 25 | 4.3 | 17 | 8.5 |
Newport | 25 | 4.3 | 0 | 0.0 |
Mbandaka | 20 | 3.4 | 0 | 0.0 |
Agona | 17 | 2.9 | 4 | 2.0 |
Bareilly | 16 | 2.7 | 0 | 0.0 |
Braenderup | 16 | 2.7 | 0 | 0.0 |
Corvallis | 16 | 2.7 | 0 | 0.0 |
Enteritidis | 14 | 2.4 | 0 | 0.0 |
Typhimurium | 13 | 2.2 | 0 | 0.0 |
Saintpaul | 9 | 1.5 | 0 | 0.0 |
Anatum | 8 | 1.4 | 1 | 0.5 |
Stanley | 7 | 1.2 | 0 | 0.0 |
Litchfield | 6 | 1.0 | 0 | 0.0 |
Rissen | 6 | 1.0 | 0 | 0.0 |
Senftenberg | 6 | 1.0 | 0 | 0.0 |
Blockley | 5 | 0.9 | 0 | 0.0 |
Weltevreden | 5 | 0.9 | 0 | 0.0 |
Heidelberg | 5 | 0.9 | 0 | 0.0 |
Derby | 4 | 0.7 | 0 | 0.0 |
Hadar | 4 | 0.7 | 0 | 0.0 |
Panama | 4 | 0.7 | 0 | 0.0 |
Paratyphi B | 4 | 0.7 | 0 | 0.0 |
Colindale | 3 | 0.5 | 0 | 0.0 |
London | 3 | 0.5 | 0 | 0.0 |
Montevideo | 3 | 0.5 | 0 | 0.0 |
Muenchen | 3 | 0.5 | 0 | 0.0 |
Oranienburg | 3 | 0.5 | 0 | 0.0 |
Othmarschen | 3 | 0.5 | 0 | 0.0 |
Potsdam | 3 | 0.5 | 0 | 0.0 |
Uganda | 3 | 0.5 | 0 | 0.0 |
Altona | 2 | 0.3 | 0 | 0.0 |
Brandenburg | 2 | 0.3 | 0 | 0.0 |
Bredeney | 2 | 0.3 | 0 | 0.0 |
Cerro | 2 | 0.3 | 0 | 0.0 |
Duesseldorf | 2 | 0.3 | 0 | 0.0 |
Havana | 2 | 0.3 | 0 | 0.0 |
Lexington | 2 | 0.3 | 0 | 0.0 |
Liverpool | 2 | 0.3 | 0 | 0.0 |
Minnesota | 2 | 0.3 | 0 | 0.0 |
Narashino | 2 | 0.3 | 0 | 0.0 |
Poona | 2 | 0.3 | 0 | 0.0 |
Singapore | 2 | 0.3 | 0 | 0.0 |
Virchow | 2 | 0.3 | 0 | 0.0 |
Others (28 serovars and 22 untypeable) | 50 | 8.6 | 2 | 1.0 |
Total | 583 | 200 |
Serovar | Origin | N | ABPC | CEZ | CTX | SM | GM | KM | TC | NA | CL | CP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | |||
Schwarzengrund | Human | 99 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 85 | 85.9 | 0 | 0.0 | 81 | 81.8 | 83 | 83.8 | 16 | 16.2 | 0 | 0.0 | 0 | 0.0 |
Chicken | 146 | 1 | 0.7 | 0 | 0.0 | 0 | 0.0 | 99 | 67.8 | 0 | 0.0 | 93 | 63.7 | 93 | 63.7 | 24 | 16.4 | 0 | 0.0 | 2 | 1.4 | |
Infantis | Human | 50 | 1 | 2.0 | 1 | 2.0 | 1 | 2.0 | 30 | 60.0 | 0 | 0.0 | 8 | 16.0 | 13 | 26.0 | 1 | 2.0 | 0 | 0.0 | 0 | 0.0 |
Chiciken | 30 | 4 | 13.3 | 3 | 10.0 | 3 | 10.0 | 26 | 86.7 | 1 | 3.3 | 10 | 33.3 | 24 | 80.0 | 4 | 13.3 | 0 | 0.0 | 0 | 0.0 | |
Typhimurium monophasic variant | Human | 37 | 21 | 56.8 | 1 | 2.7 | 0 | 0.0 | 29 | 78.4 | 1 | 2.7 | 1 | 2.7 | 29 | 78.4 | 1 | 2.7 | 0 | 0.0 | 2 | 5.4 |
Thompson | Human | 36 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 21 | 58.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Cubana | Human | 26 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 3.8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Manhattan | Human | 25 | 5 | 20.0 | 1 | 4.0 | 1 | 4.0 | 24 | 96.0 | 0 | 0.0 | 0 | 0.0 | 22 | 88.0 | 6 | 24.0 | 0 | 0.0 | 0 | 0.0 |
Chicken | 17 | 1 | 5.9 | 1 | 5.9 | 1 | 5.9 | 15 | 88.2 | 0 | 0.0 | 1 | 5.9 | 12 | 70.6 | 1 | 5.9 | 0 | 0.0 | 0 | 0.0 | |
Newport | Human | 25 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 3 | 12.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Mbandaka | Human | 20 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 8 | 40.0 | 0 | 0.0 | 0 | 0.0 | 1 | 5.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Agona | Human | 17 | 1 | 5.9 | 1 | 5.9 | 0 | 0.0 | 9 | 52.9 | 0 | 0.0 | 0 | 0.0 | 10 | 58.8 | 2 | 11.8 | 0 | 0.0 | 1 | 5.9 |
Chicken | 4 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 4 | 100.0 | 0 | 0.0 | 1 | 25.0 | 4 | 100.0 | 0 | 0.0 | 0 | 0.0 | 1 | 25.0 | |
Bareilly | Human | 16 | 2 | 12.5 | 2 | 12.5 | 2 | 12.5 | 5 | 31.3 | 2 | 12.5 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Braenderup | Human | 16 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 12 | 75.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 12.5 | 0 | 0.0 | 0 | 0.0 |
Corvallis | Human | 16 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 6.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Enteritidis | Human | 14 | 1 | 7.1 | 0 | 0.0 | 0 | 0.0 | 1 | 7.1 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 14.3 | 2 | 14.3 | 0 | 0.0 |
Typhimurium | Human | 13 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 15.4 | 0 | 0.0 | 0 | 0.0 | 1 | 7.7 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 |
Others | Human | 173 | 20 | 11.6 | 9 | 5.2 | 8 | 4.6 | 67 | 38.7 | 2 | 1.2 | 17 | 9.8 | 34 | 19.7 | 11 | 6.4 | 0 | 0.0 | 10 | 5.8 |
Chicken | 3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 66.7 | 0 | 0.0 | 2 | 66.7 | 2 | 66.7 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | |
Total | Human | 583 | 51 | 8.7 | 15 | 2.6 | 12 | 2.1 | 298 | 51.1 | 5 | 0.9 | 107 | 18.4 | 193 | 33.1 | 41 | 7.0 | 2 | 0.3 | 13 | 2.2 |
Chicken | 200 | 6 | 3.0 | 4 | 2.0 | 4 | 2.0 | 146 | 73.0 | 1 | 0.5 | 107 | 53.5 | 135 | 67.5 | 29 | 14.5 | 0 | 0.0 | 3 | 1.5 |
Serovar | Antimicrobial Resistance Profile | Human | Chicken | ||
---|---|---|---|---|---|
No. | % | No. | % | ||
Schwarzengrund | 99 | 146 | |||
ABPC+SM+KM+TC+NA+CP | 0 | 0.0 | 1 | 0.7 | |
SM+KM+TC+NA+CP | 0 | 0.0 | 1 | 0.7 | |
SM+KM+TC+NA | 8 | 8.1 | 16 | 11.0 | |
KM+TC+NA | 1 | 1.0 | 0 | 0.0 | |
SM+KM+NA | 1 | 1.0 | 1 | 0.7 | |
SM+TC+NA | 5 | 5.1 | 3 | 2.1 | |
SM+KM+TC | 58 | 58.6 | 47 | 32.2 | |
SM+TC | 11 | 11.1 | 24 | 16.4 | |
SM+KM | 1 | 1.0 | 3 | 2.1 | |
KM+NA | 1 | 1.0 | 2 | 1.4 | |
KM+TC | 0 | 0.0 | 1 | 0.7 | |
KM | 11 | 11.1 | 21 | 14.4 | |
SM | 1 | 1.0 | 3 | 2.1 | |
susceptible | 1 | 1.0 | 23 | 15.8 | |
Infantis | 50 | 30 | |||
ABPC+SM+GM+KM+TC+NA | 0 | 0.0 | 1 | 3.3 | |
ABPC+CEZ+CTX+SM+KM+TC | 1 | 2.0 | 0 | 0.0 | |
ABPC+CEZ+CTX+SM+TC | 0 | 0.0 | 3 | 10.0 | |
SM+KM+TC+NA | 0 | 0.0 | 1 | 3.3 | |
SM+KM+TC | 6 | 12.0 | 6 | 20.0 | |
SM+TC+NA | 1 | 2.0 | 2 | 6.7 | |
SM+TC | 5 | 10.0 | 11 | 36.7 | |
SM+KM | 1 | 2.0 | 0 | 0.0 | |
TC | 0 | 0.0 | 0 | 0.0 | |
KM | 0 | 0.0 | 2 | 6.7 | |
SM | 16 | 32.0 | 2 | 6.7 | |
susceptible | 20 | 40.0 | 2 | 6.7 | |
Typhimurium monophasic variant | 37 | 0 | |||
SM+GM+KM+TC | 1 | 2.7 | 0 | 0.0 | |
ABPC+CEZ+SM+TC | 1 | 2.7 | 0 | 0.0 | |
ABPC+SM+TC+CP | 1 | 2.7 | 0 | 0.0 | |
ABPC+SM+NA | 1 | 2.7 | 0 | 0.0 | |
SM+TC+CP | 1 | 2.7 | 0 | 0.0 | |
ABPC+SM+TC | 17 | 45.9 | 0 | 0.0 | |
ABPC+SM | 1 | 2.7 | 0 | 0.0 | |
SM+TC | 5 | 13.5 | 0 | 0.0 | |
TC | 3 | 8.1 | 0 | 0.0 | |
SM | 1 | 2.7 | 0 | 0.0 | |
susceptible | 5 | 13.5 | 0 | 0.0 | |
Thompson | 36 | 0 | |||
SM | 21 | 58.3 | 0 | 0.0 | |
susceptible | 15 | 41.7 | 0 | 0.0 | |
Cubana | 26 | 0 | |||
SM | 1 | 3.8 | 0 | 0.0 | |
susceptible | 25 | 96.2 | 0 | 0.0 | |
Manhattan | 25 | 17 | |||
ABPC+CEZ+CTX+SM+TC | 1 | 4.0 | 1 | 5.0 | |
ABPC+SM+TC+NA | 4 | 16.0 | 0 | 0.0 | |
SM+TC+NA | 2 | 8.0 | 0 | 0.0 | |
SM+NA | 0 | 0.0 | 1 | 5.0 | |
SM+TC | 15 | 60.0 | 10 | 50.0 | |
TC | 0 | 0.0 | 1 | 5.0 | |
KM | 0 | 0.0 | 1 | 5.0 | |
SM | 2 | 8.0 | 3 | 15.0 | |
susceptible | 1 | 4.0 | 0 | 0.0 |
Serovar | Source | Strain | ST | Antimicrobial Resistance Profile | bla Gene | Other Antimicrobial Resistant Genes |
---|---|---|---|---|---|---|
Infantis | ||||||
Human | BM-114 | 32 | ABPC, CEZ, CTX, SM, KM, TC | CMY-2 | aac(6′)-Iaa, ant(3′′)-Ia, aph(3′)-Ia, qacEdelta1, sul1, tet(A) | |
Chicken | B-21 | 32 | ABPC, CEZ, CTX, SM, TC | CMY-2 | aac(6′)-Iaa, ant(3′′)-Ia, dfrA14, qacEdelta1, sul1, tet(A) | |
Chicken | M-4 | 32 | ABPC, CEZ, CTX, SM, TC | CMY-2 | aac(6′)-Iaa, ant(3′′)-Ia, qacEdelta1, sul1, tet(A) | |
Chicken | M-5 | 32 | ABPC, CEZ, CTX, SM, TC | CMY-2 | aac(6′)-Iaa, ant(3′′)-Ia, dfrA14, qacEdelta1, sul1, tet(A) | |
Blockley | ||||||
Human | TK-117 | 52 | ABPC, CEZ, CTX, SM, KM, TC, CP | CTX-M-15 | aac(6′)-Iaa, aph(3′′)-Ib, aph(3′)-Ia, aph(6)-Id, catA2, mph(A), tet(A) | |
Human | TK-120 | 52 | ABPC, CEZ, CTX, SM, KM, TC, CP | CTX-M-15 | aac(6′)-Iaa, aph(3′′)-Ib, aph(3′)-Ia, aph(6)-Id, catA2, mph(A), tet(A) | |
Minnesota | ||||||
Human | TK-227 | 52 | ABPC, CEZ, CTX, KM, TC | CMY-2 | aac(6′)-Iaa, aph(3′)-Ia, sul2, tet(A) | |
Human | TK-256 | 548 | ABPC, CEZ, CTX, KM, TC, NA | CMY-2 | aac(6′)-Iaa, qnrB19, sul2, tet(A) | |
Heidelberg | ||||||
Human | TK-124 | 15 | ABPC, CEZ, CTX, SM, GM, TC, NA | LAT-3 | aac(3)-VIa, aac(6′)-Iaa, ant(3′′)-Ia, fosA7, qacEdelta1, sul1, sul2, tet(A) | |
Human | TK-167 | 15 | ABPC, CEZ, CTX, TC, NA | CMY-2 | aac(6′)-Iaa, fosA7, sul2, tet(A) | |
Bareilly | ||||||
Human | BM-153 | 203 | ABPC, CEZ, CTX, SM, GM, TMP | CTX-M-55 | aac(3)-IId, aac(6′)-Iaa, ant(3′′)-Ia, dfrA14, fosA4, lnu(F), mph(A), qnrS13 | |
Human | BM-226 | 203 | ABPC, CEZ, CTX, SM, GM, TMP | CTX-M-55 | aac(3)-IId, aac(6′)-Iaa, ant(3′′)-Ia, dfrA14, fosA4, lnu(F), mph(A), qnrS13 | |
Manhattan | ||||||
Human | BM-136 | 18 | ABPC, CEZ, CTX, SM, TC | TEM-52B | aac(6′)-Iaa, ant(3′′)-Ia, qacEdelta1, sul1, tet(A) | |
Chicken | K-1 | 18 | ABPC, CEZ, CTX, SM, TC | TEM-52B | aac(6′)-Iaa, ant(3′′)-Ia, qacEdelta1, sul1, tet(A) | |
Goldcoast | ||||||
Human | BM-274 | 358 | ABPC, CEZ, CTX, GM, KM, TC, NA, CP | CTX-M-55, LAP-2, TEM-1 | ARR-3, aac(3)-IId, aac(6′)-Iaa, aph(3′)-Ia, aph(6)-Id, dfrA14, floR, qnrS13, sul2, sul3, tet(A) | |
Untypable | ||||||
Human | TK-272 | 32 | ABPC, CEZ, CTX, SM, TC | CMY-2 | aac(6′)-Iaa, ant(3′′)-Ia, qacEdelta1, sul1, tet(A) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, Y.; Kakizawa, H.; Baba, Y.; Ito, T.; Haremaki, Y.; Yonemichi, M.; Ikeda, T.; Kuroda, M.; Ohya, K.; Hara-Kudo, Y.; et al. Antimicrobial Resistance in Salmonella Isolated from Food Workers and Chicken Products in Japan. Antibiotics 2021, 10, 1541. https://doi.org/10.3390/antibiotics10121541
Sasaki Y, Kakizawa H, Baba Y, Ito T, Haremaki Y, Yonemichi M, Ikeda T, Kuroda M, Ohya K, Hara-Kudo Y, et al. Antimicrobial Resistance in Salmonella Isolated from Food Workers and Chicken Products in Japan. Antibiotics. 2021; 10(12):1541. https://doi.org/10.3390/antibiotics10121541
Chicago/Turabian StyleSasaki, Yoshimasa, Hiromi Kakizawa, Youichi Baba, Takeshi Ito, Yukari Haremaki, Masaru Yonemichi, Tetsuya Ikeda, Makoto Kuroda, Kenji Ohya, Yukiko Hara-Kudo, and et al. 2021. "Antimicrobial Resistance in Salmonella Isolated from Food Workers and Chicken Products in Japan" Antibiotics 10, no. 12: 1541. https://doi.org/10.3390/antibiotics10121541
APA StyleSasaki, Y., Kakizawa, H., Baba, Y., Ito, T., Haremaki, Y., Yonemichi, M., Ikeda, T., Kuroda, M., Ohya, K., Hara-Kudo, Y., Asai, T., & Asakura, H. (2021). Antimicrobial Resistance in Salmonella Isolated from Food Workers and Chicken Products in Japan. Antibiotics, 10(12), 1541. https://doi.org/10.3390/antibiotics10121541