Potential Applications of Moringa oleifera in Poultry Health and Production as Alternative to Antibiotics: A Review
Abstract
:1. Introduction
2. Feed Intake and Efficiency
3. Growth Performance and Body Weight Gain
4. Carcass Traits
5. Egg Production and Quality
6. Antioxidant Effects
7. Blood Biochemistry
8. Antimicrobial Activity
9. Anticoccidial Activity
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gould, I.M. Antibiotic policies to control hospital-required infection. J. Antimicrob. Chemother. 2008, 61, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, D.J. Antibiotic residues in poultry tissues and eggs: Human health concerns. Poultry Sci. 2003, 82, 618–621. [Google Scholar] [CrossRef]
- Khan, R.U.; Rahman, Z.U.; Javed, I.; Muhammad, F. Effects of vitamins, probiotics and protein level on semen traits and some seminal plasma macro and micro minerals of male broiler breeders after zinc-induced molting. Biol. Trace Elem. Res. 2012, 148, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Rahman, Z.U.; Javed, I.; Muhammad, F. Effect of vitamins, probiotics and protein on semen traits in post-molt male broiler breeders. Anim. Reprod. Sci. 2012, 135, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Naz, A.S. Applications of probiotics in poultry production. World’s Poult. Sci. J. 2013, 69, 621–632. [Google Scholar] [CrossRef]
- Khan, R.U.; Rahman, Z.U.; Javed, I.; Muhammad, F. Supplementation of vitamins, probioitics and proteins on oxidative stress, enzymes and hormones in post-moulted male broiler breeder. Arch. Tierz. 2013, 61, 607–616. [Google Scholar]
- Khan, R.U.; Rahman, Z.U.; Javed, I.; Muhammad, F. Supplementation of dietary vitamins, protein and probiotics on semen traits and immunohistochemical study of pituitary hormones in zinc-induced molted broiler breeders. Acta Histochem. 2013, 115, 698–704. [Google Scholar] [CrossRef]
- Alam, S.; Masood, S.; Zaneb, H.; Rabbani, I.; Khan, R.U.; Shah, M.; Ashraf, S.; Alhidary, I.A. Effect of Bacillus cereus and phytase on the expression of musculoskeletal strength and gut health in Japanese quail (Coturnix japonica). Poult. Sci. J. 2020, 57, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Zaneb, H.; Masood, S.; Khan, R.U.; Mobashar, M.; Khan, I.; Din, S.; Khan, M.S.; Rehman, H.; Tinelli, A. Single or combined applications of zinc and multi-strains probiotic on intestinal histomorphology of broilers under cyclic heat stress. Probiotics Antimicrob. Proteins 2020, 12, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Zaneb, H.; Masood, S.; Khan, R.U.; Ashraf, S.; Sikandar, A.; Rehman, H.F.U.; Rehman, H. Effect of dietary supplementation of zinc and multi-microbe probiotic on growth traits and alteration of intestinal architecture in broiler. Probiotics Antimicrob. Proteins 2019, 11, 931–937. [Google Scholar] [CrossRef]
- Chand, N.; Faheem, H.; Khan, R.U.; Qureshi, M.S.; Alhidary, I.A.; Abudabos, A.M. Anticoccidial effect of mannanoligosacharide against experimentally induced coccidiosis in broiler. Environ. Sci. Pollut. Res. 2016, 23, 14414–14421. [Google Scholar] [CrossRef]
- Chand, N.; Khan, R.U.; Mobashar, M.; Naz, S.; Rowghani, I.; Khan, M.A. Mannanoligosaccharide (MOS) in broiler ration during the starter phase: 1. growth performance and intestinal histomorphology. Pak. J. Zool. 2019, 51, 173–176. [Google Scholar] [CrossRef]
- Tufail, M.; Chand, N.; Rafiullah, A.S.; Khan, R.U.; Mobashar, M.; Naz. S. Mannanoligosaccharide (MOS) in broiler diet during the finisher phase: 2. growth traits and intestinal histomorphology. Pak. J. Zool. 2019, 51, 597–602. [Google Scholar] [CrossRef]
- Haq, I.; Hafeez, A.; Khan, R.U. Protective effect of Nigella sativa and Saccharomyces cerevisiae on zootechnical characteristics, fecal Escherichia coli and hematopoietic potential in broiler infected with experimental Colibacillosis. Livest. Sci. 2020, 239, 104119. [Google Scholar] [CrossRef]
- Abd El-Hack, M.; Alagawany, M.; Arif, M.; Emam, M.; Saeed, M.; Arain, M.A.; Siyal, F.A.; Patra, A.; Elnesr, S.S.; Khan, R.U. The uses of microbial phytase as a feed additive in poultry nutrition—A review. Ann. Anim. Sci. 2018, 18, 639–658. [Google Scholar] [CrossRef] [Green Version]
- Sultan, A.; Ali, R.; Khan, R.U.; Khan, S.; Chand, N.; Tariq, A. Nutritional evaluation of two sorghum varieties in broiler fortified with phytase. Pak. J. Zool. 2019, 51, 1183–1185. [Google Scholar] [CrossRef]
- Jabbar, A.; Tahir, M.; Alhidary, M.A.; Abdelrahman, M.; Albaadani, H.; Khan, R.U.; Selvaggi, M.; Laudadio, V.; Tufarelli, V. Impact of Microbial Protease Enzyme and Dietary Crude Protein Levels on Growth and Nutrients Digestibility in Broilers over 15 to 28 days. Animals 2021, 11, 2499. [Google Scholar] [CrossRef]
- Jabbar, A.; Tahir, M.; Khan, R.U.; Ahmad, N. Interactive effect of exogenous protease enzyme and dietary crude protein levels on growth and digestibility indices in broiler chickens during the starter phase. Trop. Anim. Health Prod. 2021, 53, 1–5. [Google Scholar] [CrossRef]
- Khan, R.U.; Chand, N.; Ali, A. Effect of organic acids on the performance of Japanese quails. Pak. J. Zool. 2016, 48, 1799–1803. [Google Scholar]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broiler exposed to Salmonella typhimurium challenge during the starter phase. J. Appl. Anim. Res. 2017, 45, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.U.; Nikosefat, Z.; Tufarelli, V.; Naz, S.; Javdani, M.; Laudadio, V. Garlic (Allium sativa) supplementation in poultry diet: Effect on production and physiology. World’s Poult. Sci. J. 2012, 68, 417–424. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Nikousefat, Z.; Tufarelli, V.; Laudadio, V. Thymus vlugaris: Alternative to antibiotics in poultry feed. World’s Poult. Sci. J. 2012, 68, 401–408. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Tufarelli, V.; Laudadio, V. Potential applications of ginger (Zingiber officinale) in poultry diet. World’s Poult. Sci. J. 2012, 68, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.U.; Naz, S.; Javadani, M.; Nikousefat, Z.; Selvaggi, M.; Tufarelli, V.; Laudadio, V. The use of turmeric (Curcuma longa) in poultry diets. World’s Poult. Sci. J. 2012, 68, 97–103. [Google Scholar] [CrossRef]
- Dhama, K.; Latheef, S.K.; Mani, S.; Samad, H.A.; Karthik, K.; Tiwari, R.; Khan, R.U.; Alagawany, M.; Farag, M.R.; Alam, G.M.; et al. Multiple beneficial applications and modes of action of herbs in poultry health and production- A review. Int. J. Pharmacol. 2015, 11, 152–176. [Google Scholar] [CrossRef] [Green Version]
- Alzawqari, M.H.; Al-Baddany, A.A.; Al-Baadani, H.H.; Alhidary, I.A.; Khan, R.U.; Aqil, G.M.; Abdurab, A. Effect of feeding dried sweet orange (Citrus sinensis) peel and lemon grass (Cymbopogon citratus) leaves on growth performance, carcass traits, serum metabolites and antioxidant status in broiler during the finisher phase. Environ. Sci. Pollut. Res. 2016, 23, 17077–17082. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, A.; Sohail, M.; Ahmad, A.; Shah, M.; Din, S.; Khan, I.; Shuib, M.; Nasrullah; Shahzada, W.; Iqbal, M.; et al. Selected herbal plants showing enhanced growth performance, ileal digestibility, bone strength and blood metabolites in broilers. J. Appl. Anim. Res. 2020, 48, 448–453. [Google Scholar] [CrossRef]
- Hafeez, A.; Ullah, Z.; Khan, R.U.; Ullah, Q.; Naz, S. Effect of diet supplemented with essential coconut oil on performance and intestinal injury in broiler exposed to avian coccidiosis. Trop. Anim. Health Prod. 2020, 52, 2499–2504. [Google Scholar] [CrossRef]
- Hafeez, A.; Shah, S.A.A.; Khan, R.U.; Ullah, Q.; Naz, S. Effect of diet supplemented with phytogenics and protease enzyme on performance, serum biochemistry and muscle histomorphology in broilers. J. Appl. Anim. Res. 2020, 48, 326–330. [Google Scholar] [CrossRef]
- Shuaib, M.; Nasrullah; Hafeez, M.; Alhidary, I.; Abdelrahman, M.; Khan, R.U. Effect of dietary supplementation of wildCumin (Bunium persicum) seeds on performance, nutrient digestibility and circulating metabolites in broiler chicks during the finisher phase. Anim. Biotechnol. 2021, in press. [Google Scholar] [CrossRef]
- Shuaib, M.; Nasrullah; Hafeez, A.; Alhidary, I.A.; Abdelrahman, M.M.; Khan, N.U.; Khan, R.U. Dietary fortification of crushed seeds of Bonium persicum on growth performance, apparent ileal digestibility and blood metabolites in broiler chicks during the starter phase. Ital. J. Anim. Sci. 2021, 20, 1–5. [Google Scholar] [CrossRef]
- Ahmad, Z.; Hafeez, A.; Ullah, Q.; Naz, S.; Khan, R.U. Protective effect of Aloe vera on growth performance, leucocyte count and intestinal injury in broiler chicken infected with coccidiosis. J. Appl. Anim. Res. 2020, 48, 252–256. [Google Scholar] [CrossRef]
- Chand, N.; Ali, P.; Alhidary, I.A.; Abelrahman, M.M.; Albadani, H.; Khan, M.A.; Seidavi, A.; Laudadio, V.; Tufarelli, V.; Khan, R.U. Protective Effect of grape (Vitis vinifera) seed powder and zinc-glycine complex on growth traits and gut health of broilers following Eimeria tenella challenge. Antibiotics 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Israr, M.; Chand, N.; Khan, R.U.; Alhidary, I.A.; Abdelrhman, M.M.; Al-Baddani, H.H.; Laudadio, V.; Tufarelli, V. Dietary grape (Vitis vinifera) seeds powder and organic Zn-gly chelate complex for mitigating heat stress in broiler chickens: Growth parameters, malanodialdehyde, paraoxonase-1 and antibody titre. Agriculture 2021, 11, 1087. [Google Scholar] [CrossRef]
- Khan, A.; Tahir, M.; Alhidary, I.; Abdelrahman, M.; Swelum, A.A.; Khan, R.U. Role of dietary Moringa oleifera leaf extract on productive parameters, humoral immunity and lipid peroxidation in broiler chicks. Anim. Biotechnol. 2021, 1–6. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Sana, U.; Khan, R.U.; Alagawany, M.; et al. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens—Current knowledge and future prospects. Curr. Drug Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Naz, S.; Khan, R.U.; Tahir, M. An update on the potential application of L-carnitine in poultry. World’s Poult. Sci. J. 2017, 73, 823–830. [Google Scholar] [CrossRef]
- Chand, N.; Khan, R.U.; Shah, M.; Naz, S.; Tinelli, A. Zinc source modulates zootechnical characteristics, intestinal features, humoral response and paraoxonase (PON1) activity in broilers. Trop. Anim. Health Prod. 2020, 52, 511–515. [Google Scholar] [CrossRef]
- Khan, R.U.; Durrani, F.R.; Chand, N. Influence of feed supplementation with Cannabis sativa on quality of broilers carcass. Pak. Vet. J. 2010, 30, 34–38. [Google Scholar]
- Mushtaq, M.; Naz, S.; Khan, S.; Rahman, S.; Khan, R.U. In vivo effect of Berberis lyceum and Silybum marianum on production performance and immune status in broiler chicks. Arch. Tierz. 2013, 56, 911–916. [Google Scholar]
- Safiullah; Chand, N.; Khan, R.U.; Naz, S.; Ahmad, M.; Gul, S. Effect of ginger (Zingiber officinale Roscoe) and organic selenium on growth dynamics, blood melanodialdehyde and paraoxonase in broilers exposed to heat stress. J. Appl. Anim. Res. 2019, 47, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Tanweer, A.J.; Chand, N.; Saddique, U.; Bailey, C.A.; Khan, R.U. Antiparasitic effect of wild rue (Peganum harmala L.) against experimentally induced coccidiosis in broiler chicks. Parasitol. Res. 2014, 113, 2951–2960. [Google Scholar] [CrossRef]
- Tehseen, M.; Tahir, M.; Khan, R.U.; Jabbar, A.; Ahmad, B.; Ahsan, T.; Khan, S.; Abudabos, A.M. Additive effect of Nigella sativa and Zingiber officinale herbal mixture on performance and cholesterol profile in broiler. Philipp. Agric. Sci. 2016, 99, 408–413. [Google Scholar]
- Raza, T.; Chand, N.; Khan, R.U.; Shahid, M.S.; Abudabos, A.M. Improving the fatty acid profile in egg yolk through the use of hempseed (Cannabis sativa), ginger (Zingiber officinale), and turmeric (Curcuma longa) in the diet of Hy-Line White Leghorns. Arch. Anim. Breed. 2016, 68, 183–190. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. J. Appl. Anim. Res. 2018, 46, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Abudabos, A.M.; Alyemni, A.H.; Dafallah, Y.M.; Khan, R.U. The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium. Environ. Sci. Pollut. Res. 2016, 23, 24151–24157. [Google Scholar] [CrossRef]
- Wahab, F.; Chand, N.; Khan, R.U.; Ahmad, N.; Pervez, U.; Ur-Rehman, Z.; Naz, S. Dietary supplementation of Fenugreek (Trigonella foenum graecum) on the egg quality characteristics of Rhode Island Red spent layers. Pak. J. Zool. 2019, 51, 1793–1797. [Google Scholar] [CrossRef]
- Ahmad, M.; Chand, N.; Khan, R.U.; Ahmad, N.; Khattak, I.; Naz, S. Dietary supplementation of milk thistle (Silybum marianum): Growth performance, oxidative stress and immune response in natural summer stressed broilers. Trop. Anim. Health Prod. 2020, 52, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Lowel, J.F. Introduction to Moringa Family; Church World Service: Dakar, Senegal, 2001. [Google Scholar]
- Fuglie, L.J. The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics; Church World Service: Dakar, Senegal, 1999; p. 68. [Google Scholar]
- Francis, G.; Makkar, H.P.S.; Becker, K. Dietary supplementation with a Quillaja saponin mixture improves growth performance and metabolic efficiency in common carp (Cyprinus carpio L.). Aquaculture 2002, 203, 311–320. [Google Scholar] [CrossRef]
- Mbikay, M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A Review. Front. Pharmacol. 2012, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Nnam, N.M. Moringa oleifera leaf improves iron status of infants 6–12 months in Nigeria. Int. J. Food Saf. Nutr. Public Health 2009, 2, 158–164. [Google Scholar] [CrossRef]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenj, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Aja, P.M.; Ibiam, U.A.; Uraku, A.J.; Orji, O.U.; Offor, C.E.; Nwali, B.U. Comparative Proximate and Mineral Composition of Moringa oleifera Leaf and Seed. Glob. Adv. Res. J. Agric. Sci. 2013, 2, 137–141. [Google Scholar]
- Sobhy, A.E.; Gamal, M.H.; Sameh, E.M.; Mohamed, H.A.; Rashad, R.A. Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food. Glob. Adv. Res. J. Agric. Sci. 2015, 4, 188–199. [Google Scholar]
- Makkar, H.P.S.; Becker, K. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J. Agri. Sci. 1997, 128, 311–322. [Google Scholar] [CrossRef]
- Foidl, N.; Paull, R. Moringa oleifera. In The Encyclopedia of Fruit and Nuti; ABI: Oxfordshire, UK, 2008; pp. 509–512. [Google Scholar]
- Loren, L. Moringa oleifera Malnutrition Relief. Filipino Senator, Wikipedia, the Free Encyclopedia. 2007. Available online: http://taggedwiki.zubiaga.org/new_content/11c308c223310d6ff7651787102f1e8c (accessed on 3 March 2021).
- El-Tazi, S.M. Effect of feeding different levels of Moringa oleifera leaf meal on the performance and carcass quality of broiler chicks. Int. J. Sci. Res. 2014, 3, 147–151. [Google Scholar]
- Ebenebe, C.I.; Anigbogu, C.C.; Anizoba, M.A.; Ufele, A.N. Effect of various levels of Moringa leaf meal on the egg quality of ISA Brown breed of layers. J. Adv. Life Sci. Technol. 2013, 14, 45–49. [Google Scholar]
- Dey, A.; De, P.S. Influence of Moringa oleifera leaves as a functional feed additive on the growth performance, carcass characteristics and serum lipid profile of broiler chicken. Indian J. Anim. Res. 2013, 47, 449–452. [Google Scholar]
- Ahmed, W.F.; El-Rayes, T.K. Effect of using Moringa oleifera leaves on productive performance and some physiological parameters of japanese quail. Egypt. Poult. Sci. J. 2019, 39, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, W.Z.; Abd El-Samee, M.O.; El-Afifi, T.M.; Mohammed, A.R. Effect of feeding Moringa oleifera leaf meal with or without enzyme on the performance and carcass characteristics of broiler chicks. Plant Arch. 2020, 20, 3381–3388. [Google Scholar]
- Tekce, E.; Bayraktar, B.; Aksakal, V.; Dertli, E.; Kamiloğlu, A.; Çinar Topcu, K.; Kaya, H. Response of Japanese quails (Coturnix coturnix japonica) to dietary inclusion of Moringa oleifera essential oil under heat stress condition. Ital. J. Anim. Sci. 2020, 19, 514–523. [Google Scholar] [CrossRef]
- Abou-Elkhair, R.; Abdo Basha, H.; Slouma Hamouda Abd El Naby, W.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; Naiel, M.A.E. Effect of a diet supplemented with the seed powder on the performance, egg quality, and gene expression in Japanese laying quail under heat-stress. Animals 2020, 10, 809. [Google Scholar] [CrossRef]
- Egu, U.N. Effect of graded levels of Moringa oleifera leaf meal on performance and serum biochemical parameters of broiler chickens. J. Anim. Sci. Vet. Med. 2019, 4, 1–8. [Google Scholar] [CrossRef]
- Lu, W.; Wang, J.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Evaluation of Moringa oleifera leaf in laying hens: Effects on laying performance, egg quality, plasma biochemistry and organ histopathological indices. Ital. J. Anim. Sci. 2016, 15, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Zaneb, H.; Masood, S.; Yousaf, M.S.; Rehman, H.F.; Rehman, H. Effect of Moringa oleifera leaf powder supplementation on growth performance and intestinal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Ashour, E.A.; El-Kholy, M.S.; Alagawany, M.; El-Hack, A.; Mohamed, E.; Mohamed, L.A.; Tufarelli, V. Effect of dietary supplementation with Moringa oleifera leaves and/or seeds powder on production, egg characteristics, hatchability and blood chemistry of laying Japanese quails. Sustainability 2020, 12, 2463. [Google Scholar] [CrossRef] [Green Version]
- Castillo, L.R.I.; Portillo, L.J.J.; León, F.J.; Gutiérrez, D.R.; Angulo, E.M.A.; Muy-Rangel, M.D.; Heredia, J.B. Inclusion of Moringa leaf powder (Moringa oleifera) in fodder for feeding japanese quail (Coturnix coturnix japonica). Braz. J. Poult. Sci. 2018, 20, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Atuahene, C.C.; Attoh-Kotoku, V.; Fosu, K.D.; Amissah, S.E.; Sarfo, F.K.; Mensah, J.J. Preliminary study of the effect of feeding Moringa oleifera leaf meal as a feed ingredient on the growth performance of broiler chickens. In Proceedings of the 28th and 29th Ghana Animal Science Association held at the University of Education, Winneba, Mmpong Campus, 9 August 2008; University Press: Winneba, Ghana, 2010; pp. 72–75. [Google Scholar]
- Ash, A.J.; Petaia, L.; Ako, H. Nutritional value of Sesbania grandiflora leaves for monogastric and ruminants. Trop. Agric. 1992, 69, 223–228. [Google Scholar]
- Paul, T.K.; Sarker, Y.A.; Tarafder, M.; Rimon, M.A.; Haque, M.A.; Sikder, M.H. Water supplementation of Moringa oleifera as a substitute for antibiotics on performance and blood parameters of broiler chickens. J. Bangladesh Agric. Univ. 2018, 16, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Alabi, O.J.; Malik, A.D.; Ng’ambi, J.W.; Obaje, P.; Ojo, B.K. Effect of aqueous Moringa oleifera (Lam) leaf extracts on growth performance and carcass characteristics of Hubbard broiler chicken. Braz. J. Poult. Sci. 2017, 19, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Riry, F.H.; Elkloub, K.; Moustafa, M.E.L.; Mousa, M.A.M.; Youssef, S.F.; Hanan, A.H. Effect of using Moringa oleifera seed meal on Japanese quail performance during growing period. In Proceedings of the 9th International Poultry Conference, Hurghada, Egypt, 7–10 November 2016; pp. 322–337. [Google Scholar]
- Elkloub, K.; Moustafa, M.E.L.; Riry, F.H.; Mousa, M.A.M.; Hanan, A.H.; Youssef, S.F. Effect of using Moringa oleifera leaf meal on performance of Japanese quail. Egypt. Poult. Sci. J. 2015, 35, 1095–1108. [Google Scholar]
- Hassan, H.M.A.; El-Moniary, M.M.; Hamouda, Y.; El-Daly, E.F.; Youssef, A.W.; Abd El-Azeem, N.A. Effect of different levels of Moringa oleifera leaves meal on productive performance, carcass characteristics and some blood parameters of broiler chicks reared under heat stress conditions. Asian J. Anim. Vet. Adv. 2016, 11, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Wahab, O.A.A.; Sobhy, H.M.; Badr, A.M.; Ghazalah, A.A. Effect of Moringa oleifera seeds powder on performance and immunity of broiler chicks. AIMS Agric. Food 2020, 5, 896–910. [Google Scholar] [CrossRef]
- Arif, M.; Hayat, Z.; Abd El-Hack, M.E.; Saeed, M.; Imran, H.M.; Alowaimer, A.N.; Swelum, A.A. Impacts of supplementing broiler diets with a powder mixture of black cumin, Moringa and chicory seeds. S. Afr. J. Anim. Sci. 2019, 49, 564–572. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, K.; Kumar, A.; Kumar, S.; Singh, P.K.; Sinha, R.R.K.; Moni, C. Nutritional and physiological responses of broiler chicken to the dietary supplementation of Moringa oleifera aqueous leaf extract and ascorbic acid in tropics. Trop. Anim. Health Prod. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- Hafsa, S.H.; Ibrahim, S.A.; Eid, Y.Z.; Hassan, A.A. Effect of dietary Moringa oleifera leaves on the performance, ileal microbiota and antioxidative status of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2020, 104, 529–538. [Google Scholar] [CrossRef]
- Talukdar, A.; Kalita, K.P.; Saikia, R.; Choudhury, D. Effect of using Moringa oleifera leaf meal on quality and sensory parameters of Japanese quail eggs. Pharma Innov. J. 2020, 9, 219–221. [Google Scholar]
- Kulkarni, R.C.; Durge, S.M. Dietary Inclusion of Moringa oleifera Leaf Meal Improved Production Performance and Reduced Cost of Production in Japanese Quail. J. Poult. Sci. 2019, 7, 66–70. [Google Scholar]
- Kwariet, I.; Diarra, S.; Raji, A.; Adamu, S. Egg production and egg quality of laying hens fed raw or processed sorrel (Hibiscus sabdariffa) seed meal. Agric. Biol. J. N. Am. 2011, 2, 616–621. [Google Scholar] [CrossRef]
- Kakengi, A.M.V.; Kaijage, J.; Sarwatt, S.; Mutayoba, S.K.; Shem, M.N.; Fujihara, T. Effect of Moringa oleifera leaf meal as a substitute for sunflower seed meal on performance of laying hens in Tanzania. Bone 2007, 19, 446. [Google Scholar]
- Zanu, H.K.; Asiedu, P.; Tampuori, M.; Abada, M.; Asante, I. Possibilities of using Moringa (Moringa oleifera) leaf meal as a partial substitute for fishmeal in broiler chickens diets. Online J. Anim. Feed Res. 2012, 2, 70–75. [Google Scholar]
- Kakengi, A.M.V.; Shen, M.N.; Sarwart, S.V.; Fujihara, T. Can Moringa oleifera be used as protein supplement to ruminant diet. Asian-Aust. J. Anim. Sci. 2003, 18, 42–47. [Google Scholar] [CrossRef]
- Olugbemi, T.S.; Mutayoba, S.K.; Lekule, F.P. Effect of Moringa (Moringa oleifera) inclusion in cassava based diets fed to broiler chickens. Int. J. Poult. Sci. 2010, 9, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Banjo, O.S. Growth and performance as affected by inclusion of Moringa oleifera leaf meal in broiler chicks diet. J. Biol. Agric. Healthc. 2012, 2, 35–38. [Google Scholar]
- Kilany, O.E.; Youssef, F.; Mabrouk, M.; Fares, I.M. Clinicopathological studies on the effect of some antibacterial medicinal plants in broilers. J. Clin. Pathol. Forecast. 2018, 1, 1003. [Google Scholar]
- Du, P.L.; Lin, P.H.; Yang, R.Y.; Fan, Y.K.; Hsu, J.C. Effects of dietary supplementation of Moringa oleifera on growth performance, blood characteristics and immune response in broilers. J. Chin. Soc. Anim. Sci. 2007, 36, 135–146. [Google Scholar]
- Mousa, M.A.; Osman, A.S.; Hady, H.A. Performance, immunology and biochemical parameters of Moringa oleifera and/or Cichorium intybus addition to broiler chicken ration. J. Vet. Med. Anim. Health 2017, 9, 255–263. [Google Scholar]
- Melesse, A.; Tiruneh, W.; Negesse, T. Effects of feeding Moringa stenopetala leaf meal on nutrient intake and growth performance of Rhode Island Red chicks under tropical climate. Trop. Subtrop. Agroecosystems 2011, 14, 485–492. [Google Scholar]
- Tesfaye, E.; Animut, G.; Urge, M.; Dessie, T. Moringa olifera leaf meal as an alternative protein feed ingredient in broiler ration. Int. J. Poult. Sci. 2013, 12, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Onunkwo, D.N.; George, O.S. Effects of Moringa oleifera leaf meal on the growth performance and carcass characteristics of broiler birds. J. Agric. Vet. Sci. 2015, 8, 63–66. [Google Scholar]
- Mohammed, K.A.E.F.; Sarmiento-Franco, L.; Santos-Ricalde, R.; Solorio-Sanchez, J.F. The nutritional effect of Moringa oleifera fresh leaves as feed supplement on Rhode Island Red hen egg production and quality. Trop. Anim. Health Prod. 2012, 44, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Donsbough, A.L.; Powell, S.; Waguespack, A.; Bidner, T.D.; Southern, L.L. Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poult Sci. 2010, 89, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Siti, N.W.; Bidura, I.G.N.G.; Mayuni, S.N.; Utami, I.A. Effect of Moringa oleifera leaf powder in diets on feed digestibility and external egg quality characteristics in laying hens. J. Biol. Chem. Res. 2019, 36, 80–87. [Google Scholar]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elezz, F.M.K.; Sarmiento-Franco, L.; Santos-Ricalde, R.; Solorio-Sanchez, F. Nutritional effects of dietary inclusion of Leucaena leucocephala and Moringa oleifera leaf meal on Rhode Island Red hens’ performance. Cuban J. Agric. Sci. 2011, 45, 163–169. [Google Scholar]
- Balami, A.G.; Abdu, P.A.; Wakawa, A.M.; Aluwong, T.; Oladele, S.B.; Enam, S.J. Humoral immune response of broilers fed with Moringa oleifera supplemented feed and vaccinated with an inactivated infectious bursal disease vaccine. Afr. J. Biomed. Res. 2018, 21, 57–60. [Google Scholar]
- Rao, S.R.; Raju, M.V.L.N.; Prakash, B.; Rajkumar, U.; Reddy, E.P.K. Effect of supplementing Moringa (Moringa oleifera) leaf meal and pomegranate (Punica granatum) peel meal on performance, carcass attributes, immune and antioxidant responses in broiler chickens. Anim. Prod. Sci. 2019, 59, 288–294. [Google Scholar]
- Karthivashan, G.; Arulselvan, P.; Alimon, A.; Safinar Ismail, I.; Fakurazi, S. Competing role of bioactive constituents in Moringa oleifera extract and conventional nutrition feed on the performance of Cobb 500 broilers. BioMed Res. Int. 2015, 2015, 970398. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.M.; Wang, J.; Lu, W.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult. Sci. 2018, 97, 2836–2844. [Google Scholar] [CrossRef]
- Ratshilivha, N.; Awouafack, M.D.; Du Toit, E.S.; Eloff, J.N. The variation in antimicrobial and antioxidant activities of acetone leaf extracts of 12 Moringa oleifera (Moringaceae) trees enables the selection of trees with additional uses. S. Afr. J. Bot. 2014, 92, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Bijal, A.; Bhumika, D. Antibacterial Activity and Phytochemical Screening of Different Parts of Moringa oleifera Against Selected Gram Positive and Gram Negative Bacteria. J. Pharm. Chem. Biol. Sci. 2015, 3, 421–425. [Google Scholar]
- Jaiswal, D.; Rai, P.K.; Kumar, A.; Mehta, S.; Watal, G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol. 2009, 123, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Mohan, J.S.S. Antimicrobial activity and phytochemical analysis of Moringa oleifera Lam. crude extracts against selected bacterial and fungal strains. Int. J. Pharmacogn. Phytochem. Res. 2018, 10, 68–79. [Google Scholar]
- Desta, G.; Yalemtsehay, M.; Girmai, G.; Wondwossen, E.; Kahsay, H. The effects of Moringa stenopetala on blood parameters and histopathology of liver and kidney in mice. Ethiop. J. Health 2011, 25, 51–57. [Google Scholar]
- Mariana, R.-A.; Cecilia, J.-P.; Carlos, J.-W.; Jesús, R.-G.; Alejandro, Á.-E.; David, S.-C. Inclusion of the Moringa oleifera leaf on immunological constants in broiler chickens. Abanico Vet. 2018, 8, 68–74. [Google Scholar]
- Mohamed, A.N.; Ahmed, G.A.; Dina, M.B. Antiviral Potential of Leaf Extracts from Moringa oleifera and Rosemary (Rosmarinus officinalis Lam.). Egypt. J. Microbiol. 2017, 52, 129–139. [Google Scholar]
- Aondo, T.O.; Odiaka, N.I.; Akesa, T.M.; Olaleye, O.O. Phytochemical and antifungal efficacy of different parts of Moringa oleifera plant extracts. Asian J. Biotechnol. Bioresour. Technol. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Fadunsin, S.D.; Ademola, I.O. Direct effects of Moringa oleifera Lam (Moringaceae) acetone leaf extract on broiler chickens naturally infected with Eimeria species. Trop. Anim. Health Prod. 2013, 45, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Banna, H.A.; Atef, M.; Nabil, G. Anti-coccidial activity of Moringa oleifera plant. Anim. Vet. Sci. 2016, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Gadelhaq, S.M.; Arafa, W.M.; Abolhadid, S.M. In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens. Vet. Parasitol. 2018, 251, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Rehman, A.; Yousaf, M.; Akhtar, P.; Hayat, G.A.K.; Shahzad, M.K. Comparative efficacy of different herbal plant’s leaf extract on haematology, intestinal histomorphology and nutrient digestibility in broilers. Adv. Zool. Bot 2015, 3, 11–16. [Google Scholar] [CrossRef]
- Ajantha, A.; Kathirvelan, C.; Purushothaman, M.R.; Visha, P. Effect of Moringa oleifera leaf meal supplementation in broiler chicken on serum and muscle lipid profile. J. Pharmacogn. Phytochem. 2020, 9, 464–466. [Google Scholar]
- Sreelatha, S.; Padma, P.R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Human Nutr. 2009, 64, 303–311. [Google Scholar] [CrossRef]
- Chumark, P.; Khunawat, P.; Sanvarinda, Y.; Phornchirasilp, S.; Morales, P.N.; Phivthong-ngam, L.; Ratanachamnong, P.; Srisawat, S.; Pongrapeeporn, K.S. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of the water extract of Moringa oleifera Lam. leaves. J. Ethnopharmacol. 2008, 116, 439–446. [Google Scholar] [CrossRef]
- Stohs, S.J.; Hartman, M.J. Review of the safety and efficacy of Moringa oleifera. Phytother. Res. 2015, 29, 796–804. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Boguhn, J.; Rodehutscord, M. In vitro fermentation characteristics and effective utilisable crude protein in leaves and green pods of Moringa stenopetala and Moringa oleifera cultivated at low and mid-altitudes. J. Anim. Physiol. Anim. Nutr. 2013, 97, 537–546. [Google Scholar] [CrossRef]
- Alabi, O.J.; Ng’ambi, J.W.; Mbajiorgu, E.F. Aqueous extract of Moringa (Moringa oleifera) leaf (aemol) on the growth, sensory and histology parameters of broiler chickens. Appl. Ecol. Environ. Res. 2020, 18, 6753–6764. [Google Scholar] [CrossRef]
- Ghazalah, A.A.; Ali, A.M. Rosemary leaves as a dietary supplement for growth in broiler chickens. Int. J. Poult. Sci. 2008, 7, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, E.M.B.; Carvalho, M.R.B.; Neves, V.A.; Silva, M.A.; Arantes-Pereira, L. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. Leaves. Food Chem. 2014, 147, 51–54. [Google Scholar] [CrossRef]
- Nouman, W.; Basra, S.M.A.; Siddiqui, M.T.; Yasmeen, A.; Gull, T.; Alcayde, M.A.C. Potential of Moringa oleifera L. as livestock fodder crop: A review. Turk. J. Agric. Forest. 2014, 38, 1–14. [Google Scholar] [CrossRef]
- Briones, J.; Leung, A.; Bautista, N.; Golin, S.; Caliwag, N.; Carlos, M.A.; Guevarra, J.; Miranda, J.; Guevarra, J.K.; Pili, N.L.; et al. Utilization of Moringa oleifera Lam. in Animal Production. Acta Hortic. 2015, 1158, 467–474. [Google Scholar] [CrossRef]
- Onu, P.N.; Aniebo, A.O. Influence of Moringa oleifera leaf meal on the performance and blood chemistry of starter broilers. Inter. J. Food Agric. Vet. Sci. 2011, 1, 38–44. [Google Scholar]
- Akhouri, S.; Prasad, A.; Ganguly, S. Moringa oleifera Leaf Extract Imposes Better Feed Utilization in Broiler Chicks. J. Biol. Chem. Res. 2013, 30, 447–450. [Google Scholar]
- Abdulla, M.A.; Ahmed, K.A.; AL-Bayaty, F.H.; Masood, Y. Gastroprotective effect of Phyllanthus niruri leaf extract against ethanol-induced gastric mucosal injury in rats. Afr. J. Pharm. Pharacol. 2010, 4, 226–230. [Google Scholar]
- Ambali, A.G.; Furo, N.A. An Investigation into the Phytochemical Constituents of Moringa oleifera Aqueous Root Extracts. Ph.D. Thesis, University of Maiduguri, Maiduguri, Nigeria, 2012. [Google Scholar]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, S.; Morgan, K.; Soltani, M.; Gough, R. Sensory evaluation of locally-grown fruit purees and inulin fibre on probiotic yogurt in mwanza, Tanzania and the microbial analysis of probiotic yogurt fortified with Moringa oleifera. J. Health Popul. Nutr. 2015, 33, 60. [Google Scholar]
- Qwele, K.; Hugo, A.; Moyo, S.O.O.B.; Masika, P.J.; Muchenje, V. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Sci. 2013, 93, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Shetty, N.P.; Prakash, M.; Giridhar, P. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J. Food Sci. Technol. 2014, 51, 2176–2182. [Google Scholar] [CrossRef] [Green Version]
- Miliauskasa, G.; Venskutonisa, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Rahman, H.; Qureshi, M.S.; Khan, R.U. Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of Beetal bucks. Reprod. Domest. Anim. 2014, 48, 1004–1007. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.; Obaid, H.; Khan, S.; Rehman, I.U.; Shah, M.K.; Khan, R.U. Nutritional effect of flaxseeds on cholesterol profile and fatty acids composition in egg yolk. J. Cereal Chem. 2015, 92, 50–52. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, R.U.; Tufarelli, V.; Laudadio, V. Selenium: An essential micronutrient for sustainable dairy cows production. Sustainability 2020, 12, 10693. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Dhama, K.; Saminathan, M.; Tiwari, R.; Jeon, G.J.; Laudadio, V.; Tufarelli, V. Modes of action of and beneficial applications of chromium in poultry nutrition, production and health: A review. Int. J. Pharmacol. 2014, 10, 357–363. [Google Scholar] [CrossRef]
- Khan, R.U. Antioxidants and poultry semen quality. World’s Poult. Sci. J. 2011, 67, 297–308. [Google Scholar] [CrossRef]
- Kasetti, R.B.; Nabi, S.A.; Swapna, S.; Apparao, C. Cinnamic acid as one of the antidiabetic active principle(s) from the seeds of Syzygium alternifolium. Food Chem. Toxicol. 2012, 50, 1425–1431. [Google Scholar] [CrossRef]
- Jung, S.; Choe, J.H.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, B. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.N.; Mellon, F.A.; Foidl, N.; Pratt, J.H.; Dupont, M.S.; Perkins, L.; Kroon, P.A. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradishtree) and Moringa stenopetala L. J. Agric. Food Chem. 2003, 51, 3546–3553. [Google Scholar] [CrossRef]
- Cheenpracha, S.; Park, E.J.; Yoshida, W.Y.; Barit, C.; Wall, M. Potential antiinflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorganic Med. Chem. 2010, 18, 6598–6602. [Google Scholar] [CrossRef]
- Charoensin, S.; Wongpoomchai, R. Effect of aqueous extract of Moringa oleifera leaves on quinone reductase activity. Naresuan Phayao J. 2012, 5, 101–109. [Google Scholar]
- Luqman, S.; Srivastava, S.; Kumar, R.; Maurya, A.K.; Chanda, D. Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. Evid. Based Complement. Alternat. Med. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.F.; Argolo, A.C.; Paiva, P.M.; Coelho, L.C. Antioxidant activity of Moringa oleifera tissue extracts. Phytother. Res. 2012, 26, 1366–1370. [Google Scholar] [CrossRef] [Green Version]
- Teye, G.A.; Baffoe, F.; Teye, M. Effects of Moringa (Moringa oleifera) Leaf Powder and Dawadawa (Parkia biglobosa), on Sensory Characteristics and Nutritional Quality of Frankfurter-Type Sausages–A Preliminary Study. Glob. Adv. Res. J. Agric. Sci. 2013, 2, 29–33. [Google Scholar]
- Kamanyi, A.; Njamen, D.; Nkeh, B. Hypoglycaemic properties of the aqueous extract of Morinda lucida (Benth)(Rubiaceae). Studies in the mouse. Phytother. Res. 1994, 8, 369–371. [Google Scholar] [CrossRef]
- Dzotam, J.K.; Touani, F.K.; Kuete, V. Antibacterial and antibiotic-modifying activities of three food plants (Xanthosoma mafaffa Lam.; Moringa oleifera (L.) Schott and Passiflora edulis Sims) against multidrug-resistant (MDR) Gram-negative bacteria. BMC Complementary Altern. Med. 2015, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bichi, M.H.; Shehu, U.H. Antimicrobial properties of Moringa oleifera seed oil. Int. J. Res. Earth Environ. Sci. 2018, 13, 1–5. [Google Scholar]
- Allam, H.; Abdelazem, A.M.; Farag, H.S.; Hamed, A. Some hemato-biochemical, bacteriological and pathological effects of Moringa oleifera leaf extract in broilerchicken. Int. J. Basic Appl. Sci. 2016, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, R.; Shahid, M.; Ashraf, M. Microscopic evaluation of the antimicrobial activity of seed extracts of Moringa oleifera. Pak J. Bot. 2008, 40, 1349–1358. [Google Scholar]
- Anwar, F.; Ashraf, M.; Bhanger, M.I. Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J. Am. Oil Chem. Soc. 2005, 82, 45–51. [Google Scholar] [CrossRef]
- Hefni, M. Imunomodulator Activity of Aqueous Extract of Moringa oleifera Lam on Immunity Response of mice (Mus Musculus) Which Infected with Salmonella Typhi. Master’s Thesis, University of Brawijaya, Malang, Indonesia, 2013. [Google Scholar]
- Abousekken, M.S.M. Performance, immune response and carcass quality of broilers fed low protein diets contained either Moringa oleifera leaves meal or its extract. J. Am. Sci. 2015, 11, 153–164. [Google Scholar]
- Katanbaf, M.N.; Dunnington, E.A.; Siegel, P.B. Restricted feeding in early and late- feathering chickens. Growth and physiologyical responses. Poult. Sci. 1989, 2, 188–191. [Google Scholar]
- Lannaon, W.J. Herbal plants as source of antibiotics for broilers. Agric. Mag. 2007, 11, 55. [Google Scholar]
- Eilert, U.; Wolters, B.; Nahrsted, A. The antibiotic principle of Moringa oleifera and Moringa stenopetala. Planta Med. 1981, 42, 55–61. [Google Scholar] [CrossRef]
- Walter, A.; Samuel, W.; Peter, A.; Joseph, O. Antibacterial activity of Moringa oleifera and Moringa stenopetala methanol and n-hexane seed extracts on bacteria implicated in water borne diseases. Afr. J. Microbiol. Res. 2011, 5, 153–157. [Google Scholar]
- Allen, P.C.; Fetter, R.H. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin. Microbiol. Rev. 2002, 15, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Proximate Analysis | % | Essential Amino Acids | mg/100 g | Non-Essential Amino Acids | mg/100 g | Vitamins | mg/100 g |
---|---|---|---|---|---|---|---|
Carbohydrates | 23.6 | Leucine | 94.36 | Glutamic Acid | 18.03 | Vitamin A (β-Carotene) | 16.3 |
Crude fiber | 35.0 | Lysine | 69.13 | Aspartic Acid | 13.76 | Vitamin B1 (Thiamine) | 2.64 |
Moisture | 10.0 | Valine | 62.34 | Arginine | 7.65 | Vitamin B2 (Riboflavin) | 20.5 |
Ash | 10.0 | Threonine | 48.35 | Alanine | 4.93 | Vitamin B3 (Nicotinic acid) | 8.2 |
Crude protein | 30.29 | Isoleucine | 46.98 | Serine | 3.13 | Vitamin C (Ascorbic acid) | 17.3 |
Crude fat | 6.50 | Histidine | 29.56 | Glycine | 2.31 | Vitamin E (Tocopherol acetate) | 113 |
Macrominerals | Composition (%) | Fatty Acids | Composition (%) | ||||
Calcium | 3.65 | Capric (C10) | 0.07 | ||||
Potassium | 1.50 | Lauric (C12) | 0.58 | ||||
Sulphur | 0.63 | Myristic (C14) | 3.66 | ||||
Magnesium | 0.50 | Palmitic (C16) | 11.76 | ||||
Phosphorus | 0.30 | Margaric (C17) | 3.19 | ||||
Sodium | 0.164 | Stearic (C18) | 2.13 | ||||
Arachidic (C20) | 1.61 | ||||||
Microminerals (mg/kg) | Heneicosylic (C21) | 14.41 | |||||
Zinc | 31.03 | Behenic (C22) | 1.24 | ||||
Copper | 8.25 | Tricossylic (C23) | 0.66 | ||||
Manganese | 86.8 | Lignoceric (C24) | 2.91 | ||||
Iron | 490 | ||||||
Selenium | 363 | ||||||
Boron | 49.93 |
Parameter | Dose | Source | Effect | Reference |
---|---|---|---|---|
Feed intake | 5% | MOLM | Increased | El-Tazi et al. [61] |
10% | MOLM | Increased | Ebenebe et al. [62] | |
0.25 and 0.40% | MOL | Increased | Avijit Dey and Partha Sarathi De [63] | |
3, 5 and 7 g/kg diet | MOLM | Increased | Ahmed and El-Rayes [64] | |
2.5 and 5% | MOLM | Increased | Mikhail et al. [65] | |
200 and 400 ppm | MOEO | Increased | Tekce et al. [66] | |
0.3% | MOLP | Increased | Abou-Elkhair et al. [67] | |
8.0% | MOLM | Improved | Egu [68] | |
60–120 mL/L | MOLE | No effect | Khan et al. [35] | |
5, 10 or 15% | MOL | No effect | Lu et al. [69] | |
1.2% | MOLP | No effect | Khan et al. [70] | |
1 g/kg | MOL and MOS and their combination | No effect | Ashour et al. [71] | |
7, 14 and 21% | M. oleifera leaf flour | No effect | Castillo et al. [72] | |
2.5, 5 and 7.5% | MOLM | No effect | Atuahene et al. [73] | |
5–10% | MOLM | Decreased | Ash et al. [74] | |
1% | MOLE | Decreased | Paul et al. [75] | |
90 mL | MOLE | Decreased | Alabi et al. [76] | |
5% | MOS | Decreased | Riry et al. [77] | |
0.2% | MOLM | Decreased | Elkloub et al. [78] | |
15% | MOLM | Decreased | Hassan et al. [79] | |
0.75% | MOSP | Decreased | Wahab et al. [80] | |
0.4 to 0.6% | Phytogenic feed mixture contained equal ratios of black cumin, M. oleifera and chicory seeds | Decreased | Arif et al. [81] | |
90 mL/L | MOLE | Decreased | Kumar et al. [82] | |
5% | MOL | Improved | Hafsa et al. [83] | |
Feed efficiency | 750 g/100 kg | MOLM | Improved | Atuahene et al. [73] |
90 mL | MOLE | Improved | Alabi et al. [76] | |
1% | MOLE | Improved | Paul et al. [75] | |
5% | MOLM | Improved | El-Tazi et al. [61] | |
5, 10 or 15% | MOL | Improved | Lu et al. [69] | |
0.2% | MOLM | Improved | Elkloub et al. [78] | |
0.25 to 0.50% | MOLM | Improved | Talukdar et al. [84] | |
0.1% | MOLM | Improved | Kulkarni et al. [85] | |
3, 5 and 7 g/kg diet | MOL | Improved | Ahmed and El-Rayes [64] | |
7, 14 and 21% | M. oleifera leaf flour | Improved | Castillo et al. [72] | |
2.5 and 5% | MOLM | Improved | Mikhail et al. [65] | |
200 and 400 ppm | dietary MOEO | Improved | Tekce et al. [66] | |
0.3% | M. oleifera seed powder | Improved | Abou-Elkhair et al. [67] | |
8.00% | MOLM | Improved | Egu [68] | |
0.75% | MOSP | Improved | Wahab et al. [80] | |
0.4 to 0.6% | Phytogenic feed mixture contained equal ratios of black cumin, Moringa oleifera and chicory seeds | Improved | Arif et al. [81] | |
90 mL/L | MOLE | Improved | Kumar et al. [82] | |
5% | MOL | Improved | Hafsa et al. [83] | |
60–120 mL/L | MOLE | No effect | Khan et al. [35] | |
1 g/kg | MOL and MOS and their combination | No effect | Ashour et al. [71] | |
1.2% | MOLP | No effect | Khan et al. [70] | |
1–2% | MOLM | No effect | Kwariet et al. [86] | |
15% | MOL | No effect | Kakengi et al. [87] | |
5, 10 and 15% | MOLM | Decreased | Zanu et al. [88] | |
Body weight | 5% | MOLM | Increased | El-Tazi et al. [61] |
1% | MOLM | Increased | Kakengi et al. [89] | |
1% | MOLM | Increased | Olugbemi et al. [90] | |
1% | MOLM | Increased | Banjo [91] | |
10% | MOLM | Increased | Ebenebe et al. [62] | |
1.2% | MOLP | Increased | Khan et al. [70] | |
0.25 and 0.40% | MOL | Increased | Avijit Dey and Partha Sarathi De [63] | |
0.2% | MOLM | Increased | Elkloub et al. [78] | |
0.25 to 0.50% | MOLM | Increased | Talukdar et al. [84] | |
0.1% | MOLM | Increased | Kulkarni et al. [85] | |
3, 5 and 7 g/kg diet | MOLM | Increased | Ahmed and El- Rayes [64] | |
2.5 and 5% | MOLM | Improved | Mikhail et al. [65] | |
8.00% | MOLM | Improved | Egu [68] | |
0.75% | MOSP | Improved | Wahab et al. [80] | |
0.4 to 0.6% | Phytogenic feed mixture contained equal ratios of black cumin, M. oleifera and chicory seeds | Improved | Arif et al. [81] | |
90 mL/L | MOLE | Improved | Kumar et al. [82] | |
5% | MOL | Improved | Hafsa et al. [83] | |
60–120 mL/L | MOLE | No effect | Khan et al. [35] | |
5, 10 or 15% | MOL | No effect | Lu et al. [69] | |
5% | MOL | No effect | Kilany et al. [92] | |
5, 10 and 15% | MOLM | Decreased | Zanu et al. [88] | |
5 and 10% | MOLM | Decreased | Olugbemi et al. [90] | |
90 mL | MOLE | Decreased | Alabi et al. [76] | |
7, 14, and 21% | M. oleifera (MOR) leaf flour | Decreased | Castillo et al. [72] | |
Overall growth performance | 200 and 400 ppm | dietary MOEO | Improved | Tekce et al. [66] |
15% | MOLM | Improved | Hassan et al. [79] | |
2.5 and 5% | MOLM | Improved | Mikhail et al. [65] | |
8.00% | MOLM | Improved | Egu [68] | |
0.75% | MOSP (Moringa oleifera seed powder) | Improved | Wahab et al. [80] | |
0.4 to 0.6% | Phytogenic feed mixture (BMC) contained equal ratios of black cumin, Moringa oleifera and chicory seeds | Improved | Arif et al. [81] | |
90 mL/L | MOLE | Improved | Kumar et al. [82] | |
5% | MOL | Improved | Hafsa et al. [83] | |
0.5, 1.0, 2.0 and 3.0% | MOLM | No effect | Du et al. [93] | |
5, 10 or 15% | MOL | No effect | Lu et al. [69] | |
5–10% | MOLM | Decreased | Ash et al. [71] | |
10, 15, 20 and 25% | MOSM | Decreased | Hassan et al. [79] | |
Carcass traits: dressing pertentage | 60–120 mL/L | MOLE | Improved | Khan et al. [35] |
1.5% | M. oleifera dietary supplementation | Improved | Mousa et al. [94] | |
5% | MOLM | Improved | El-Tazi et al. [61] | |
2, 4 and 6% | Moringa | Improved | Melesse et al. [95] | |
3, 5 and 7 g/kg | MOLM | Improved | Ahmed and El-Rayes [64] | |
5% | MOLM | Improved | Mikhail et al. [65] | |
1% | MOL | Improved | Hafsa et al. [83] | |
5, 10, 15% | MOLM | No effect | Zanu et al. [88] | |
7, 14, and 21% | MOLP | No effect | Castillo et al. [72] | |
5–20% | MOL | Decreased | Tesfaye et al. [96] | |
5, 7.5 and 10% | MOLM | Decreased | Onunkwo and George [97] | |
Egg production and quality | 1 g/kg | MOL and MOS and their combination | Improved | Ashour et al. [71] |
300 g | MOL | Improved | Mohammed et al. [98] | |
15% | MOL | Improved | Ebenebe et al. [62] | |
5% | MOL | Improved | Donsbough et al. [99] | |
1% | MOLM | improved | Yadav et al. [100] | |
4–6% | MOP | improved | Siti et al. [101] | |
0.3% | MOP | improved | Abou-Elkhair et al. [67] | |
1–2% | MOLM | No effect | Kwariet et al. [86] | |
20% | MOLM | No effect | Abdelnour et al. [102] | |
1% | MOLM | No effect except yolk color improved | Talukdar et al. [84] | |
15% | MOL | Decreased | Lu et al. [69] | |
20% | MOLM | Decreased | Olugbemi et al. [90] | |
15% | MOL | Decreased | Abou-Elezz et al. [103] | |
Antioxidant effects (MDA concentration) | 5% | MOL | Decreased MDA level | Balami et al. [104] |
500 and 1000 mg/kg | MOL | Decreased MDA level | Rao et al. [105] | |
0.5%, 1.0%, and 1.5% | MOLM | Decreased MDA level | Karthivashan et al. [106] | |
1, 2, 5, 10, and 15% | MOL | Decreased MDA level | Cui et al. [107] | |
(1 g) | MOLP | Decreased MDA level | Ratshilivha et al. [108] | |
60–120 mL/L | MOLE | Decreased MDA level | Khan et al. [35] | |
0.4 & 0.6% | MOLM | Decreased MDA level | Elkloub et al. [78] | |
90 mL/L | MOLE | Decreased MDA level | Kumar et al. [82] | |
5% | MOL | Lowest TBARS level in the blood serum of broilers | Hafsa et al. [83] | |
5% | MOL | No effect | Kilany et al. [92] | |
15% | MOL | Increased MDA level | Lu et al. [69] | |
Antibacterial activity | 10 gm of collected powdered form of leaves, flower, seed and pulp | Extracts of MOLE | Active against E. coli and S. aureus | Bijal and Bhumika [109] |
Powder (200 g) was extracted with methanol | MOLE methanolic extracts | Effective against Gram-negative bacterial strains | Dzotam et al. [110] | |
Powder (200 g) | Extracts of MOLE | Effective against different bacterial strains | Patel and Mohan [111] | |
Powder (200 g) | M. oleifera seeds oil | Effective against E. coli | Bichi and Shehu [112] | |
14% | MOLP | Effective against both Gram-positive and Gram-negative bacteria | Castillo et al. [72] | |
0.5, 1 and 5% | MOL | Decreased ileal counts of E. coli, Salmonella and Staphylococcus. spp. while total ileal Lactobacillus spp. count increased | Hafsa et al. [83] | |
Antiviral activity | 10 and 20% | M. oleifera supplementation | Improved | Mariana et al. [113] |
200 µg/mL | MOLE | Effective against herpes simplex virus type 1 and 2 | Mohamed et al. [114] | |
Antibody response against NDV | 60–120 mL/L | MOLE | Improved | Khan et al. [35] |
500 and 1000 mg/kg | MOL | Improved | Rao et al. [105] | |
1.5% | M. oleifera supplementation | Improved | Mousa et al. [94] | |
15% | MOLM | Improved | Hassan et al. [79] | |
0.75% | MOLP | Improved | Wahab et al. [80] | |
90 mL/L | MOLE | Improved | Kumar et al. [82] | |
5% | MOL | No effect | Kilany et al. [92] | |
10, 15, 20 and 25% | MOSM | Decreased | Hassan et al. [79] | |
Antibody response against IBV | 60–120 mL/L | MOLE | Improved | Khan et al. [35] |
Antibody response against IB | 200 µg/mL | MOLE | Effective against herpes simplex virus type 1 and 2 | Mohamed et al. [114] |
Antifungal activity | 100 g/L ethanolic solvents | Extract of M. oleifera (Bark seed and Leaf) Crude extracts | Effective against mycelia growth of Aspergillus flavus | Aondo et al. [115] |
n- Hexane, ethyl acetate, methanol and distilled water Leaf, stem, flower and fruit extracts of M. oleifera | Effective against Aspergillus niger, Aspergillus paracitic, Candida Albicans, Aspergillus flavus, Trichoderma harzanium, Alternata burnsi, Fusarium oxysporum | Patel and Mohan [111] | ||
Anticoccidial activity | 1.0, 2.0, 3.0, 4.0 and 5.0 g/kg body weigh | Acetone extract MOLE | Inhibitory effect on oocyst shed in the faeces | Fadunsin and Ademola [116] |
0.5 and 1% | Moringa olifera powder | Effective against coccidial activity | Banna et al. [117] | |
10% ethanolic extract | MOLP | Not Effective to inhibit or disrupt sporulation of Eimeria species oocysts of the chickens | Gadelhaq et al. [118] | |
Blood biochemistry | 5, 10 and 15% | MOLM | Significant effect on Triglycerides, LDL, VLDL and plasma glucose concentration | Zanu et al. [88] |
Non-significant on blood parameter and Mean Corpuscular Hemoglobin (MCH) & plasma protein | ||||
10, 15, 20 and 25% | MOSM | Increased plasma protein | Hassan et al. [79] | |
5–20% | MOLE | Increased plasma protein | Tesfaye et al. [96] | |
60–120 mL/L | MOLE | Increased serum protein concentration | Khan et al. [35] | |
Decreased serum glucose concentration | ||||
10, 30 and 50 mL/L | MOL | Decreased plasma glucose concentration | Mahmood et al. [119] | |
0.5, 1.0, 2.0 and 3.0% | MOLM | Significant effect on Mean Corpuscular Hemoglobin (MCH) | Du et al. [93] | |
0.25% and 0.40% | MOL | Decreased triglyceride, LDL-cholesterol, plasma total cholesterol | Avijit Dey and Partha Sarathi De [63] | |
Increased HDL-cholesterol | ||||
15% | MOL | Higher AST activities | Donsbough et al. [99] | |
Wer ALB and UA levels | ||||
5, 10 or 15% | MOL | Decreased albumen (ALB) and urea (UA) | Lu et al. [69] | |
1 g/kg | MOLE and MOLP | Decreased blood aspartate transaminase (AST) and urea, triglycerides and total cholesterol | Ashour et al. [71] | |
No significant effect on alanine aminotransferase (ALT), albumin, total protein, globulin | ||||
0.2, 0.4 and 0.6% | MOLM | Increased HDL, total protein and globulin | Elkloub et al. [78] | |
Decreased plasma ALT & AST, plasma cholesterol & LDL. | ||||
8% | MOLM | Decreased glucose and cholesterol levels | Egu [68] | |
0.75% | MOSP | Decreased total cholesterol and LDL | Wahab et al. [80] | |
0.4 to 0.6% | Phytogenic feed mixture contained equal ratios of black cumin, M. oleifera and chicory seeds | Decreased total cholesterol and LDL & liver enzymes | Arif et al. [81] | |
1250 ppm | MOLM | Increased serum HDL | Ajantha et al. [120] | |
Decreased serum cholesterol, LDL, triglyceride and muscle cholesterol levels | ||||
90 mL/L | MOLE | No effect | Kumar et al. [82] | |
5% | MOL | Lower WBC count and lymphocyte %age, glucose, cholesterol, triglycerides, AST and ALT concentrations. | Hafsa et al. [83] | |
Higher heterophil and H/L ratio, serum protein, Ca and P levels | ||||
3, 5 and 7 g/kg diet | MOLM | Increased blood constituents: RBCs, Hb and PCV, WBCs, plasma total protein, albumin, Ca, HDL, GPX, GSH, SOD, TAC, IgG, and T4 hormones | Ahmed and El-Rayes [64] | |
Decreased plasma cholesterol, total lipids, LDL, AST, ALT and glucose | ||||
No effect on phosphorus (P) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.U.; Khan, A.; Naz, S.; Ullah, Q.; Laudadio, V.; Tufarelli, V.; Ragni, M. Potential Applications of Moringa oleifera in Poultry Health and Production as Alternative to Antibiotics: A Review. Antibiotics 2021, 10, 1540. https://doi.org/10.3390/antibiotics10121540
Khan RU, Khan A, Naz S, Ullah Q, Laudadio V, Tufarelli V, Ragni M. Potential Applications of Moringa oleifera in Poultry Health and Production as Alternative to Antibiotics: A Review. Antibiotics. 2021; 10(12):1540. https://doi.org/10.3390/antibiotics10121540
Chicago/Turabian StyleKhan, Rifat Ullah, Aamir Khan, Shabana Naz, Qudrat Ullah, Vito Laudadio, Vincenzo Tufarelli, and Marco Ragni. 2021. "Potential Applications of Moringa oleifera in Poultry Health and Production as Alternative to Antibiotics: A Review" Antibiotics 10, no. 12: 1540. https://doi.org/10.3390/antibiotics10121540
APA StyleKhan, R. U., Khan, A., Naz, S., Ullah, Q., Laudadio, V., Tufarelli, V., & Ragni, M. (2021). Potential Applications of Moringa oleifera in Poultry Health and Production as Alternative to Antibiotics: A Review. Antibiotics, 10(12), 1540. https://doi.org/10.3390/antibiotics10121540