Multidrug Resistant Coagulase-Positive Staphylococcus aureus and Their Enterotoxins Detection in Traditional Cheeses Marketed in Banat Region, Romania
Abstract
:1. Introduction
2. Results
2.1. Frequency of Isolation and Contamination Level of CPS, and Incidence of S. aureus
2.2. Prevalence of Genetic Markers among the Isolated S. aureus Strains
2.3. Detection of SEs in Cheese Samples
2.4. Antimicrobial Resistance Profile of S. aureus Isolated Strains
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation and Enumeration of Coagulase-Positive Staphylococci (CPS) and Identification of S. aureus
4.3. Molecular Analyses
4.4. Enterotoxin Detection
4.5. Antimicrobial Susceptibility Testing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Wagner, S.; Erskine, R. Antimicrobial drug use in mastitis. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Wiley-Blackwell Publishing: Ames, IA, USA, 2013; pp. 519–528. [Google Scholar]
- Pexara, A.; Solomakos, N.; Sergelidis, D.; Angelidis, A.; Govaris, A. Occurrence and antibiotic resistance of enterotoxigenic Staphylococcus aureus in raw ovine and caprine milk in Greece. Dairy Sci. Technol. 2016, 96, 345–357. [Google Scholar] [CrossRef]
- Bulajic, S.; Colovic, S.; Misic, D.; Djordjevic, J.; Savic-Radovanovic, R.; Asanin, J.; Ledina, T. Enterotoxin production and antimicrobial susceptibility in Staphylococci isolated from traditional raw milk cheeses in Serbia. J. Environ. Sci. Health B 2017, 52, 864–870. [Google Scholar] [CrossRef]
- Angelidis, A.S.; Komodromos, D.; Giannakou, R.; Arsenos, G.; Gelasakis, A.I.; Kyritsi, M.; Filioussis, G.; Hadjichristodoulou, C.; Torounidou, P.; Papa, A.; et al. Isolation and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) from milk of dairy goats under low-input farm management in Greece. Vet. Microbiol. 2020, 247, 108749. [Google Scholar] [CrossRef]
- Radoslava, S.R.; Zdravković, N.; Velebit, B. Occurrence and characterization of enterotoxigenic Staphylococci isolated from soft cheeses in Serbia. Acta Vet. 2020, 70, 238–254. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific report of EFSA and ECDC. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food, 2017. EFSA J. 2019, 17, 5598. [Google Scholar] [CrossRef]
- Oniciuc, E.A.; Ariza-Miguel, J.; Bolocan, A.S.; Diez-Valcarce, M.; Rovira, J.; Hernández, M.; Fernández-Natal, I.; Nicolau, A.I.; Rodríguez-Lázaro, D. Foods from black market at EU border as a neglected route of potential methicillin-resistant Staphylococcus aureus transmission. Int. J. Food Microbiol. 2015, 209, 34–38. [Google Scholar] [CrossRef]
- Ciolacu, L.; Nicolau, A.I.; Wagner, M.; Rychli, K. Listeria monocytogenes isolated from food samples from a Romanian black market show distinct virulence profiles. Int. J. Food Microbiol. 2015, 209, 44–51. [Google Scholar] [CrossRef]
- Le Marc, Y.; Valík, L.; Medved’ová, A. Modelling the effect of the starter culture on the growth of Staphylococcus aureus in milk. Int. J. Food Microbiol. 2009, 129, 306–311. [Google Scholar] [CrossRef]
- Rola, J.G.; Czubkowska, A.; Korpysa-Dzirba, W.; Osek, J. Occurrence of Staphylococcus aureus on Farms with Small Scale Production of Raw Milk Cheeses in Poland. Toxins 2016, 8, 62. [Google Scholar] [CrossRef]
- Rosengren, A.; Fabricius, A.; Guss, B.; Sylvén, S.; Lindqvist, R. Occurrence of foodborne pathogens and characterization of Staphylococcus aureus in cheese produced on farm-dairies. Int. J. Food Microbiol. 2010, 144, 263–269. [Google Scholar] [CrossRef]
- Normanno, G.; Firinu, A.; Virgilio, S.; Mula, G.; Dambrosio, A.; Poggiu, A.; Decastelli, L.; Mioni, R.; Scuota, S.; Bolzoni, G.; et al. Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. Int. J. Food Microbiol. 2005, 98, 73–79. [Google Scholar] [CrossRef] [PubMed]
- FAO. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, L338, 1–26. Available online: http://data.europa.eu/eli/reg/2005/2073/oj (accessed on 1 November 2021).
- Samardžija, D.; Damjanović, S.; Pogaćić, T.S. Staphylococcus aureus u siru. Mljekarstvo 2007, 57, 31–48. [Google Scholar]
- Williams, A.G.; Withers, S.E. Microbiological characterization of artisanal farm house cheeses manufactured in Scotland. Int. J. Dairy Technol. 2010, 63, 356–369. [Google Scholar] [CrossRef]
- Borelli, B.M.; Ferreira, E.G.; Lacerda, I.C.A.; Santos, D.A.; Carmo, L.S.; Dias, R.S.; Silva, M.C.C.; Rosa, C.A. Enterotoxigenic Staphylococcus spp. and other microbial contaminants during production of canastra cheese, Brazil. Braz. J. Microbiol. 2006, 37, 545–550. [Google Scholar] [CrossRef] [Green Version]
- André, M.C.D.P.B.; Campos, M.R.H.; Borges, L.J.; Kipnis, A.; Pimenta, F.C.; Serafini, A.B. Comparison of Staphylococcus aureus isolates from food handlers, raw bovine milk and Minas Frescal cheese by antibiogram and pulsed-field gel electrophoresis following Smal digestion. Food Control. 2008, 19, 200–207. [Google Scholar] [CrossRef]
- Callon, C.; Gilbert, F.B.; Cremoux, R.D.; Montel, M.C. Application of variable number of tandem repeat analysis to determine the origin of S. aureus contamination from milk to cheese in goat cheese farms. Food Control. 2008, 19, 143–150. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, CLSI document M100-28, 28th ed.; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Jamali, H.; Paydar, M.; Radmehr, B.; Ismail, S.; Dadrasnia, A. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control. 2015, 54, 383–388. [Google Scholar] [CrossRef]
- Carfora, V.; Caprioli, A.; Marri, N.; Sagrafoli, D.; Boselli, C.; Giacinti, G.; Giangolini, G.; Sorbara, L.; Dottarelli, S.; Battisti, A.; et al. Enterotoxin genes, enterotoxin production, and methicillin resistance in Staphylococcus aureus isolated from milk and dairy products in central Italy. Int. Dairy, J. 2015, 42, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Normanno, G.; Corrente, M.; Salandra, G.L.; Dambrosio, A.; Quaglia, N.C.; Parisi, A.; Greco, G.; Bellacicco, A.L.; Virgilio, S.; Celano, G.V. Methicillin resistant Staphylococcus aureus (MRSA) in foods of animal origin product in Italy. Int. J. Food Microbiol. 2007, 117, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Hummerjohann, J.; Naskova, J.; Baumgartner, A.; Graber, H.U. Enterotoxin producing Staphylococcus aureus Genotype B as a major contaminant in Swiss raw milk cheese. J. Dairy Sci. 2014, 97, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Spanu, V.; Virdis, S.; Scarano, C.; Cossu, F.; De Santis, E.P.L.; Cosseddu, A.M. Antibiotic resistance assessment in S. aureus strains isolated from raw sheep’s milk cheese. Vet. Res. Commun. 2010, 34, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinke, C.; Winter, M.; Mohr, E.; Krömker, V. Occurrence of methicillin-resistant Staphylococcus aureus in cheese produced in German Farm-Dairies. Adva. Microbiol. 2012, 2, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Hennekinne, J.A.; De Buyser, M.L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [Green Version]
- Dores, M.T.; Dias, R.S.; Arcuri, E.F.; Nobrega, J.E.; Ferreira, C.L.L.F. Enterotoxigenic potential of Staphylococcus aureus isolated from artisanal Minas cheese from the Serra da Canastra-MG, Brazil. Food Sci. Technol. 2013, 33, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ferreri, M.; Yu, F.; Liu, X.; Chen, L.; Su, J.; Han, B. Molecular types and antibiotic resistance of Staphylococcus aureus isolates from bovine mastitis in a single herd in China. Vet. J. 2012, 192, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Spanu, V.; Scarano, C.; Cossu, F.; Pala, C.; Spanu, C.; de Santis, E.P.L. Antibiotic Resistance Traits and Molecular Subtyping of Staphylococcus aureus Isolated from Raw Sheep Milk Cheese. J. Food Sci. 2014, 79, M2066–M2071. [Google Scholar] [CrossRef] [PubMed]
- János, D.; Viorel, H.; Ionica, I.; Corina, P.; Tiana, F.; Roxana, D. Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania. Antibiotics 2021, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Sievert, D.M.; Hageman, J.C.; Boulton, M.L.; Tenover, F.C.; Downes, F.P.; Shah, S.; Rudrik, J.T.; Pupp, G.R.; Brown, W.J.; et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J Med. 2003, 348, 1342–1347. [Google Scholar] [CrossRef]
- Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef]
- Hong, H.J.; Hutchings, M.I.; Buttner, M.J. Biotechnology and biological sciences research council, UK, 2008. Vancomycin resistance VanS/VanR two-component systems. Adv. Exp. Med. Biol. 2008, 631, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. Sampling Technique, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1963. [Google Scholar]
- International Organization for Standardization. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium; ISO 6888-1:2021-08; International Organization for Standardization: Geneva, Switzerland, 2021. [Google Scholar]
- Poulsen, A.B.; Skov, R.; Pallesen, L.V. Detection of methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA detection kit. J. Antimicrob. Chemother. 2003, 51, 419–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryan, F.L.; Guzewich, J.J.; Todd, E.C.D. Surveillance of foodborne disease II. Summary and presentation of descriptive data and epidemiologic patterns; their value and limitations. J. Food Prot. 1997, 60, 56–578. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 8, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cheese Assortments and Their Origin (No. of Examined) | No. of Samples Containing CPS (%) | CPS Levels of Contamination (log CFU/g−1) | No. of CPS Positive Samples Containing S. aureus (%) | No. of S. aureus with mecA Gene (%) | No. of Cheese Samples with Enterotoxins/Tested (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Below the Regulatory [10] Limit ≤ 105 | Above the Regulatory Limit > 105 | Mean ± SD | ||||||||||
Min. | Max. | No. (%) | Min. | Max. | No. (%) | |||||||
telemea | sheep milk (n = 77) | 71 (92.2) | 3.26 | 4.91 | 11 (15.5) | 5.51 | 7.12 | 60 (84.5) | 5.67 ± 0.85 | 24 (33.8) | 2 (8.3) | 1/60 (1.7) |
cow milk (n = 32) | 25 (78.1) | 2.37 | 4.81 | 18 (72.0) | 5.00 | 7.14 | 7 (28.0) | 4.19 ± 1.40 | 8 (32.0) | - | 1/7 (14.3) | |
caș | sheep milk (n = 20) | 17 (85.0) | 4.15 | 4.62 | 4 (23.5) | 5.38 | 7.06 | 13 (76.5) | 5.66 ± 0.92 | 6 (35.3) | 1 (16.6) | 2/13 (15.4) |
cow milk (n = 18) | 13 (72.2) | 2.61 | 4.75 | 6 (46.2) | 5.26 | 6.36 | 7 (53.8) | 4.80 ± 1.19 | 8 (61.5) | - | 0/7 | |
burduf | sheep milk (n = 11) | 8 (72.7) | 4.61 | 4.80 | 3 (37.5) | 5.41 | 7.26 | 5 (62.5) | 5.83 ± 1.07 | 2 (25.0) | - | 0/5 |
urdă | sheep milk (n = 11) | 4 (36.4) | 3.62 | 4.48 | 2 (50.0) | 6.86 | 7.32 | 2 (50.0) | 5.57 ± 1.79 | 1 (25.0) | - | 0/2 |
Overall (n = 169) | 138 (81.6) | N.A. | N.A. | 44 (31.9) | N.A. | N.A. | 94 (68.1) | N.A. | 49 (35.5) | 3 (6.1) | 4/94 (4.3) |
Antimicrobial | No. of Tested S. aureus Strains according to Their Origin | Total | ||||||
---|---|---|---|---|---|---|---|---|
Sheep Milk | Cow Milk | |||||||
Class | Agent | Telemea | Caș | Burduf | Urdă | Telemea | Caș | |
No. of Resistant S. aureus/No. of Total S. aureus Strains Tested (%) | ||||||||
β-lactams | PCG | 15/24 (62.5%) | 2/6 (33.3%) | 1/2 (50%) | 1/1 (100%) | 5/8 (62.5%) | 2/8 (25%) | 26/49 (53.1%) |
OXA | 6/24 (25%) | 1/6 (16.7%) | 0/2 (0%) | 0/1 (0%) | 0/8 (0%) | 1/8 (12.5%) | 8/49 (16.3%) | |
AMP | 1/16 (6.3%) | 0/2 (0%) | N.A. | N.A. | 0/8 (0%) | 0/3 (0%) | 1/29 (3.4%) | |
IPM | 3/18 (16.7%) | 1/6 (16.7%) | 0/2 (0%) | 0/1 (0%) | 0/5 (0%) | 0/6 (0%) | 4/38 (10.5%) | |
SAM | 0/10 (0%) | 0/2 (0%) | N.A. | N.A. | 0/5 (0%) | 0/1 (0%) | 0/18 (0%) | |
CET | 0/6 (0%) | N.A. | N.A. | N.A. | 0/3 (0%) | 0/2 (0%) | 0/11 (0%) | |
CTF * | 4/6 (66.7%) | N.A. | N.A. | N.A. | 3/3 (100%) | 1/2 (50%) | 8/11 (72.7%) | |
CEF | 0/6 (0%) | N.A. | N.A. | N.A. | 0/3 (0%) | 0/2 (0%) | 0/11 (0%) | |
aminoglycosides | GEN | 1/24 (4.2%) | 0/6 (0%) | 0/2 (0%) | 0/1 (0%) | 0/8 (0%) | 1/8 (12.5%) | 2/49 (4.1%) |
KAN | 7/16 (43.8%) | 0/2 (0%) | N.A. | N.A. | 3/8 (37.5%) | 2/3 (66.7%) | 12/29 (41.4%) | |
AMK | 5/6 (83.3%) | N.A. | N.A. | N.A. | 3/3 (100%) | 2/2 (100%) | 10/11 (90.9%) | |
NEO * | 3/6 (50%) | N.A. | N.A. | N.A. | 3/3 (100%) | 1/2 (50%) | 7/11 (63.6%) | |
quinolones | CIP * | 2/8 (25%) | 2/4 (50%) | 0/2 (0%) | 0/1 (0%) | N.A. | 2/5 (40%) | 6/20 (30.0%) |
MXF | 0/8 (0%) | 0/4 (0%) | 0/2 (0%) | 0/1 (0%) | N.A. | 0/5 (0%) | 0/20 (0%) | |
ENR | 15/16 (93.8%) | 2/2 (100%) | N.A. | N.A. | 5/8 (62.5%) | 3/3 (100%) | 25/29 (86.2%) | |
MBX | 0/10 (0%) | 0/2 (0%) | N.A. | N.A. | 0/5 (0%) | 0/1 (0%) | 0/18 (0%) | |
steroids | FA | 3/18 (16.7%) | 2/6 (33.3%) | 0/2 (0%) | 0/1 (0%) | 0/5 (0%) | 0/6 (0%) | 5/38 (13.2%) |
glycopeptides | TEC * | 2/8 (25%) | 1/4 (25%) | 0/2 (0%) | 0/1 (0%) | N.A. | 2/5 (40%) | 5/20 (25.0%) |
VAN | 2/8 (25%) | 1/6 (16.7%) | 0/2 (0%) | 0/1 (0%) | 0/5 (0%) | 0/6 (0%) | 3/38 (7.9%) | |
lincomycins | CLI | 8/24 (33.3%) | 2/6 (33.3%) | 0/2 (0%) | 0/1 (0%) | 3/8 (37.5%) | 2/8 (25%) | 15/49 (30.6%) |
macrolides | ERY | 6/24 (25%) | 1/6 (16.7%) | 0/2 (0%) | 0/1 (0%) | 3/8 (37.5%) | 1/8 (12.5%) | 11/49 (22.4%) |
TMS | 2/6 (33.3%) | N.A. | N.A. | N.A. | 1/3 (33.3%) | 1/2 (50%) | 4/11 (36.4%) | |
TYL | 1/6 (16.7%) | N.A. | N.A. | N.A. | 0/3 (0%) | 1/2 (50%) | 2/11 (18.2%) | |
oxazolidinones | LZD | 2/8 (25%) | 1/4 (25%) | 0/2 (0%) | 0/1 (0%) | N.A. | 0/5 (0%) | 3/20 (15.0%) |
phosphonic acid derivative | FOF | 0/8 (0%) | 1/4 (25%) | 0/2 (0%) | 0/1 (0%) | N.A. | 0/5 (0%) | 1/20 (5.0%) |
pseudomonic acid derivative | MUP * | 1/10 (10%) | 0/2 (0%) | N.A. | N.A. | 0/5 (0%) | 0/1 (0%) | 1/18 (5.6%) |
rifampicins | RIF * | 13/18 (72.2%) | 2/6 (33.3%) | 0/2 (0%) | 0/1 (0%) | 0/5 (0%) | 0/6 (0%) | 15/38 (39.5%) |
nitrofuran derivate | NIT | 0/10 (0%) | 0/2 (0%) | N.A. | N.A. | 0/5 (0%) | 0/1 (0%) | 0/18 (0%) |
amphenicols | CHL | 0/10 (0%) | 0/2 (0%) | N.A. | N.A. | 0/5 (0%) | 0/1 (0%) | 0/18 (0%) |
FLO | 0/6 (0%) | N.A. | N.A. | N.A. | 0/3 (0%) | 0/2 (0%) | 0/11 (0%) | |
sulfonamides | SXT | 0/24 (0%) | 0/6 (0%) | 0/2 (0%) | 0/1 (0%) | 0/8 (0%) | 0/8 (0%) | 0/49 (0%) |
tetracyclines | TET | 11/24 (45.8%) | 1/6 (16.7%) | 0/2 (0%) | 0/1 (0%) | 6/8 (75%) | 1/8 (12.5%) | 19/49 (38.8%) |
TGC | 0/8 (0%) | 0/4 (0%) | 0/2 (0%) | 0/1 (0%) | N.A. | 0/5 (0%) | 0/20 (0%) |
Cheese Assortments and Their Milk Origin | No. of Isolates | Resistance to Antimicrobial Profile of S. Aureus Strains (No.) | No. of Classes with Resistance | Classes with Resistance | |
---|---|---|---|---|---|
Sheep milk | telemea | 1 | PCG, OXA, IPM, FA, TEC, VAN, CLI, ERY, LZD, RIF, TET (11) | 8 | β-lactams, glycopeptides, steroids, lincomycins, macrolides, oxazolidinones, rifampicins, tetracyclines |
1 | PCG, OXA, AMP, IPM, ENR, VAN, FA, MUP, RIF, TET (10) | 7 | β-lactams, quinolones, glycopeptides, steroids, pseudomonic acid derivative, rifampicins, tetracyclines | ||
2 | PCG, CTF, KAN, AMK, NEO, ENR, ERY, CLI, TET (9) | 6 | β-lactams, aminoglycosides, quinolones, macrolides, lincomycins, tetracyclines | ||
2 | PCG, CTF, KAN, AMK, ENR, ERY, CLI, TET (8) | ||||
1 | PCG, OXA, GEN, KAN, AMK, NEO, ENR, TMS, TYL, CLI (10) | 5 | β-lactams, aminoglycosides, quinolones, macrolides, lincomycins | ||
1 | OXA, FA, CLI, LZD, RIF (5) | ||||
1 | PCG, CLI, ERY, RIF, TET (5) | β-lactams, lincomycins, macrolides, rifampicins, tetracyclines | |||
2 | PCG, ENR, TET, RIF (4) | 4 | β-lactams, quinolones, rifampicins, tetracyclines | ||
1 | PCG, KAN, ENR, TET (4) | β-lactams, aminoglycosides, quinolones, tetracyclines | |||
1 | PCG, OXA, ENR, TMS (4) | 3 | β-lactams, quinolones, macrolides | ||
1 | PCG, CIP, RIF (3) | β-lactams, quinolones, rifampicins | |||
1 | PCG, OXA, IPM, CIP, RIF (5) | ||||
1 | PCG, KAN, TET (3) | β-lactams, aminoglycosides, tetracyclines | |||
caș | 1 | PCG, OXA, IPM, FA, TEC, VAN, CLI, ERY, LZD, RIF (10) | 7 | β-lactams, glycopeptides, steroids, lincomycins, macrolides, oxazolidinones, rifampicins | |
1 | PCG, FA, FOF (3) | 3 | β-lactams, steroids, phosphonic acid derivative | ||
1 | CIP, CLI, RIF (3) | quinolones, lincomycins, rifampicins | |||
Cow milk | telemea | 1 | PCG, KAN, AMK, NEO, ENR, ERY, TMS, CLI, TET (9) | 6 | β-lactams, aminoglycosides, quinolones, macrolides, lincomycins, tetracyclines |
2 | PCG, KAN, AMK, NEO, ENR, ERY, CLI, TET (8) | ||||
caș | 1 | PCG, CTF, KAN, AMK, NEO, ENR, ERY, CLI, TET (9) | 6 | β-lactams, aminoglycosides, quinolones, macrolides, lincomycins, tetracyclines | |
1 | PCG, OXA, GEN, KAN, AMK, ENR, TMS, TYL, CLI (9) | 5 | β-lactams, aminoglycosides, quinolones, macrolides, lincomycins |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morar, A.; Ban-Cucerzan, A.; Herman, V.; Tîrziu, E.; Sallam, K.I.; Abd-Elghany, S.M.; Imre, K. Multidrug Resistant Coagulase-Positive Staphylococcus aureus and Their Enterotoxins Detection in Traditional Cheeses Marketed in Banat Region, Romania. Antibiotics 2021, 10, 1458. https://doi.org/10.3390/antibiotics10121458
Morar A, Ban-Cucerzan A, Herman V, Tîrziu E, Sallam KI, Abd-Elghany SM, Imre K. Multidrug Resistant Coagulase-Positive Staphylococcus aureus and Their Enterotoxins Detection in Traditional Cheeses Marketed in Banat Region, Romania. Antibiotics. 2021; 10(12):1458. https://doi.org/10.3390/antibiotics10121458
Chicago/Turabian StyleMorar, Adriana, Alexandra Ban-Cucerzan, Viorel Herman, Emil Tîrziu, Khalid Ibrahim Sallam, Samir Mohammed Abd-Elghany, and Kálmán Imre. 2021. "Multidrug Resistant Coagulase-Positive Staphylococcus aureus and Their Enterotoxins Detection in Traditional Cheeses Marketed in Banat Region, Romania" Antibiotics 10, no. 12: 1458. https://doi.org/10.3390/antibiotics10121458
APA StyleMorar, A., Ban-Cucerzan, A., Herman, V., Tîrziu, E., Sallam, K. I., Abd-Elghany, S. M., & Imre, K. (2021). Multidrug Resistant Coagulase-Positive Staphylococcus aureus and Their Enterotoxins Detection in Traditional Cheeses Marketed in Banat Region, Romania. Antibiotics, 10(12), 1458. https://doi.org/10.3390/antibiotics10121458