New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates
Abstract
:1. Introduction
2. Results
2.1. MIC of Auranofin Derivatives against a Panel of Burkholderia Cepacia Complex Species
2.2. MS-40S Has Broad Bactericidal Activity
2.3. MS-40S Does Not Select for Multistep Resistant Mutants
2.4. MS-40S Is Bactericidal against Both Replicating and Non-Replicating Cells
2.5. MS-40S Kill and Inhibit the Formation of Persister Cells
2.6. C. elegans and G. mellonella Toxicity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Bacterial Strains and Growth Conditions
4.3. Synthesis of Auranofin and Auranofin Derivatives
4.4. Auranofin Derivatives and Antibiotic Stock Solutions
4.5. Antimicrobial Susceptibility Testing and Multistep Resistance to Active Derivatives
4.6. Time Kill Assays
4.7. Time Kill of Persister Cells
4.8. Persister Frequency Assay
4.9. C. elegans Survival
4.10. Galleria Toxicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gould, K. Antibiotics: From prehistory to the present day. J. Antimicrob. Chemother. 2016, 71, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Rigol, S. A brief history of antibiotics and select advances in their synthesis. J. Antibiot. 2018, 71, 153–184. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 4-2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Eberl, L.; Vandamme, P. Members of the genus Burkholderia: Good and bad guys. F1000Research 2016, 5, 1007. [Google Scholar] [CrossRef]
- Rhodes, K.; Schweizer, H.P. Antibiotic resistance in Burkholderia species. Drug Resist. Updates 2016, 28, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Sfeir, M.M. Burkholderia cepacia complex infections: More complex than the bacterium name suggest. J. Infect. 2018, 77, 166–170. [Google Scholar] [CrossRef]
- Lobo, L.J.; Noone, P.G. Respiratory infections in patients with cystic fibrosis undergoing lung transplantation. Lancet Respir. Med. 2014, 2, 73–82. [Google Scholar] [CrossRef]
- Los-Arcos, I.; Len, O.; Gomez, M.T.M.; González-López, J.J.; Saéz-Giménez, B.; Deu, M.; Nuvials, X.; Ferrer, R.; Román, A.; Gavaldà, J. Lung transplantation in two cystic fibrosis patients infected with previously pandrug-resistant Burkholderia cepacia complex treated with ceftazidime–avibactam. Infection 2019, 47, 289–292. [Google Scholar] [CrossRef]
- Scoffone, V.C.; Chiarelli, L.R.; Trespidi, G.; Mentasti, M.; Riccardi, G.; Buroni, S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front. Microbiol. 2017, 8, 1592. [Google Scholar] [CrossRef] [Green Version]
- Dupont, L. Lung transplantation in cystic fibrosis patients with difficult to treat lung infections. Curr. Opin. Pulm. Med. 2017, 23, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.V.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, P.; Oosterhuis, D.; Bonsignore, R.; Casini, A.; Olinga, P.; Scheffers, D. An Organogold Compound as Potential Antimicrobial Agent against Drug-Resistant Bacteria: Initial Mechanistic Insights. ChemMedChem 2021, 16, 3060–3070. [Google Scholar] [CrossRef] [PubMed]
- May, H.C.; Yu, J.-J.; Guentzel, M.N.; Chambers, J.P.; Cap, A.P.; Arulanandam, B.P. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front. Microbiol. 2018, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Novelli, F.; Recine, M.; Sparatore, F.; Juliano, C. Gold(I) complexes as antimicrobial agents. Il Farm. 1999, 54, 232–236. [Google Scholar] [CrossRef]
- Owings, J.P.; McNair, N.N.; Mui, Y.F.; Gustafsson, T.N.; Holmgren, A.; Contel, M.; Goldberg, J.B.; Mead, J.R. Auranofin andN-heterocyclic carbene gold-analogs are potent inhibitors of the bacteriaHelicobacter pylori. FEMS Microbiol. Lett. 2016, 363, 148. [Google Scholar] [CrossRef] [Green Version]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.N.; Sobreira, T.J.P.; Hedrick, V.E.; Paul, L.N.; Seleem, M. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci. Rep. 2016, 6, 22571. [Google Scholar] [CrossRef] [Green Version]
- Kean, W.F.; Hart, L.; Buchanan, W.W. Auranofin. Br. J. Rheumatol. 1997, 36, 560–572. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, A.E.; Walz, D.T.; Batista, V.; Mizraji, M.; Roisman, F.; Misher, A. Auranofin. New oral gold compound for treatment of rheumatoid arthritis. Ann. Rheum. Dis. 1976, 35, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Harbut, M.B.; Vilchèze, C.; Luo, X.; Hensler, M.E.; Guo, H.; Yang, B.; Chatterjee, A.K.; Nizet, V.; Jacobs, W.; Schultz, P.G.; et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl. Acad. Sci. USA 2015, 112, 4453–4458. [Google Scholar] [CrossRef] [Green Version]
- Epstein, T.D.; Wu, B.; Moulton, K.D.; Yan, M.; Dube, D.H. Sugar-Modified Analogs of Auranofin Are Potent Inhibitors of the Gastric Pathogen Helicobacter pylori. ACS Infect. Dis. 2019, 5, 1682–1687. [Google Scholar] [CrossRef]
- Wu, B.; Yang, X.; Yan, M. Synthesis and Structure–Activity Relationship Study of Antimicrobial Auranofin against ESKAPE Pathogens. J. Med. Chem. 2019, 62, 7751–7768. [Google Scholar] [CrossRef] [PubMed]
- Balwan, A.; Nicolau, D.P.; Wungwattana, M.; Zuckerman, J.B.; Waters, V. Clinafloxacin for Treatment of Burkholderia cenocepacia Infection in a Cystic Fibrosis Patient. Antimicrob. Agents Chemother. 2016, 60, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kitt, H.; Lenney, W.; Gilchrist, F.J. Two case reports of the successful eradication of new isolates of Burkholderia cepacia complex in children with cystic fibrosis. BMC Pharmacol. Toxicol. 2016, 17, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Laboudi, A.; Etherington, C.; Whitaker, P.; Clifton, I.; Conway, S.; Denton, M.; Peckham, D. Acute Burkholderia cenocepacia pyomyositis in a patient with cystic fibrosis. J. Cyst. Fibros. 2009, 8, 273–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilchrist, F.J.; Webb, A.K.; Bright-Thomas, R.J.; Jones, A. Successful treatment of cepacia syndrome with a combination of intravenous cyclosporin, antibiotics and oral corticosteroids. J. Cyst. Fibros. 2012, 11, 458–460. [Google Scholar] [CrossRef] [Green Version]
- Salizzoni, S.; Pilewski, J.; Toyoda, Y. Lung transplant for a patient with cystic fibrosis and active Burkholderia Cenocepacia pneumonia. Exp. Clin. Transplant. 2014, 12, 487–489. [Google Scholar]
- Huang, Y.J.; LiPuma, J.J. The Microbiome in Cystic Fibrosis. Clin. Chest Med. 2016, 37, 59–67. [Google Scholar] [CrossRef]
- Cribbs, S.K.; Beck, J.M. Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Transl. Res. 2017, 179, 84–96. [Google Scholar] [CrossRef]
- Vandeplassche, E.; Tavernier, S.; Coenye, T.; Crabbé, A. Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens. Eur. Respir. Rev. 2019, 28, 190041. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.D.; Somayaji, R.; Greysson-Wong, J.; Izydorczyk, C.; Waddell, B.; Storey, D.G.; Rabin, H.R.; Surette, M.G.; Parkins, M.D. Clinical Outcomes Associated with Escherichia coli Infections in Adults with Cystic Fibrosis: A Cohort Study. In Open Forum Infectious Diseases; Oxford University Press: Oxford, MS, USA, 2019; Volume 7, p. ofz476. [Google Scholar] [CrossRef]
- Burns, J.L.; Emerson, J.; Stapp, J.R.; Yim, D.L.; Krzewinski, J.; Louden, L.; Ramsey, B.W.; Clausen, C.R. Microbiology of Sputum from Patients at Cystic Fibrosis Centers in the United States. Clin. Infect. Dis. 1998, 27, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Sabtu, N.; Enoch, D.A.; Brown, N.M. Antibiotic resistance: What, why, where, when and how? Br. Med. Bull. 2015, 116, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waglechner, N.; Wright, G.D. Antibiotic resistance: It’s bad, but why isn’t it worse? BMC Biol. 2017, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, A.; Abutaleb, N.; Elmagarmid, K.A.; Seleem, M. Repurposing auranofin as an intestinal decolonizing agent for vancomycin-resistant enterococci. Sci. Rep. 2018, 8, 8353. [Google Scholar] [CrossRef] [Green Version]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Macrobiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Corona, F.; Martinez, J.L. Phenotypic Resistance to Antibiotics. Antibiotics 2013, 2, 237–255. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.; Knabel, S.J.; Kwan, B.W. Bacterial Persister Cell Formation and Dormancy. Appl. Environ. Microbiol. 2013, 79, 7116–7121. [Google Scholar] [CrossRef] [Green Version]
- Brauner, A.; Fridman, O.; Gefen, O.; Balaban, N. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 2016, 14, 320–330. [Google Scholar] [CrossRef]
- Wilmaerts, D.; Windels, E.; Verstraeten, N.; Michiels, J. General Mechanisms Leading to Persister Formation and Awakening. Trends Genet. 2019, 35, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Bahar, A.A.; Liu, Z.; Totsingan, F.; Buitrago, C.; Kallenbach, N.R.; Ren, D. Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2015, 99, 8125–8135. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.; Myers, J.N.; Muruato, L.A.; Tapia, D.; Torres, A.G. Evaluating New Compounds to Treat Burkholderia pseudomallei Infections. Front. Cell. Infect. Microbiol. 2018, 8, 210. [Google Scholar] [CrossRef]
- Selin, C.; Stietz, M.S.; Blanchard, J.E.; Gehrke, S.S.; Bernard, S.; Hall, D.; Brown, E.D.; Cardona, S.T. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia. PLoS ONE 2015, 10, e0128587. [Google Scholar] [CrossRef] [Green Version]
- Grossman, T.H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.F.; Neubauer, H.; Frickmann, H.; Hagen, R.M. Correlation of RpsU Gene Sequence Clusters and Biochemical Properties, GC—MS Spectra and Resistance Profiles of Clinical Burkholderia Spp. Isolates. Eur. J. Microbiol. Immunol. 2016, 6, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Guglierame, P.; Pasca, M.R.; De Rossi, E.; Buroni, S.; Arrigo, P.; Manina, G.; Riccardi, G. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol. 2006, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.; Andersson, D.I. Evolutionary Trajectories to Antibiotic Resistance. Annu. Rev. Microbiol. 2017, 71, 579–596. [Google Scholar] [CrossRef] [Green Version]
- Durao, P.; Balbontín, R.; Gordo, I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol. 2018, 26, 677–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, E.J.; Stokes, J.M.; Collins, J.J. Eradicating Bacterial Persisters with Combinations of Strongly and Weakly Metabolism-Dependent Antibiotics. Cell Chem. Biol. 2020, 27, 1544–1552.e3. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Hanieh, P.; Sennato, S.; De Santis, F.; Forte, J.; Fraziano, M.; Casciardi, S.; Marianecci, C.; Bordi, F.; Carafa, M. Rifampicin–Liposomes for Mycobacterium abscessus Infection Treatment: Intracellular Uptake and Antibacterial Activity Evaluation. Pharmaceutics 2021, 13, 1070. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; van Ingen, J.; van der Laan, R.; Herrmann, J.-L. Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. Eur. Respir. Rev. 2021, 30, 210010. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (Ed.) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A10; Approved Standard, 10th ed.; Documents/Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2015; ISBN 978-1-56238-987-1. [Google Scholar]
- Yarlagadda, V.; Akkapeddi, P.; Manjunath, G.B.; Haldar, J. Membrane Active Vancomycin Analogues: A Strategy to Combat Bacterial Resistance. J. Med. Chem. 2014, 57, 4558–4568. [Google Scholar] [CrossRef]
- Naguib, M.M.; Valvano, M.A. Vitamin E Increases Antimicrobial Sensitivity by Inhibiting Bacterial Lipocalin Antibiotic Binding. mSphere 2018, 3, e00564-18. [Google Scholar] [CrossRef] [Green Version]
- Cruz, L.I.B.; Lopes, L.F.F.; Ribeiro, F.D.C.; de Sa, N.P.; Lino, C.I.; Tharmalingam, N.; De Oliveira, R.B.; Rosa, C.A.; Mylonakis, E.; Fuchs, B.B.; et al. Anti-Candida albicans Activity of Thiazolylhydrazone Derivatives in Invertebrate and Murine Models. J. Fungi 2018, 4, 134. [Google Scholar] [CrossRef] [Green Version]
Organism | MIC (μg/mL) | ||||||
---|---|---|---|---|---|---|---|
Auranofin | WB-19-HL4118 | WB-19-HL4170 | WB-19-HL4171 | WB-19-HL4172 | WB-19-HL4181 | WB-19-HL4121a | |
B. cenocepacia K56-2 | >128 | 4 | 8 | 32 | 32 | 32 | 128 |
B. lata BCC6 | 128 | 8 | 8 | 32 | 16 | 16 | 32 |
B. contaminans MF16 | 128 | 8 | 8 | 64 | 32 | 64 | 32 |
B. contaminans FFH-2050MA | 128 | 4 | 16 | 32 | 16 | 32 | 32 |
B. dolosa CEP021 | >128 | 16 | 32 | 64 | 32 | 64 | 128 |
B. multivorans ATCC17616 | 128 | 8 | 16 | 32 | 32 | 32 | 64 |
B. cenocepacia 140485 | 128 | 8 | 16 | 16 | 32 | 32 | 32 |
B. ubonensis LMG 20358 | >128 | 16 | 16 | >128 | 32 | 32 | 128 |
B. contaminans FFH-4004 | >128 | 8 | 16 | 32 | 32 | 32 | 64 |
B. mallei China 5 (NBL 4) | 0.25 | 0.12 | 0.12 | ND | ND | ND | ND |
B. mallei Ivan (NCTC 10230) | 0.5 | 0.12 | 0.12 | ND | ND | ND | ND |
B. mallei China 7 (NBL 7) | 1 | 0.25 | 0.25 | ND | ND | ND | ND |
B. pseudomallei 1710b | 64 | 4 | 4 | ND | ND | ND | ND |
B. pseudomallei MSHR465a | 64 | 4 | 4 | ND | ND | ND | ND |
B. pseudomallei HBPUB10134a | 64 | 4 | 2 | ND | ND | ND | ND |
B. pseudomallei MSHR305 | ND | 2 | ND | ND | ND | ND | ND |
Organism | MIC (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Auranofin | MS-40 | MS-40S | MEM | TOB | CAZ | DOX | CZA a | |
B. cenocepacia K56-2 | >128 | 4 | 8 | 16 | 512 | 32 | 4 | 4 |
B. lata BCC6 | 128 | 8 | 8 | 4 | 128 | 64 | 4 | 16 |
B. contaminans MF16 | 128 | 8 | 8 | 8 | 32 | 32 | 16 | 8 |
B. contaminans FFH-2050MA | 128 | 4 | 16 | 4 | 128 | 8 | 2 | 4 |
B. dolosa CEP021 | >128 | 16 | 32 | 8 | 128 | 16 | 16 | 8 |
B. multivorans ATCC17616 | 128 | 8 | 16 | 4 | 64 | 16 | 2 | 8 |
B. cenocepacia 140485 | 128 | 8 | 16 | 16 | 128 | 8 | 1 | 8 |
B. ubonensis LMG 20358 | >128 | 16 | 16 | 16 | 128 | 16 | 4 | 4 |
B. contaminans FFH-4004 | >128 | 8 | 16 | 8 | 64 | 8 | 8 | 4 |
Organism | MIC (μg/mL) | MBC (μg/mL) | ||
---|---|---|---|---|
MS-40 | MS-40S | MS-40 | MS-40S | |
Burkholderia cenocepacia K56-2 | 4 | 8 | 8 * | >32 * |
Stenotrophomonas maltophilia DH57 | 1 | 2 | 4 | 8 |
Stenotrophomonas maltophilia K279a | 2 | 2 | 2 | 8 |
Pseudomonas aeruginosa PA01 | 16 | 32 | 128 | 256 |
Pseudomonas aeruginosa PA7 | 32 | 64 | 64 | 128 |
Escherichia coli 120955 | 4 | 4 | 32 | 64 |
Escherichia vulneris CEP511 | 2 | 4 | 2 | 4 |
Klebsiella pneumoniae 120310 | 2 | 4 | 4 | 8 |
Acinetobacter baumannii ATCC 17978 | 2 | 2 | 4 | 8 |
Staphylococcus aureus ATCC 27700 | 0.25 | 0.5 | 2 | 2 |
Staphylococcus aureus 107094 | 0.25 | 0.25 | 1 | 1 |
Achromobacter xylosoxidans ACH03 | 8 | 16 | 8 | 32 |
Antibiotic | Concentrations (μg/mL) | Survival100/MIC Ratio * | |||||||
---|---|---|---|---|---|---|---|---|---|
256 | 128 | 64 | 32 | 16 | 8 | 4 | DMSO Control | ||
MS-40 | 74.4 | 81.8 | 94.7 | 92.9 | 100 | 100 | 100 | 100 | 4 |
MS-40S | 85.7 | 97.6 | 100 | 100 | 100 | 100 | 100 | 100 | 8 |
MEM | 93.2 | 97.4 | 100 | 100 | 100 | 100 | 100 | 100 | 4 |
DOX | 79.5 | 91.5 | 100 | 98.2 | 100 | 97.4 | 100 | 100 | 16 |
CZA a | 88.2 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 32 |
Galleria Survival | ||||
---|---|---|---|---|
Compound | Dose Concentration (mg/kg) | 24 h | 48 h | 72 h |
DOX | 10.0 | 93.3 | 93.3 | 93.3 |
5.0 | 93.3 | 90.0 | 90.0 | |
2.0 | 93.3 | 93.3 | 93.3 | |
1.0 | 96.7 | 96.7 | 96.7 | |
MS-40 | 10.0 | 90.0 | 83.3 | 80.0 |
5.0 | 96.7 | 93.3 | 90.0 | |
2.0 | 90.0 | 80.0 | 80.0 | |
1.0 | 100 | 96.7 | 96.7 | |
MS-40S | 10.0 | 90.0 | 76.7 | 76.7 |
5.0 | 93.3 | 86.7 | 86.7 | |
2.0 | 83.3 | 83.3 | 83.3 | |
1.0 | 96.7 | 86.7 | 86.7 | |
DMSO | 10.0 | 93.3 | 86.7 | 86.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maydaniuk, D.; Wu, B.; Truong, D.; Liyanage, S.H.; Hogan, A.M.; Yap, Z.L.; Yan, M.; Cardona, S.T. New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics 2021, 10, 1443. https://doi.org/10.3390/antibiotics10121443
Maydaniuk D, Wu B, Truong D, Liyanage SH, Hogan AM, Yap ZL, Yan M, Cardona ST. New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics. 2021; 10(12):1443. https://doi.org/10.3390/antibiotics10121443
Chicago/Turabian StyleMaydaniuk, Dustin, Bin Wu, Dang Truong, Sajani H. Liyanage, Andrew M. Hogan, Zhong Ling Yap, Mingdi Yan, and Silvia T. Cardona. 2021. "New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates" Antibiotics 10, no. 12: 1443. https://doi.org/10.3390/antibiotics10121443
APA StyleMaydaniuk, D., Wu, B., Truong, D., Liyanage, S. H., Hogan, A. M., Yap, Z. L., Yan, M., & Cardona, S. T. (2021). New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics, 10(12), 1443. https://doi.org/10.3390/antibiotics10121443