Resistance to 16-Membered Macrolides, Tiamulin and Lincomycin in a Swine Isolate of Acholeplasma laidlawii
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. A. laidlawii Strains
4.2. Antimicrobials
4.3. Determination of MICs
4.4. Polymerase Chain Reaction Amplification and Sequencing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazarev, V.N.; Levitskii, S.A.; Basovskii, Y.I.; Chukin, M.M.; Akopian, T.A.; Vereshchagin, V.V.; Kostrjukova, S.; Kovaleva, G.Y.; Kazanov, M.D.; Malko, D.B.; et al. Complete genome and proteome of Acholeplasma laidlawii. J. Bacteriol. 2011, 193, 4943–4953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayling, R.D.; Bashiruddin, S.E.; Nicholas, R.A.J. Mycoplasma species and related organisms isolated from ruminants in Britain between 1990 and 2000. Vet. Rec. 2004, 155, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Kozakai, T.; Morita, H.; Saida, K.; Oka, S.; Masuo, Y. Rapid detection of mycoplasma contamination in cell cultures using SYBR green-based real-time polymerase chain reaction. In Vitro Cell. Dev. Biol. Anim. 2006, 42, 63–69. [Google Scholar] [CrossRef]
- Windsor, H.M.; Windsor, G.D.; Noordergraaf, J.H. The growth and long-term survival of Acholeplasma laidlawii in media products used in biopharmaceutical manufacturing. Biologicals 2010, 38, 204–210. [Google Scholar] [CrossRef]
- Mouzykantov, A.; Medvedeva, E.; Baranova, N.; Lopuhov, V.; Usachev, K.; Chernova, O.; Chernov, V. Data on the genome and proteome profiles of ciprofloxacin-resistant Acholeplasma laidlawii strains selected under different conditions in vitro. Data Brief 2020, 33, 106412. [Google Scholar] [CrossRef] [PubMed]
- Counter, D.E. A severe outbreak of bovine mastitis associated with Mycoplasma bovigenitalium and Acholeplasma laidlawii. Vet. J. 1978, 103, 130–131. [Google Scholar]
- Hauk, H. Studies of Mycoplasma mastitis in cattle. 5. Studies of udder pathogenicity of Mycoplasma and Acholeplasma strains of different origins. Arch. Exp. Vet. 1979, 33, 665–673. [Google Scholar]
- Singh, A.; Gupta, P.P.; Banga, H.S. Pathogenicity of Acholeplasma laidlawii for the goat udder. Aust. Vet. J. 1990, 67, 155–156. [Google Scholar] [CrossRef]
- De la Concha-Bermejillo, A.; Magnus-Corral, S.; Brodie, S.J.; Rossenbusch, R.F.; DeMartini, J.C. Pathologic responses of lambs to experimental inoculation with Acholeplasma laidlawii. J. Vet. Diagn. Investig. 1996, 8, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Tiong, S.K.; Sing, K.Y. Isolation and identification of mycoplasmas from pig lungs in Singapore. Vet. Rec. 1981, 108, 75–77. [Google Scholar] [CrossRef]
- Hiroe, K.; Kobayashi, H.; Ito, N.; Kawasaki, Y.; Zako, M.; Kotani, K.; Ogawa, H.; Sato, H. Isolation of Mycoplasmas from nasal swabs of calves affected with respiratory diseases and antimicrobial susceptibility of their isolates. J. Vet. Med. 2003, 50, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Chernova, O.A.; Medvedeva, E.S.; Moutzykantov, A.A.; Baranova, N.B.; Chernov, V.M. Mycoplasmas and their antibiotic resistance: The problems and prospects in controlling infections. Acta Nat. 2016, 8, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Chernov, V.M.; Chernova, O.A.; Mouzykantov, A.A.; Medvedeva, E.S.; Baranova, N.B.; Malygina, T.Y.; Aminov, R.I.; Trushin, M.V. Antimicrobial resistance in mollicutes: Known and newly emerging mechanisms. FEMS Microbiol. Lett. 2018, 365, fny185. [Google Scholar] [CrossRef] [PubMed]
- Umera, R.; Sueyoshi, M.; Nagatomo, H. Antimicrobial susceptibilities of four species of Mycoplasma isolated in 2008 and 2009 from cattle in Japan. J. Vet. Med. Sci. 2010, 72, 1661–1663. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, R.; Nakamura, M. Selection and propagation of antibiotic-resistant mutants of Acholeplasma by the addition of fresh culture medium containing antibiotics and protease to the medium cultured with Acholeplasma. Kurume Med. J. 1985, 32, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Petrov, A.S.; Bernier, C.R.; Hershkovits, E.; Xue, Y.; Waterbury, C.C.; Hsiao, C.; Stepanov, V.G.; Gaucher, E.A.; Grover, M.A.; Harvey, S.C.; et al. Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic Acid Res. 2013, 41, 7522–7535. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Hu, M.; Lee, S.; Roblin, R. A polymerase chain reaction based for detecting Mycoplasma/Acholeplasma contaminants in cell culture. J. Microbiol. Methods 2000, 39, 121–126. [Google Scholar] [CrossRef]
- Volokhov, D.; George, J.; Liu, S.; Ikonomi, P.; Anderson, C.; Chizhikov, V. Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing. Appl. Microbiol. Biotechnol. 2006, 71, 680–698. [Google Scholar] [CrossRef]
- Pereyre, S.; Gonzalez, P.; De Barbeyrac, B.; Darnige, A.; Renaudin, H.; Charron, A.; Raherison, S.; Bébéar, C.; Bébéar, C.M. Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquired resistance to macrolides in M. hominis. Antimicrob. Agents Chemother. 2002, 46, 3142–3150. [Google Scholar] [CrossRef] [Green Version]
- Pereyre, S.; Renaudin, H.; Charron, A.; Bébéar, C.; Bébéar, C.M. Emergence of a 23S rRNA mutation in Mycoplasma hominis associated with a loss of the intrinsic resistance to erythromycin and azithromycin. J. Antimicrob. Chemother. 2006, 57, 753–756. [Google Scholar] [CrossRef] [Green Version]
- Hannan, P.C.T.; Windsor, G.D.; De Jong, A.; Schmeer, N.; Stegemann, M. Comparative susceptibilities of various animal-pathogenic mycoplasmas to fluoroquinolones. Antimicrob. Agents Chemother. 1997, 41, 2037–2040. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xue, G.; Zhao, H.; Feng, Y.; Yan, C.; Cui, J.; Xie, X.; Yuan, J. Quantitative proteomics analysis of Mycoplasma pneumoniae identifies potential macrolide resistance determinants. AMB Express 2021, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Nlu, A.; Govorum, V.M. The participation of the transport-barrier functions of the plasma membrane in the development of fluoroquinolone (ciprofloxacin) resistance in Acholeplasma laidlawii. Antibiot. Khimioterap. 2000, 45, 14–19. [Google Scholar]
- Antunes, N.T.; Assunção, P.; Poveda, J.B.; Tavío, M.M. Mechanisms involved in quinolone resistance in Mycoplasma mycoides subsp. capri. Vet. J. 2015, 204, 327–332. [Google Scholar] [CrossRef]
- Pereyre, S.; Goret, J.; Bébéar, C. Mycoplasma pneumoniae: Current knowledge on macrolide resistance and treatment. Front. Microbiol. 2016, 7, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereyre, S.; Guyot, C.; Renaudin, H.; Charron, A.; Bébéar, C.; Bébéar, C.M. In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 460–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, U.; Amram, E.; Ayling, R.D.; Mikula, I.; Gerchman, I.; Harrus, S.; Tewff, D.; Yogev, D.; Lysnyanski, I. Acquired resistance to the 16-membered macrolides tylosin and tilmicosin by Mycoplasma bovis. Vet. Microbiol. 2014, 168, 365–671. [Google Scholar] [CrossRef]
- Akanuma, G.; Nanamiya, H.; Natori, Y.; Yano, K.; Suzuki, S.; Omata, S.; Ishizuka, M.; Sekine, Y.; Kawamura, F. Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation. J. Bacteriol. 2012, 194, 6282–6291. [Google Scholar] [CrossRef] [Green Version]
- Bébéar, C.; Pereyre, S.; Peuchant, O. Mycoplasma pneumoniae: Susceptibility and resistance to antibiotics. Future Microbiol. 2011, 6, 423–431. [Google Scholar] [CrossRef]
- Gregory, S.T.; Dahlberg, A.E. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23S ribosomal RNA. J. Mol. Biol. 1999, 289, 827–834. [Google Scholar] [CrossRef]
- Tully, J.G. Test for digitonin sensitivity and sterol requeriment. In Methods in Mycoplasmology; Razin, S., Tully, J., Eds.; Academic Press: New York, NJ, USA, 1983; Volume 1, pp. 355–362. [Google Scholar]
- Tavío, M.M.; Poveda, C.; Assunção, P.; Ramírez, A.S.; Poveda, J.B. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae. Vet. Rec. 2014, 175, 539. [Google Scholar] [CrossRef]
- Boonyayatra, S.; Fox, L.K.; Gay, J.M.; Sawant, A.; Besser, T.E. Discrimination between Mycoplasma and Acholeplasma species of bovine origin using digitonin disc diffusion assay, nisin disc diffusion assay, and conventional polymerase chain reaction. J. Vet. Diagn. Investig. 2012, 24, 7–13. [Google Scholar] [CrossRef]
- Antunes, N.T.; Tavío, M.M.; Mercier, P.; Ayling, R.D.; AI-Momani, W.; Assunção, P.; Rosales, R.S.; Poveda, J.B. In vitro susceptibilities of Mycoplasma putrefaciens field isolates. Antimicrob. Agents Chemother. 2007, 51, 3452–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raherison, S.; Gonzalez, P.; Renaudin, H.; Bébéar, C.; Bébéar, C.M. Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by Mycoplasma hominis. Antimicrob. Agents Chemother. 2002, 46, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, A.S.; Naylor, C.; Pitcher, D.; Bradbury, J. High inter-species and low intra-species variation in 16S-23S rDNA spacer sequences of pathogenic avian mycoplasmas offers potential use as a diagnostic tool. Vet. Microbiol. 2008, 128, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavari, C.A.; Ramírez, A.S.; Nicholas, R.A.; Radford, A.D.; Darby, A.C.; Bradbury, J.M. Mycoplasma tullyi sp. nov., isolated from penguins of the genus Spheniscus. Int. J. Syst. Evol. Microbiol. 2017, 67, 3692–3698. [Google Scholar] [CrossRef]
MIC (mg/L) | ||
---|---|---|
Antibiotics | A. laidlawii PG8T | A. laidlawii 470 |
Erythromycin | 2048 | 2048 |
Erythromycin + Reserpine * | 2048 | 2048 |
Clarithromycin | 0.25 | 32 |
Clarithromycin + Reserpine | - | 32 |
Azithromycin | 0.125 | 128 |
Azithromycin + Reserpine | - | 128 |
Tylosin | 0.25 | 64 |
Tylosin + Reserpine | - | 64 |
Tilmicosin | 0.25 | 64 |
Tilmicosin + Reserpine | - | 128 |
Lincomycin | <0.25 | >4096 |
Lincomycin + Reserpine | - | 4096 |
Tiamulin | 1.0 | 128 |
Tiamulin + Reserpine | - | 128 |
Nucleotide Changes | Mutations | |||||
---|---|---|---|---|---|---|
Strain | 23S Ribosomal RNA Domains 1 | L4 | L22 | |||
I | II | III | V | |||
470 | G320A | T1254G 2 | G1376A G1450T G1475A G1579A | T2131A T2133G | A67T T68C Ile23Ser ATC→TCC G517T Ala173Ser GCA→TCA | A70T Ile24Phe ATT→TTT G322A C323G Ala108Arg GCA→AGA G325A Glu109Lys GAA→AAA A328G Arg110Gly AGG→GGG T334A STOP112Lys TAA→AAA |
Gene | Forward Oligonucleotide Sequences (5′-3′) | Reverse Oligonucleotide Sequences (5′-3′) |
---|---|---|
23S-rRNA | GAACAAAGGGCACACAGTG | CTTGCTATGTAACATAACTCGC |
GATGGCATGCCTTTTGTAG | CAGAGTCACTCGACCAGTG | |
GCCATCCTTTAAAGAGTGCG | CAACAGTTTTCTCGCGCGTC | |
GTAAACCGACACAGGTGG | CAAACTGCCCACCAGACAC | |
CGTGCACTTAGTTTCTAACTTC | CCAGTAAGCTGAATACATCGC | |
rplV1 | GAAGCTAAAGCAATTGGAAAAAC | CTCCCTTTCTGCGACAAC |
rplD2 | GCCAACATTAAATTTATTCAATC | CTCGTAGTATTTAACAGCAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavío, M.M.; Ramírez, A.S.; Poveda, C.; Rosales, R.S.; Malla, C.F.; Poveda, J.B. Resistance to 16-Membered Macrolides, Tiamulin and Lincomycin in a Swine Isolate of Acholeplasma laidlawii. Antibiotics 2021, 10, 1415. https://doi.org/10.3390/antibiotics10111415
Tavío MM, Ramírez AS, Poveda C, Rosales RS, Malla CF, Poveda JB. Resistance to 16-Membered Macrolides, Tiamulin and Lincomycin in a Swine Isolate of Acholeplasma laidlawii. Antibiotics. 2021; 10(11):1415. https://doi.org/10.3390/antibiotics10111415
Chicago/Turabian StyleTavío, María M., Ana S. Ramírez, Carlos Poveda, Rubén S. Rosales, Cristina F. Malla, and José B. Poveda. 2021. "Resistance to 16-Membered Macrolides, Tiamulin and Lincomycin in a Swine Isolate of Acholeplasma laidlawii" Antibiotics 10, no. 11: 1415. https://doi.org/10.3390/antibiotics10111415
APA StyleTavío, M. M., Ramírez, A. S., Poveda, C., Rosales, R. S., Malla, C. F., & Poveda, J. B. (2021). Resistance to 16-Membered Macrolides, Tiamulin and Lincomycin in a Swine Isolate of Acholeplasma laidlawii. Antibiotics, 10(11), 1415. https://doi.org/10.3390/antibiotics10111415