Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model
Abstract
:1. Introduction
2. Results
2.1. Unmodified Calcium-Silicate-Based Materials Demonstrate Minimal Antimicrobial Effects in Comparison to Dentine
2.2. Addition of Chitosan Confers Antimicrobial Properties on Biodentine, but Not MTA
2.3. Addition of Chitosan Drives an Increase in pH for Biodentine but Not MTA
3. Discussion
4. Materials and Methods
4.1. Growing Multi-Species Biofilms
4.2. Preparation of ProRoot MTA and Biodentine Materials ± Chitosan
4.3. Quantitative Analysis of Biofilms Formed on ProRoot MTA and Biodentine Materials ± Chitosan
4.4. Evaluation of pH of Leachate
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ricucci, D.; Siqueira, J.F., Jr.; Bate, A.L.; Ford, T.R.P. Histologic investigation of root canal–treated teeth with apical periodontitis: A retrospective study from twenty-four patients. J. Endod. 2009, 35, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Siqueira, J.F., Jr. Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. J. Endod. 2010, 36, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Siqueira, J.F., Jr.; Loghin, S.; Lin, L.M. Pulp and apical tissue response to deep caries in immature teeth: A histologic and histobacteriologic study. J. Dent. 2017, 56, 19–32. [Google Scholar] [CrossRef]
- Persoon, I.F.; Buijs, M.J.; Özok, A.R.; Crielaard, W.; Krom, B.P.; Zaura, E.; Brandt, B.W. The mycobiome of root canal infections is correlated to the bacteriome. Clin. Oral Investig. 2017, 21, 1871–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshanta, O.A.; Alqahtani, S.; Shaban, S.; Albashaireh, K.; McLean, W.; Ramage, G. Comparison of Three Endodontic Irrigant Regimens against Dual-Species Interkingdom Biofilms: Considerations for Maintaining the Status Quo. Antibiotics 2020, 9, 634. [Google Scholar] [CrossRef]
- Siqueira, F.J.; Rôças, I.N.; Ricucci, D. Internal tooth anatomy and root canal instrumentation. In The Root Canal Anatomy in Permanent Dentition; Springer: Berlin/Heidelberg, Germany, 2019; pp. 277–302. [Google Scholar]
- Farrugia, C.; Baca, P.; Camilleri, J.; Moliz, M.A. Antimicrobial activity of ProRoot MTA in contact with blood. Sci. Rep. 2017, 7, 41359. [Google Scholar] [CrossRef]
- Torabinejad, M.; White, D.J. Tooth Filling Material and Method of Use. U.S. Patent 5,415,547, 16 May 1995. [Google Scholar]
- Camilleri, J. Mineral trioxide aggregate: Present and future developments. Endod. Top. 2015, 32, 31–46. [Google Scholar] [CrossRef]
- Camilleri, J. Current Classification of Bioceramic Materials in Endodontics. In Bioceramic Materials in Clinical Endodontics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–6. [Google Scholar]
- Camilleri, J. Characterization and Properties of Bioceramic Materials for Endodontics. In Bioceramic Materials in Clinical Endodontics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 7–18. [Google Scholar]
- Camilleri, J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent. Mater. 2011, 27, 836–844. [Google Scholar] [CrossRef]
- Camilleri, J. Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 2007, 40, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Hiremath, G.S.; Kulkarni, R.D.; Naik, B.D. Evaluation of minimal inhibitory concentration of two new materials using tube dilution method: An in vitro study. J. Conserv. Dent. JCD 2015, 18, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Kangarlou, A.; Sofiabadi, S.; Yadegari, Z.; Asgary, S. Antifungal effect of calcium enriched mixture cement against Candida albicans. Iran. Endod. J. 2009, 4, 101–105. [Google Scholar] [PubMed]
- Kangarlou, A.; Sofiabadi, S.; Asgary, S.; Mahjour, F.; Dianat, O.; Yadegari, Z.; Younessian, F. Assessment of antifungal activity of ProRoot mineral trioxide aggregate and mineral trioxide aggregate-Angelus. Dent. Res. J. 2012, 9, 256–260. [Google Scholar]
- Ramage, G.; Walle, K.V.; Wickes, B.L.; López-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicansbiofilms. Antimicrob. Agents Chemother. 2001, 45, 2475–2479. [Google Scholar] [CrossRef] [Green Version]
- Ceri, H.; Olson, M.; Stremick, C.; Read, R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Lovato, K.F.; Sedgley, C.M. Antibacterial activity of endosequence root repair material and proroot MTA against clinical isolates of Enterococcus faecalis. J. Endod. 2011, 37, 1542–1546. [Google Scholar] [CrossRef]
- Damlar, I.; Ozcan, E.; Erkan, Y.; Yalcin, M.; Celik, S. Antimicrobial effects of several calcium silicate-based root-end filling materials. Dent. Mater. J. 2014, 33, 453–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.J.-Y.; Kim, M.-O.; Lee, K.-S.; Lee, D.-Y.; Shin, J.-H. An in vitro evaluation of the antibacterial properties of three mineral trioxide aggregate (MTA) against five oral bacteria. Arch. Oral Biol. 2015, 60, 1497–1502. [Google Scholar] [CrossRef]
- Donyavi, Z.; Heidari, N.; Khoshbin, E.; Shahriari, S.; Farhadian, M.; Mashouf, R.Y.; Esmaeilzadeh, M. Antibacterial activity of mineral trioxide aggregate, new endodontic cement, Retro MTA and Ortho MTA against common endodontic pathogens. Indo Am. J. Pharm. Sci. 2017, 4, 4720–4728. [Google Scholar]
- Atom, J.; Devi, N.R.; Lairenlakpam, R.; Al Wadei, M.H.D.; Hakami, A.R.; BinShaya, A.S. Antimicrobial efficacy of different pulp-capping materials against Enterococcus faecalis: An In vitro study. J. Pharm. Bioallied Sci. 2021, 13, 608–611. [Google Scholar] [CrossRef]
- Bossù, M.; Mancini, P.; Bruni, E.; Uccelletti, D.; Preziosi, A.; Rulli, M.; Relucenti, M.; Donfrancesco, O.; Iaculli, F.; Di Giorgio, G. Biocompatibility and Antibiofilm Properties of Calcium Silicate-Based Cements: An In Vitro Evaluation and Report of Two Clinical Cases. Biology 2021, 10, 470. [Google Scholar] [CrossRef]
- Jardine, A.P.; Montagner, F.; Quintana, R.M.; Zaccara, I.M.; Kopper, P.M.P. Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: A confocal laser microscopy study. Clin. Oral Investig. 2019, 23, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.; Brine, C.; Castle, J.; Zikakis, J. Chitin: New facets of research. Science 1981, 212, 749–753. [Google Scholar] [CrossRef]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goy, R.C.; Morais, S.T.; Assis, O.B. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. De Farmacogn. 2016, 26, 122–127. [Google Scholar] [CrossRef] [Green Version]
- del Carpio-Perochena, A.; Kishen, A.; Shrestha, A.; Bramante, C.M. Antibacterial properties associated with chitosan nanoparticle treatment on root dentin and 2 types of endodontic sealers. J. Endod. 2015, 41, 1353–1358. [Google Scholar] [CrossRef]
- Yadav, P.; Chaudhary, S.; Saxena, R.K.; Talwar, S.; Yadav, S. Evaluation of Antimicrobial and Antifungal efficacy of Chitosan as endodontic irrigant against Enterococcus Faecalis and Candida Albicans Biofilm formed on tooth substrate. J. Clin. Exp. Dent. 2017, 9, e361–e367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Kim, M.-H.; Park, S.-C.; Cheong, H.; Jang, M.-K.; Nah, J.-W.; Hahm, K.-S. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J. Microbiol. Biotechnol. 2008, 18, 1729–1734. [Google Scholar]
- Beck, B.H.; Yildirim-Aksoy, M.; Shoemaker, C.A.; Fuller, S.A.; Peatman, E. Antimicrobial activity of the biopolymer chitosan against Streptococcus iniae. J. Fish. Dis. 2019, 42, 371–377. [Google Scholar] [CrossRef]
- del Carpio-Perochena, A.; Kishen, A.; Felitti, R.; Bhagirath, A.Y.; Medapati, M.R.; Lai, C.; Cunha, R.S. Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against single-and multispecies biofilms: An in vitro and in situ study. J. Endod. 2017, 43, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Beshr, K.A.; Abdelrahim, R.A. Antibacterial efficacy of Allium sativum (garlic) and chitosan incorporated into two root canal sealers against Enterococcus faecalis: Comparative study. Tanta Dent. J. 2019, 16, 94–98. [Google Scholar]
- del Carpio-Perochena, A.; Bramante, C.M.; Duarte, M.A.H.; de Moura, M.R.; Aouada, F.A.; Kishen, A. Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor. Dent. Endod. 2015, 40, 195–201. [Google Scholar] [CrossRef]
- Abusrewil, S.; Brown, J.L.; Delaney, C.D.; Butcher, M.C.; Kean, R.; Gamal, D.; Scott, J.A.; McLean, W.; Ramage, G. Filling the Void: An Optimized Polymicrobial Interkingdom Biofilm Model for Assessing Novel Antimicrobial Agents in Endodontic Infection. Microorganisms 2020, 8, 1988. [Google Scholar] [CrossRef]
- Raghavendra, S.S.; Jadhav, G.R.; Gathani, K.M.; Kotadia, P. Bioceramics in endodontics—A review. J. Istanb. Univ. Fac. Dent. 2017, 51, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Luo, T.; Lee, K.H.; Guerreiro, D.; Botero, T.M.; McDonald, N.J.; Rickard, A.H. Deciphering endodontic microbial communities by next-generation sequencing. J. Endod. 2018, 44, 1080–1087. [Google Scholar] [CrossRef]
- Mergoni, G.; Percudani, D.; Lodi, G.; Bertani, P.; Manfredi, M. Prevalence of Candida Species in Endodontic Infections: Systematic Review and Meta-analysis. J. Endod. 2018, 44, 1616–1625. [Google Scholar] [CrossRef]
- Zehnder, M.; Waltimo, T.; Sener, B.; Söderling, E. Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Pappen, F.G.; Haapasalo, M. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J. Endod. 2009, 35, 221–224. [Google Scholar] [CrossRef]
- Smith, J.; Smith, A.; Shelton, R.; Cooper, P. Antibacterial activity of dentine and pulp extracellular matrix extracts. Int. Endod. J. 2012, 45, 749–755. [Google Scholar] [CrossRef]
- Arana-Chavez, V.E.; Massa, L.F. Odontoblasts: The cells forming and maintaining dentine. Int. J. Biochem. Cell Biol. 2004, 36, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H.; Avilés-Reyes, A.; Scott-Anne, K.; Gregoire, S.; Watson, G.E.; Sampson, E.; Progulske-Fox, A.; Koo, H.; Bowen, W.H.; Lemos, J.A. The collagen binding protein Cnm contributes to oral colonization and cariogenicity of Streptococcus mutans OMZ175. Infect. Immun. 2015, 83, 2001–2010. [Google Scholar] [CrossRef] [Green Version]
- Love, R.; Jenkinson, H. Invasion of dentinal tubules by oral bacteria. Crit. Rev. Oral Biol. Med. 2002, 13, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swimberghe, R.; Coenye, T.; De Moor, R.; Meire, M. Biofilm model systems for root canal disinfection: A literature review. Int. Endod. J. 2019, 52, 604–628. [Google Scholar] [CrossRef] [Green Version]
- Chivatxaranukul, P.; Dashper, S.; Messer, H. Dentinal tubule invasion and adherence by Enterococcus faecalis. Int. Endod. J. 2008, 41, 873–882. [Google Scholar] [CrossRef]
- Bachmann, L.; Gomes, A.S.; Zezell, D.M. Collagen absorption bands in heated and rehydrated dentine. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2005, 62, 1045–1049. [Google Scholar] [CrossRef]
- Roberts, A.E.; Kragh, K.N.; Bjarnsholt, T.; Diggle, S.P. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J. Mol. Biol. 2015, 427, 3646–3661. [Google Scholar] [CrossRef] [PubMed]
- Thein, Z.M.; Samaranayake, Y.H.; Samaranayake, L.P. Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch. Oral Biol. 2006, 51, 672–680. [Google Scholar] [CrossRef]
- Bor, B.; Cen, L.; Agnello, M.; Shi, W.; He, X. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Sci. Rep. 2016, 6, 27956. [Google Scholar] [CrossRef] [PubMed]
- Kean, R.; Rajendran, R.; Haggarty, J.; Townsend, E.M.; Short, B.; Burgess, K.E.; Lang, S.; Millington, O.; Mackay, W.G.; Williams, C. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Front. Microbiol. 2017, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.E.; Cruz, M.R.; Garsin, D.A.; Lorenz, M.C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 2017, 114, 4507–4512. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, A.L.; Lemus, A.A.; Solomon, A.P.; Valm, A.M.; Neelakantan, P. Interactions between Candida albicans and Enterococcus faecalis in an Organotypic Oral Epithelial Model. Microorganisms 2020, 8, 1771. [Google Scholar] [CrossRef]
- Young, T.; Alshanta, O.-A.; Kean, R.; Bradshaw, D.; Pratten, J.; Williams, C.; Woodall, C.; Ramage, G.; Brown, J.L. Candida albicans as an essential “keystone” component within polymicrobial oral biofilm models? Microorganisms 2021, 9, 59. [Google Scholar] [CrossRef]
- Harriott, M.M.; Noverr, M.C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance. Antimicrob. Agents Chemother. 2009, 53, 3914–3922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hezaimi, K.; Al-Shalan, T.A.; Naghshbandi, J.; Oglesby, S.; Simon, J.H.; Rotstein, I. Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J. Endod. 2006, 32, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Abou ElReash, A.; Hamama, H.; Eldars, W.; Lingwei, G.; El-Din, A.M.Z.; Xiaoli, X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health 2019, 19, 235. [Google Scholar] [CrossRef] [Green Version]
- Tsai, G.-J.; Su, W.-H. Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot. 1999, 62, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Aleanizy, F.S.; Alqahtani, F.Y.; Shazly, G.; Alfaraj, R.; Alsarra, I.; Alshamsan, A.; Abdulhady, H.G. Measurement and evaluation of the effects of pH gradients on the antimicrobial and antivirulence activities of chitosan nanoparticles in Pseudomonas aeruginosa. Saudi Pharm. J. 2018, 26, 79–83. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.-g.; Xue, Y.-p.; Liu, C.-s.; Yu, L.-j.; Ji, Q.-x.; Cha, D.S.; Park, H.J. Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Front. Mater. Sci. China 2008, 2, 214–220. [Google Scholar] [CrossRef]
- Wani, T.U.; Pandith, A.H.; Sheikh, F.A. Polyelectrolytic nature of chitosan: Influence on physicochemical properties and synthesis of nanoparticles. J. Drug Deliv. Sci. Technol. 2021, 65, 102730. [Google Scholar] [CrossRef]
- de Dios Teruel, J.; Alcolea, A.; Hernández, A.; Ruiz, A.J.O. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch. Oral Biol. 2015, 60, 768–775. [Google Scholar] [CrossRef]
- Sherry, L.; Lappin, G.; O’Donnell, L.E.; Millhouse, E.; Millington, O.R.; Bradshaw, D.J.; Axe, A.S.; Williams, C.; Nile, C.J.; Ramage, G. Viable compositional analysis of an eleven species oral polymicrobial biofilm. Front. Microbiol. 2016, 7, 912. [Google Scholar]
- Kean, R.; Delaney, C.; Sherry, L.; Borman, A.; Johnson, E.M.; Richardson, M.D.; Rautemaa-Richardson, R.; Williams, C.; Ramage, G. Transcriptome Assembly and Profiling of Candida auris Reveals Novel Insights into Biofilm-Mediated Resistance. Msphere 2018, 3, e00334-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
4-Species Model | 3-Species Model | Mono-Species Model | ||||
---|---|---|---|---|---|---|
Bacteria | (%) * | C. albicans | (%) * | Bacteria | C. albicans | |
Dentine (Total) | 4.54 × 106 | 90.21 | 4.92 × 105 | 9.79 | 6.84 × 106 | 2.85 × 105 |
Dentine (Live) | 1.48 × 106 | 86.04 | 2.40 × 105 | 13.96 | 4.28 × 105 | 1.93 × 105 |
MTA (Total) | 2.90× 107 | 92.0 | 2.53 × 106 | 8.0 | 1.63 × 107 | 4.62 × 106 |
MTA (Live) | 2.696 × 106 | 69.17 | 1.20 × 106 | 30.83 | 2.68 × 106 | 2.70 × 106 |
Biodentine (Total) | 1.66 × 108 | 97.01 | 5.10 × 106 | 2.99 | 4.90 × 107 | 4.52 × 106 |
Biodentine (Live) | 6.60 × 106 | 80.16 | 1.63 × 106 | 19.84 | 4.81 × 106 | 2.92 × 106 |
4-Species Model | 3-Species Model | Mono-Species Model | ||||
---|---|---|---|---|---|---|
Bacteria | (%) * | C. albicans | (%) * | Bacteria | C. albicans | |
Biodentine (unaltered) | 6.60 × 106 | 80.16 | 1.63 × 106 | 19.84 | 4.81 × 106 | 2.92× 106 |
Biodentine (2.5%) | 3.33× 106 | 92.22 | 2.81× 105 | 7.78 | 7.124 × 105 | 4.98 × 105 |
Biodentine (5%) | 7.120 × 105 | 91.30 | 6.79 × 104 | 8.70 | 1.42 × 105 | 8.39 × 105 |
Product | Composition | Manufacturer |
---|---|---|
White ProRoot Mineral Trioxide Aggregate (W-MTA) | Powder: tricalcium silicate, dicalcium silicate, bismuth oxide, tricalcium aluminate, calcium sulphate dihydrate or gypsum. Liquid: water | Dentsply Tulsa Dental Specialties, Johnson City, WA, USA |
Biodentine | Powder: tricalcium silicate, dicalcium silicate, calcium carbonate, zirconium oxide, calcium oxide, iron oxide. Liquid: calcium chloride, a hydrosoluble (water-soluble) polymer, water. | Septodont, Saint-Maur-des-Fossés, France |
Organism | Primer | Forward Primer 5′-3′ | Reverse Primer 5′-3′ |
---|---|---|---|
C. albicans | 18S | CTCGTAGTTGAACCTTGGGC | GGCCTGCTTTGAACACTCTA |
Bacteria | 16S | TCCTACGGGAGGCAGCAGT | GGACTACCAGGGTATCTAATCCTGTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abusrewil, S.; Brown, J.L.; Delaney, C.; Butcher, M.C.; Tiba, M.; Scott, J.A.; Ramage, G.; McLean, W. Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model. Antibiotics 2021, 10, 1317. https://doi.org/10.3390/antibiotics10111317
Abusrewil S, Brown JL, Delaney C, Butcher MC, Tiba M, Scott JA, Ramage G, McLean W. Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model. Antibiotics. 2021; 10(11):1317. https://doi.org/10.3390/antibiotics10111317
Chicago/Turabian StyleAbusrewil, Sumaya, Jason L. Brown, Christopher Delaney, Mark C. Butcher, Mohammed Tiba, J. Alun Scott, Gordon Ramage, and William McLean. 2021. "Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model" Antibiotics 10, no. 11: 1317. https://doi.org/10.3390/antibiotics10111317
APA StyleAbusrewil, S., Brown, J. L., Delaney, C., Butcher, M. C., Tiba, M., Scott, J. A., Ramage, G., & McLean, W. (2021). Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model. Antibiotics, 10(11), 1317. https://doi.org/10.3390/antibiotics10111317