Antimicrobial Resistance and Molecular Epidemiological Characteristics of Methicillin-Resistant and Susceptible Staphylococcal Isolates from Oral Cavity of Dental Patients and Staff in Northern Japan
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Staphylococcal Isolates from Study Subjects
2.2. Genotypes, Antimicrobial Resistance, Virulence Factors and Resistance Genes in CoPS
2.3. CoNS Species, Prevalence of MR-CoNS and Antimicrobial Resistance
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Study Subjects and Isolation of Staphylococcus
4.3. Antimicrobial Susceptibility Testing
4.4. Genetic Typing
4.5. Detection of Virulence Factors and Drug Resistance Genes
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossley, K.B.; Jefferson, K.K.; Archer, G.L.; Fowler, V.G., Jr. (Eds.) Staphylococci in Human Disease, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2009. [Google Scholar]
- Tong, S.Y.; Schaumburg, F.; Ellington, M.J.; Corander, J.; Pichon, B.; Leendertz, F.; Bentley, S.D.; Parkhill, J.; Holt, D.C.; Peters, G. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: The non-pigmented Staphylococcus argenteus sp. nov. and the nonhuman primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Schaumburg, F.; Kearns, A.; Larsen, A.R.; Lindsay, J.A.; Skov, R.L.; Westh, H. Implications of identifying the recently defined members of the Staphylococcus aureus complex S. argenteus and S. schweitzeri: A position paper of members of the ESCMID Study Group for Staphylococci and Staphylococcal Diseases (ESGS). Clin. Microbiol. Infect. 2019, 25, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.A.; Carman, R.J.; Krakauer, T.; Stiles, B.G. Staphylococcus aureus: The toxic presence of a pathogen extraordinaire. Curr. Med. Chem. 2009, 16, 4003–4019. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Hirose, M.; Ike, M.; Ito, M.; Kobayashi, N. Distribution of virulence factors and resistance determinants in three genotypes of Staphylococcus argenteus clinical isolates in Japan. Pathogens 2021, 10, 163. [Google Scholar] [CrossRef]
- Schilcher, K.; Horswill, A.R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef] [Green Version]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [Green Version]
- Urushibara, N.; Aung, M.S.; Kawaguchiya, M.; Kobayashi, N. Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J. Antimicrob. Chemother. 2020, 75, 46–50. [Google Scholar] [CrossRef]
- Diep, B.A.; Gill, S.R.; Chang, R.F.; Phan, T.H.; Chen, J.H.; Davidson, M.G.; Lin, F.; Lin, J.; Carleton, H.A.; Mongodin, E.F.; et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 2006, 367, 731–739. [Google Scholar] [CrossRef]
- Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef]
- Asundi, A.; Stanislawski, M.; Mehta, P.; Baron, A.E.; Mull, H.J.; Ho, P.M.; Zimetbaum, P.J.; Gupta, K.; Branch-Elliman, W. Real-world effectiveness of infection prevention interventions for reducing procedure-related cardiac device infections: Insights from the veterans affairs clinical assessment reporting and tracking program. Infect. Control Hosp. Epidemiol. 2019, 40, 855–862. [Google Scholar] [CrossRef]
- Marzec, N.S.; Bessesen, M.T. Risk and outcomes of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia among patients admitted with and without MRSA nares colonization. Am. J. Infect. Control 2016, 44, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Saleh, K.; Sonesson, A.; Persson, B.; Riesbeck, K.; Schmidtchen, A. A descriptive study of bacterial load of full-thickness surgical wounds in dermatologic surgery. Dermatol. Surg. 2011, 37, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Turtiainen, J.; Hakala, T.; Hakkarainen, T.; Karhukorpi, J. The impact of surgical wound bacterial colonization on the incidence of surgical site infection after lower limb vascular surgery: A prospective observational study. Eur. J. Vasc. Endovasc. Surg. 2014, 47, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Marincola, G.; Liong, O.; Schoen, C.; Abouelfetouh, A.; Hamdy, A.; Wencker, F.D.R.; Marciniak, T.; Becker, K.; Köck, R.; Ziebuhr, W. Antimicrobial resistance profiles of coagulase-negative staphylococci in community-based healthy individuals in Germany. Front. Public Health 2021, 9, 684456. [Google Scholar] [CrossRef]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Percival, R.S.; Challacombe, S.J.; Marsh, P.D. Age-related microbiological changes in the salivary and plaque microflora of healthy adults. J. Med. Microbiol. 1991, 35, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.A.; Ritchie, S.; Keren, B.; Harrington, M.; Thomas, M.G.; Upton, A.; Lennon, D.; Leversha, A. Persistence, discordance and diversity of Staphylococcus aureus nasal and oropharyngeal colonization in school-aged children. Pediatr. Infect. Dis. J. 2016, 35, 744–748. [Google Scholar] [CrossRef]
- Nilsson, P.; Ripa, T. Staphylococcus aureus throat colonization is more frequent than colonization in the anterior nares. J. Clin. Microbiol. 2006, 44, 3334–3339. [Google Scholar] [CrossRef] [Green Version]
- Petti, S.; Kakisina, N.; Volgenant, C.M.; Messano, G.A.; Barbato, E.; Passariello, C.; de Soet, J.J. Low methicillin-resistant Staphylococcus aureus carriage rate among Italian dental students. Am. J. Infect. Control 2015, 43, e89–e91. [Google Scholar] [CrossRef]
- Esposito, S.; Terranova, L.; Zampiero, A.; Ierardi, V.; Rios, W.P.; Pelucchi, C.; Principi, N. Oropharyngeal and nasal Staphylococcus aureus carriage by healthy children. BMC Infect. Dis. 2014, 14, 723. [Google Scholar] [CrossRef] [Green Version]
- Kearney, A.; Kinnevey, P.; Shore, A.; Earls, M.; Poovelikunnel, T.T.; Brennan, G.; Humphreys, H.; Coleman, D.C. The oral cavity revealed as a significant reservoir of Staphylococcus aureus in an acute hospital by extensive patient, healthcare worker and environmental sampling. J. Hosp. Infect. 2020, 105, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, O.L.; McGrath, C.; Bandara, H.M.; Li, L.S.; Samaranayake, L.P. Oral health promotion interventions on oral reservoirs of Staphylococcus aureus: A systematic review. Oral Dis. 2012, 18, 244–254. [Google Scholar] [CrossRef]
- McCormack, M.G.; Smith, A.J.; Akram, A.N.; Jackson, M.; Robertson, D.; Edwards, G. Staphylococcus aureus and the oral cavity: An overlooked source of carriage and infection? Am. J. Infect. Control 2015, 43, 35–37. [Google Scholar] [CrossRef]
- Uwemedimo, J.; Fitzgerald-Hughes, D.; Kinnevey, P.; Shore, A.; Coleman, D.; Humphreys, H.; Poovelikunnel, T.T. Screening the nose, throat and the naso-pharynx for methicillin-resistant Staphylococcus aureus: A pilot study. J. Infect. Prev. 2020, 21, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.K.; Namineni, S.; Cheruku, S.R.; Penmetsa, C.; Penmetcha, S.; Mallineni, S.K. Prevalence of community-cssociated methicillin-resistant Staphylococcus aureus in oral and nasal cavities of 4 to 13-year-old rural school children: A cross-sectional study. Contemp. Clin. Dent. 2019, 10, 99–104. [Google Scholar]
- Hirose, M.; Aung, M.S.; Fukuda, A.; Murata, Y.; Saitoh, M.; Kobayashi, N. Prevalence and genetic characteristics of methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci isolated from oral cavity of healthy children in Japan. Microb. Drug Resist. 2019, 25, 400–407. [Google Scholar] [CrossRef]
- Diep, B.A.; Stone, G.G.; Basuino, L.; Graber, C.J.; Miller, A.; des Etages, S.A.; Jones, A.; Palazzolo-Balance, A.M.; Perdreau-Remington, F.; Sensabaugh, G.F.; et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: Convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 2008, 197, 1523–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwao, Y.; Ishii, R.; Tomita, Y.; Shibuya, Y.; Takano, T.; Hung, W.C.; Higuchi, W.; Isobe, H.; Nishiyama, A.; Yano, M.; et al. The emerging ST8 methicillin-resistant Staphylococcus aureus clone in the community in Japan: Associated infections, genetic diversity, and comparative genomics. J. Infect. Chemother. 2012, 18, 228–240. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Aung, T.S.; Mya, S.; San, T.; Nwe, K.M.; Kobayashi, N. Virulence factors and genetic characteristics of methicillinresistant and -susceptible Staphylococcus aureus isolates in Myanmar. Microb. Drug Resist. 2011, 17, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Donkor, E.S.; Kotey, F.C. Methicillin-Resistant Staphylococcus aureus in the oral cavity: Implications for antibiotic prophylaxis and surveillance. Infect. Dis. 2020, 13, 1178633720976581. [Google Scholar]
- Blomqvist, S.; Leonhardt, Å.; Arirachakaran, P.; Carlen, A.; Dahlén, G. Phenotype, genotype, and antibiotic susceptibility of Swedish and Thai oral isolates of Staphylococcus aureus. J. Oral Microbiol. 2015, 7, 26250. [Google Scholar] [CrossRef]
- Kim, G.Y.; Lee, C.H. Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis. J. Periodontal Implant Sci. 2015, 45, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koukos, G.; Sakellari, D.; Arsenakis, M.; Tsalikis, L.; Slini, T.; Konstantinidis, A. Prevalence of Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) in the oral cavity. Arch. Oral Biol. 2015, 60, 1410–1415. [Google Scholar] [CrossRef]
- Kwapisz, E.; Garbacz, K.; Kosecka-Strojek, M.; Schubert, J.; Bania, J.; Międzobrodzki, J. Presence of egc-positive major clones ST 45, 30 and 22 among methicillin-resistant and methicillin-susceptible oral Staphylococcus aureus strains. Sci. Rep. 2020, 10, 18889. [Google Scholar] [CrossRef]
- Palazzo, I.C.V.; Gir, E.; Pimenta, F.C.; de Carvalho, M.J.; da Silva Canini, S.R.M.; Cruz, E.D.; da Costa Darini, A.L. Does the oral cavity represent an important reservoir for MRSA in healthcare workers? J. Hosp. Infect. 2010, 76, 277–278. [Google Scholar] [CrossRef]
- Hata, E.; Katsuda, K.; Kobayashi, H.; Uchida, I.; Tanaka, K.; Eguchi, M. Genetic variation among Staphylococcus aureus strains from bovine milk and their relevance to methicillin-resistant isolates from humans. J. Clin. Microbiol. 2010, 48, 2130–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saei, H.D.; Panahi, M. Genotyping and antimicrobial resistance of Staphylococcus aureus isolates from dairy ruminants: Differences in the distribution of clonal types between cattle and small ruminants. Arch. Microbiol. 2020, 202, 115–125. [Google Scholar] [CrossRef]
- Verkade, E.; Kluytmans, J. Livestock-associated Staphylococcus aureus CC398: Animal reservoirs and human infections. Infect. Genet. Evol. 2014, 21, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Kawaguchiya, M.; Urushibara, N.; Sumi, A.; Ito, M.; Kudo, K.; Morimoto, S.; Hosoya, S.; Kobayashi, N. Molecular characterization of methicillin-resistant Staphylococcus aureus from outpatients in northern Japan: Increasing tendency of ST5/ST764 MRSA-IIa with arginine catabolic mobile element. Microb. Drug Resist. 2017, 23, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Shinagawa, M.; Takahashi, S.; Kobayashi, N. Clonal diversity and genetic characteristics of methicillin-resistant Staphylococcus aureus isolates from a tertiary care hospital in Japan. Microb. Drug Resist. 2019, 25, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Hirose, M.; Ito, M.; Habadera, S.; Kobayashi, N. Clonal diversity of methicillin-resistant Staphylococcus aureus (MRSA) from bloodstream infections in northern Japan: Identification of spermidine N-acetyltransferase gene (speG) in staphylococcal cassette chromosomes (SCCs) associated with type II and IV SCCmec. J. Glob. Antimicrob. Resist. 2021, 24, 207–214. [Google Scholar]
- Taniguchi, Y.; Koide, S.; Maeyama, Y.; Tamai, K.; Hayashi, W.; Tanaka, H.; Iimura, M.; Suzuki, M.; Nagano, Y.; Arakawa, Y.; et al. Predominance of methicillin-resistant Staphylococcus aureus SCCmec type II-CC5 and SCCmec type IV-CC1/CC8 among companion animal clinical isolates in Japan: Findings from phylogenetic comparison with human clinical isolates. J. Glob. Antimicrob. Resist. 2020, 20, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Ishitobi, N.; Wan, T.W.; Khokhlova, O.E.; Teng, L.J.; Yamamori, Y.; Yamamoto, T. Fatal case of ST8/SCCmecIVl community-associated methicillin-resistant Staphylococcus aureus infection in Japan. New Microbes New Infect. 2018, 26, 30–36. [Google Scholar] [CrossRef]
- Kitagawa, H.; Ohge, H.; Hisatsune, J.; Kajihara, T.; Katayama, K.; Takahashi, S.; Sueda, T.; Sugai, M. Prosthetic valve endocarditis caused by ST8 SCCmecIVl type community-associated methicillin-resistant Staphylococcus aureus. Intern. Med. 2019, 58, 743–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, T.W.; Teng, L.J.; Yamamoto, T. Structures of a highly variable cell-wall anchored protein-encoding the spj gene from ST8/SCCmecIVl community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA/J) isolated from 2003 onwards: An indicator of a strongly invasive pathotype. Microbiol. Immunol. 2019, 63, 186–193. [Google Scholar] [CrossRef]
- Carrel, M.; Perencevich, E.N.; David, M.Z. USA300 Methicillin-Resistant Staphylococcus aureus, United States, 2000–2013. Emerg. Infect. Dis. 2015, 21, 1973–1980. [Google Scholar] [CrossRef]
- Mediavilla, J.R.; Chen, L.; Mathema, B.; Kreiswirth, B.N. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr. Opin. Microbiol. 2012, 15, 588–595. [Google Scholar] [CrossRef]
- Shibuya, Y.; Hara, M.; Higuchi, W.; Takano, T.; Iwao, Y.; Yamamoto, T. Emergence of the community-acquired methicillin-resistant Staphylococcus aureus USA300 clone in Japan. J. Infect. Chemother. 2008, 14, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchiya, M.; Urushibara, N.; Yamamoto, D.; Yamashita, T.; Shinagawa, M.; Watanabe, N.; Kobayashi, N. Characterization of PVL/ACME-positive methicillin-resistant Staphylococcus aureus (genotypes ST8-MRSA-IV and ST5-MRSA-II) isolated from a university hospital in Japan. Microb. Drug Resist. 2013, 19, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Takadama, S.; Nakaminami, H.; Sato, A.; Shoshi, M.; Fujii, T.; Noguchi, N. Dissemination of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus USA300 clone in multiple hospitals in Tokyo, Japan. Clin. Microbiol. Infect. 2018, 24, 1211.e1–1211.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immergluck, L.C.; Jain, S.; Ray, S.M.; Mayberry, R.; Satola, S.; Parker, T.C.; Yuan, K.; Mohammed, A.; Jerris, R.C. Risk of skin and soft tissue infections among children found to be Staphylococcus aureus MRSA USA300 carriers. West. J. Emerg. Med. 2017, 18, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Moriya, M.; Tsurukiri, J.; Nakaminami, H.; Yamanaka, H.; Kobayashi, T.; Tsubouchi, N.; Yokomori, R.; Takadama, S.; Noguchi, N.; Matsumoto, T.; et al. A risk as an infection route: Nasal colonization of methicillin-resistant Staphylococcus aureus USA300 clone among contact sport athletes in Japan. J. Infect. Chemother. 2020, 26, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Read, T.D.; Petit, R.A., 3rd; Yin, Z.; Montgomery, T.; McNulty, M.C.; David, M.Z. USA300 Staphylococcus aureus persists on multiple body sites following an infection. BMC Microbiol. 2018, 18, 206. [Google Scholar] [CrossRef]
- Ruimy, R.; Angebault, C.; Djossou, F.; Dupont, C.; Epelboin, L.; Jarraud, S.; Lefevre, L.A.; Bes, M.; Lixandru, B.E.; Bertine, M.; et al. Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans? J. Infect. Dis. 2010, 202, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.S.; San, T.; Aye, M.M.; Mya, S.; Maw, W.W.; Zan, K.N.; Htut, W.H.W.; Kawaguchiya, M.; Urushibara, N.; Kobayashi, N. Prevalence and genetic characteristics of Staphylococcus aureus and Staphylococcus argenteus isolates harboring Panton-Valentine Leukocidin, enterotoxins, and TSST-1 genes from food handlers in Myanmar. Toxins 2017, 9, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Takahashi, S.; Ike, M.; Ito, M.; Habadera, S.; Kobayashi, N. Molecular epidemiological characterization of Staphylococcus argenteus clinical isolates in Japan: Identification of three clones (ST1223, ST2198, and ST2550) and a novel staphylocoagulase Genotype XV. Microorganisms 2019, 7, 389. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, Y.; Umeda, K.; Yonogi, S.; Nakamura, H.; Yamamoto, K.; Kumeda, Y.; Kawatsu, K. Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes. Int. J. Food Microbiol. 2018, 265, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Onishi, M.; Urushibara, N.; Kawaguchiya, M.; Ghosh, S.; Shinagawa, M.; Watanabe, N.; Kobayashi, N. Prevalence and genetic diversity of arginine catabolic mobile element (ACME) in clinical isolates of coagulase-negative staphylococci: Identification of ACME type I variants in Staphylococcus epidermidis. Infect. Genet. Evol. 2013, 20, 381–388. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chen, P.Y.; Wang, J.T.; Chang, S.C. Prevalence of fosfomycin resistance and gene mutations in clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrob. Resist. Infect. Control. 2020, 9, 135. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, X.; Zhou, X.; Jiang, S.; Li, Y.; Ahmad, O.; Qi, L.; Li, P.; Li, J. Taxonomic distribution of FosB in human-microbiota and activity comparison of fosfomycin resistance. Front. Microbiol. 2019, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Barbier, F.; Lebeaux, D.; Hernandez, D.; Delannoy, A.S.; Caro, V.; François, P.; Schrenzel, J.; Ruppé, E.; Gaillard, K.; Wolff, M.; et al. High prevalence of the arginine catabolic mobile element in carriage isolates of methicillin-resistant Staphylococcus epidermidis. J. Antimicrob. Chemother. 2011, 66, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, N.; Wu, H.; Kojima, K.; Taniguchi, K.; Urasawa, S.; Uehara, N.; Omizu, Y.; Kishi, Y.; Yagihashi, A.; Kurokawa, I. Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction. Epidemiol. Infect. 1994, 113, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for simultaneous identification of community-associated methicillin-resistant Staphylococcus aureus strains USA300 and USA400 and detection of mecA and panton-valentine leukocidin genes, with discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J. Clin. Microbiol. 2018, 46, 1118–1122. [Google Scholar]
- Zhang, D.F.; Xu, X.; Song, Q.; Bai, Y.; Zhang, Y.; Song, M.; Shi, C.; Shi, X. Identification of Staphylococcus argenteus in Eastern China based on a nonribosomal peptide synthetase (NRPS) gene. Future Microbiol. 2016, 11, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milheiriço, C.; Oliveira, D.C.; de Lencastre, H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: ‘SCCmec IV multiplex’. J. Antimicrob. Chemother. 2007, 60, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Strommenger, B.; Cuny, C.; Werner, G.; Witte, W. Obvious lack of association between dynamics of epidemic methicillin-resistant Staphylococcus aureus in central Europe and agr specificity groups. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 15–19. [Google Scholar]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Shopsin, B.; Gomez, M.; Montgomery, S.O.; Smith, D.H.; Waddington, M.; Dodge, D.E.; Bost, D.A.; Riehman, M.; Naidich, S.; Kreiswirth, B.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.S.; San, T.; Urushibara, N.; San, N.; Oo, W.M.; Soe, P.E.; Kyaw, Y.; Ko, P.M.; Thu, P.P.; Hlaing, M.S.; et al. Molecular characterization of methicillin-susceptible and -resistant Staphylococcus aureus harboring Panton-Valentine Leukocidin-encoding bacteriophages in a tertiary care hospital in Myanmar. Microb. Drug Resist. 2020, 26, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ito, M.; Habadera, S.; Kobayashi, N. Prevalence and genetic diversity of staphylococcal enterotoxin (-Like) genes sey, selw, selx, selz, sel26 and sel27 in community-acquired methicillin-resistant Staphylococcus aureus. Toxins 2020, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Aung, M.S.; Paul, S.K.; Ahmed, S.; Haque, N.; Khan, E.R.; Barman, T.K.; Islam, A.; Abedin, S.; Sultana, C.; et al. Drug resistance determinants in clinical isolates of Enterococcus faecalis in Bangladesh: Identification of oxazolidinone resistance gene optrA in ST59 and ST902 lineages. Microorganisms 2020, 8, 1240. [Google Scholar] [CrossRef] [PubMed]
Study Subjects | Number of S. aureus/S. argenteus-Positive Subjects in Any Site (%) | Site | Number of Isolates [mecA-Positive] | ||
---|---|---|---|---|---|
S. aureus | S. argenteus | CoNS | |||
staffs (n = 42) | 16 (38.1) | oral cavity (saliva) | 14 [1] | 6 | |
hand (skin) | 10 | 37 | |||
Patients with mild dental disease (n = 74) | 34 (45.9) | oral cavity (saliva) | 30 [2] | 3 | 5 [1] |
hand (skin) | 13 | 1 | 79 [7] | ||
Patients with severe dental disease *1 (n = 17) | 9 (52.9) | oral cavity (saliva) | 7 | 4 [1] | |
dental disease site | 4 | 6 | |||
hand (skin) | 5 | 25 [2] | |||
total (n = 133) | 59 (44.4) | 83 [3] | 4 [0] | 162 [11] |
S. aureus/ S. argenteus | Coa Genotype | No. of Isolates in Coa-Type (%) | ST (CC) | No. of Isolates in ST | SCCmec type [MRSA] | Antimicrobial Resistance Profile *2,3 | Drug Resistance Genes *4 |
---|---|---|---|---|---|---|---|
S. aureus (n = 83) | IIa | ST5 (CC5) | 1 | All susceptible | |||
3 (3.6) | ST26 | 1 | AMP | blaZ | |||
ST1607 (CC97) | 1 | AMP | blaZ | ||||
IIIa | 11 (13.3) | ST8 (CC8) | 10 | SCCmec IVl (1 isolate) | OXA (10%), FOX (10%), AMP (60%), ERY (20%) CLI-i (20%) | blaZ (60%), erm(C) (10%), erm(A) (10%) | |
ST6562 *1 (CC8) | 1 | SCCmec IVa | OXA, FOX, AMP, ERY, LVX | blaZ, aph(3’)-IIIa, msrA | |||
IVa | 8 (9.6) | ST30 (CC30) | 8 | AMP, ERY, CLI-i, GEN (12.5%) | blaZ, erm(A), aac(6’)-Ie-aph(2’’)-Ia (12.5%) | ||
Va | 6 (7.2) | ST121 (CC121) | 6 | AMP (66.7%), ERY (33.3%), CLI-i (33.3%), GEN (66.7%), LVX (16.7%) | blaZ (66.7%), erm(C) (33.3%), aac(6’)-Ie-aph(2’’)-Ia (16.7%) | ||
Vb | 8 (9.6) | ST188 (CC1) | 8 | LVX (25%) | |||
VIc | 10 (12.0) | ST97 (CC97) | 10 | AMP (20%) | blaZ (20%) | ||
VIIa | 11 (13.3) | ST12 (CC12) | 8 | All susceptible | |||
ST81 (CC1) | 2 | AMP, ERY, CLI-i | blaZ, erm(A) | ||||
ST4775 (CC1) | 1 | SCCmec IVa | OXA, FOX, AMP, ERY, CLI-i | blaZ, erm(A) | |||
VIIb | 9 (10.8) | ST45 (CC45) | 5 | AMP (20%) | blaZ (20%) | ||
ST508 (CC45) | 2 | All susceptible | |||||
ST291 (CC398) | 1 | All susceptible | |||||
ST398 (CC398) | 1 | ERY, CLI-i | erm(C) | ||||
VIIIa | 4 (4.8) | ST20 (CC20) | 4 | AMP | blaZ | ||
Xa | 12 (14.5) | ST15 (CC15) | 11 | AMP (91%), GEN (36.7%) | blaZ (91%), aac(6’)-Ie-aph(2’’)-Ia (36.7%) | ||
ST718 | 1 | ERY, CLI-i | erm(A) | ||||
XIc | 1 (1.2) | ST109 (CC1) | 1 | AMP, ERY, CLI-i | blaZ, erm(A) | ||
S. argenteus (n = 4) | XId | 2 (50) | ST2250 | 2 | All susceptible | ||
XV | 2 (50) | ST1223 | 2 | All susceptible |
No. | Age/Sex | Isolate ID | Subject Category *1 | Site (Sample) | S.aureus/S.argenteus | Coa Type | ST (CC) | Antimicrobial Resistance Profile | Drug Resistance Genes |
---|---|---|---|---|---|---|---|---|---|
1 | 26/M | A20-KT | 1 | saliva | S.aureus | VIIa | ST20 (CC20) | AMP | blaZ |
hand | S.aureus | VIIa | ST20 (CC20) | AMP | blaZ | ||||
2 | 25/M | A20-IHB | 1 | saliva | S.aureus | Vb | ST188 (CC1) | All susceptible | |
hand | S.aureus | Vb | ST188 (CC1) | All susceptible | |||||
3 | 25/M | A20-EK | 1 | saliva | S.aureus | Va | ST121 (CC121) | AMP, GEN | blaZ, aac(6’)-Ie-aph(2’’)-Ia |
hand | S.aureus | Va | ST121 (CC121) | AMP, GEN | blaZ, aac(6’)-Ie-aph(2’’)-Ia | ||||
4 | 26/M | B20-KF | 1 | saliva | S.aureus | VIIb | ST45 (CC45) | AMP | blaZ |
saliva | S.aureus | IIIa | ST8 (CC8) | AMP | blaZ | ||||
hand | S.aureus | XIc | ST109 (CC1) | AMP, ERY, CLI-i | blaZ, erm(A) | ||||
5 | 28/M | B20-HS | 1 | saliva | S.aureus | IIIa | ST8 (CC8) | All susceptible | |
hand | S.aureus | IIIa | ST8 (CC8) | All susceptible | |||||
6 | 29/M | A21-OY | 1 | saliva | S.aureus | IIIa | ST8 (CC8) | All susceptible | |
hand | S.aureus | IIIa | ST8 (CC8) | All susceptible | |||||
7 | 28/M | A21-OYK | 1 | saliva | S.aureus | Xa | ST15 (CC15) | All susceptible | |
hand | S.aureus | Xa | ST15 (CC15) | All susceptible | |||||
8 | 17/M | A20-H10 | 2 | saliva | S.aureus | VIIa | ST12 (CC12) | All susceptible | |
hand | S.aureus | VIIa | ST12 (CC12) | All susceptible | |||||
9 | 9/M | A20-H16 | 2 | saliva | S.aureus | VIIa | ST12 (CC12) | All susceptible | |
hand | S.aureus | VIc | ST97 (CC97) | All susceptible | |||||
10 | 8/M | A20-H20 | 2 | saliva | S.aureus | VIIa | ST12 (CC12) | All susceptible | |
hand | S.aureus | VIIa | ST12 (CC12) | All susceptible | |||||
11 | 10F | A20-H21 | 2 | saliva | S.aureus | VIIa | ST12 (CC12) | All susceptible | |
hand | S.aureus | VIc | ST97 (CC97) | All susceptible | |||||
12 | 7/F | A20-H22 | 2 | saliva | S.aureus | VIIa | ST12 (CC12) | All susceptible | |
hand | S.aureus | VIc | ST97 (CC97) | All susceptible | |||||
13 | 8/M | A20-H24 | 2 | saliva | S.aureus | VIc | ST97 (CC97) | All susceptible | |
hand | S.aureus | VIc | ST97 (CC97) | All susceptible | |||||
14 | 9/F | A20-H40 | 2 | saliva | S.aureus | VIIb | ST45 (CC45) | All susceptible | |
hand | S.aureus | VIIb | ST45 (CC45) | All susceptible | |||||
15 | 12/F | A21-H09 | 2 | saliva | S.argenteus | XId | ST2250 | All susceptible | |
hand | S.argenteus | XId | ST2250 | All susceptible | |||||
16 | 10/F | B20-H05 | 2 | saliva | S.aureus | Xa | ST15 (CC15) | AMP | blaZ |
hand | S.aureus | Xa | ST15 (CC15) | AMP, GEN | blaZ, aac(6’)-Ie-aph(2’’)-Ia | ||||
17 | 15/M | A20-D3 | 3 | disease site | S.aureus | VIc | ST97 (CC97) | AMP | blaZ |
hand | S.aureus | VIc | ST97 (CC97) | AMP | blaZ | ||||
18 | 10/F | A20-D10 | 3 | saliva | S.aureus | VIIa | ST81 (CC1) | AMP, ERY, CLI-i | blaZ, erm(A) |
hand | S.aureus | VIIb | ST508 (CC45) | All susceptible | |||||
19 | 58/M | A21-D04 | 3 | saliva | S.aureus | VIc | ST97 (CC97) | All susceptible | |
hand | S.aureus | VIc | ST97 (CC97) | All susceptible |
CoNS Species | No. of Isolates [mecA-Positive] | |||
---|---|---|---|---|
Oral Cavity | Hand | Dental Disease Site | Total (n = 162) (%) | |
S. warneri | 6 | 51 [1] | 1 | 58 (35.8) [1] |
S. capitis | 2 | 46 | 4 | 52 (32.1) |
S. saprophyticus | 2 [1] | 10 [4] | 0 | 12 (7.4) [5] |
S. epidermidis | 4 [1] | 4 | 1 | 9 (5.6) [1] |
S. caprae | 0 | 8 | 0 | 8 (5.0) |
S. haemolyticus | 0 | 7 [3] | 0 | 7 (4.3) [3] |
S. cohnii | 0 | 5 | 0 | 5 (3.1) |
S. lugdunensis | 1 | 2 [1] | 0 | 3 (1.9) [1] |
S. pasteuri | 0 | 2 | 0 | 2 (1.2) |
S. xylosus | 0 | 2 | 0 | 2 (1.2) |
S. auricularis | 0 | 1 | 0 | 1 (0.6) |
S. condimenti | 0 | 1 | 0 | 1 (0.6) |
S. hominis | 0 | 1 | 0 | 1 (0.6) |
S. petrasii | 0 | 1 | 0 | 1 (0.6) |
Total | 15 [2] | 141 [9] | 6 | 162 [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirose, M.; Aung, M.S.; Fukuda, A.; Yahata, S.; Fujita, Y.; Saitoh, M.; Hirose, Y.; Urushibara, N.; Kobayashi, N. Antimicrobial Resistance and Molecular Epidemiological Characteristics of Methicillin-Resistant and Susceptible Staphylococcal Isolates from Oral Cavity of Dental Patients and Staff in Northern Japan. Antibiotics 2021, 10, 1316. https://doi.org/10.3390/antibiotics10111316
Hirose M, Aung MS, Fukuda A, Yahata S, Fujita Y, Saitoh M, Hirose Y, Urushibara N, Kobayashi N. Antimicrobial Resistance and Molecular Epidemiological Characteristics of Methicillin-Resistant and Susceptible Staphylococcal Isolates from Oral Cavity of Dental Patients and Staff in Northern Japan. Antibiotics. 2021; 10(11):1316. https://doi.org/10.3390/antibiotics10111316
Chicago/Turabian StyleHirose, Mina, Meiji Soe Aung, Atsushi Fukuda, Shoko Yahata, Yusuke Fujita, Masato Saitoh, Yukito Hirose, Noriko Urushibara, and Nobumichi Kobayashi. 2021. "Antimicrobial Resistance and Molecular Epidemiological Characteristics of Methicillin-Resistant and Susceptible Staphylococcal Isolates from Oral Cavity of Dental Patients and Staff in Northern Japan" Antibiotics 10, no. 11: 1316. https://doi.org/10.3390/antibiotics10111316
APA StyleHirose, M., Aung, M. S., Fukuda, A., Yahata, S., Fujita, Y., Saitoh, M., Hirose, Y., Urushibara, N., & Kobayashi, N. (2021). Antimicrobial Resistance and Molecular Epidemiological Characteristics of Methicillin-Resistant and Susceptible Staphylococcal Isolates from Oral Cavity of Dental Patients and Staff in Northern Japan. Antibiotics, 10(11), 1316. https://doi.org/10.3390/antibiotics10111316