Antimicrobial Profile of Actinomycin D Analogs Secreted by Egyptian Desert Streptomyces sp. DH7
Abstract
:1. Introduction
2. Results
2.1. Isolation of Desert Actinobacteria Isolates
2.2. Antimicrobial Potential of Desert Actinobacteria Isolates
2.3. Morphological Characterization
2.4. 16S rRNA Genes Sequence Analysis and Phylogenetic Tree Construction
2.5. Evaluation of the Antimicrobial Activity of the Active Fraction of Streptomyces sp. DH7
2.6. Structural Determination of the Compounds Isolated from the Active Fraction
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation of Actinobacteria from Sinai Desert Soil
4.3. Agar Well Diffusion Method
4.4. Microscopic Analysis of Isolate DH7
4.5. Extraction of Genomic DNA from Actinobacteria Isolate DH7
4.6. Polymerase Chain Reaction of 16S-rRNA Genes
4.7. Agar Electrophoresis and PCR Product Purification
4.8. 16S rDNA Sequencing and Phylogenetic Analysis
4.9. Determination of Minimum Inhibitory Concentrations of the Active Fraction of Streptomyces sp. DH7
4.10. Determination of the Minimum Bactericidal Concentrations of the Active Fraction of Streptomyces sp. DH7
4.11. Fractionation of Streptomyces sp. DH7 Extract and Bioassay of the Identified Compounds
4.12. Purification and Identification of Bioactive Fractions of Streptomyces sp. DH7
4.13. Bioassay of the Active Compounds of Streptomyces sp. DH7
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathew, P.; Jaguga, C.; Mpundu, M.; Chandy, S.J. Building knowledge and evidence base on antimicrobial resistance in Africa, through ‘One Health’ based surveillance. Clin. Epidemiol. Glob. Health 2020, 8, 1313–1317. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.; Prim, N.; Rández–Gil, F.; Pastor, F.; Diaz, P. Engineering of baker’s yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis lipase A. Biotechnol. Bioeng. 2002, 78, 3339–3345. [Google Scholar] [CrossRef] [PubMed]
- O’neill, J. Review on Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; HM Government: London, UK, 2014.
- Monaco, M.; de Araujo, F.P.; Cruciani, M.; Coccia, E.M.; Pantosti, A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. In Staphylococcus Aureus; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–56. [Google Scholar]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 3603–3661. [Google Scholar] [CrossRef] [Green Version]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 111288–111301. [Google Scholar] [CrossRef] [Green Version]
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 91265–91273. [Google Scholar] [CrossRef]
- Hassan, A.M.; Ibrahim, O.; El Guinaidy, M. Surveillance of antibiotic use and resistance in orthopaedic department in an Egyptian university hospital. Int. J. Infect. Control 2010, 7. [Google Scholar] [CrossRef]
- Stacey, H.J.; Clements, C.S.; Welburn, S.C.; Jones, J.D. The prevalence of methicillin-resistant Staphylococcus aureus among diabetic patients: A meta-analysis. Acta Diabetol. 2019, 56, 8907–8921. [Google Scholar] [CrossRef] [Green Version]
- Amin, D.H.; Abdallah, N.A.; Abolmaaty, A.; Tolba, S.; Wellington, E.M.H. Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective. Bull. Natl. Res. Cent. 2020, 44, 15. [Google Scholar] [CrossRef]
- Amin, D.H.; Abolmaaty, A.; Tolba, S.; Abdallah, N.A.; Wellington, E.M. Phylogenic Characteristics of a Unique Antagonistic Micromonospora Sp. Rc5 to S. aureus Isolated from Sinai Desert of Egypt. Curr. Res. Microbiol. Biotechnol. 2017, 5, 61295–61306. [Google Scholar] [CrossRef] [Green Version]
- Amin, D.H.; Borsetto, C.; Abolmaaty, A.; Tolba, S.; Abdallah, N.A.; Wellington, E.M. Draft Genome Sequence of antagonistic Streptomyces sp. Ru87 Isolated from Egyptian Soil. J. Med. Sci. Clin. Res. 2017, 5, 30219–30221. [Google Scholar] [CrossRef]
- Kämpfer, P. The family Streptomycetaceae, part I: Taxonomy. Prokaryotes 2006, 3, 538–604. [Google Scholar]
- Amin, D.H.; Tolba, S.; Abolmaaty, A.; Abdallah, N.A.; Wellington, E.M. Phylogenetic and Antimicrobial Characteristics of a Novel Streptomyces sp. Ru87 Isolated from Egyptian Soil. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 82524–82541. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Albayay, C.; Silber, J.; Imhoff, J.F.; Asenjo, J.A.; Andrews, B.; Nouioui, I.; Dorador, C. The polyextreme ecosystem, Salar de Huasco at the Chilean Altiplano of the Atacama Desert houses diverse Streptomyces spp. with promising pharmaceutical potentials. Diversity 2019, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 1997, 63, 83233–83241. [Google Scholar] [CrossRef] [Green Version]
- Monciardini, P.; Sosio, M.; Cavaletti, L.; Chiocchini, C.; Donadio, S. New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiol. Ecol. 2002, 42, 3419–3429. [Google Scholar] [CrossRef]
- Neilson, J.W.; Quade, J.; Ortiz, M.; Nelson, W.M.; Legatzki, A.; Tian, F.; LaComb, M.; Betancourt, J.L.; Wing, R.A.; Soderlund, C.A. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 2012, 16, 3553–3566. [Google Scholar] [CrossRef]
- Mansour, S.R. The occurrence and distribution of soil actinomycetes in Saint Catherine area, South Sinai, Egypt. Pak. Biol. Sci. 2003, 6, 7721–7728. [Google Scholar]
- Bull, A. Extremophiles Handbook; Springer International Publishing: Cham, Switzerland, 2011. [Google Scholar]
- McGinnies, W.G.; Goldman, B.J.; Paylore, P. Deserts of the World: An Appraisal of Research into Their Physical and Biological Environments; University of Arizona Press: Tucson, AZ, USA, 1968. [Google Scholar]
- Danin, A. Desert Vegetation of Israel and Sinai; Cana Publishing House: Totnes, Devon, UK, 1983. [Google Scholar]
- Phan, C.; Matsuda, K.; Balloo, N.; Fujita, K.; Wakimoto, T.; Okino, T. Argicyclamides A-C Unveil Enzymatic Basis for Guanidine Bis-prenylation. J. Am. Chem. Soc. 2021, 143, 10083–10087. [Google Scholar] [CrossRef]
- Hozzein, W.N.; Rabie, W.; Ali, M.I.A. Screening the Egyptian desert actinomycetes as candidates for new antimicrobial compounds and identification of a new desert Streptomyces strain. Afr. J. Biotechnol. 2011, 10, 122295–1222301. [Google Scholar]
- Lacret, R.; Oves-Costales, D.; Gómez, C.; Díaz, C.; de la Cruz, M.; Pérez-Victoria, I.; Vicente, F.; Genilloud, O.; Reyes, F. New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar. Drugs 2015, 13, 1128–1140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.-Z.; Wang, K.-R.; Yan, J.-X.; Zhang, W.; Song, J.-J.; Ni, J.-M.; Wang, R. In Vitro and In Vivo antitumor effects of novel actinomycin D analogs with amino acid substituted in the cyclic depsipeptides. Peptides 2010, 31, 4568–4573. [Google Scholar] [CrossRef]
- Farber, S. Chemotherapy in the treatment of leukemia and Wilms’ tumor. JAMA 1966, 198, 8826–8836. [Google Scholar] [CrossRef]
- Lewis, J.L., Jr. Chemotherapy of gestational choriocarcinoma. Obstet. Gynecol. Surv. 1973, 28, 7478–7480. [Google Scholar] [CrossRef]
- Marina, N.; Fontanesi, J.; Kun, L.; Rao, B.; Jenkins, J.J.; Thompson, E.I.; Etcubanas, E. Treatment of childhood germ cell tumors: Review of the St. Jude experience from 1979 to 1988. Cancer 1992, 70, 102568–102575. [Google Scholar] [CrossRef] [Green Version]
- Takusagawa, F.; Wen, L.; Chu, W.; Li, Q.; Takusagawa, K.T.; Carlson, R.G.; Weaver, R.F. Physical and biological characteristics of the antitumor drug actinomycin D analogues derivatized at N-methyl-L-valine residues. Biochemistry 1996, 35, 4013240–4013249. [Google Scholar] [CrossRef]
- Praveen, V.; Tripathi, C. Studies on the production of actinomycin-D by Streptomyces griseoruber—A novel source. Lett. Appl. Microbiol. 2009, 49, 4450–4455. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Gui, P.; Liu, H.; Khalaf, S.M.H.; Elsayed, E.A.; Wadaan, M.A.M.; Hozzein, W.N.; Zhu, W. Identification, Bioactivity, and Productivity of Actinomycins from the Marine-Derived Streptomyces heliomycini. Front. Microbiol. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Djinni, I.; Defant, A.; Djoudi, W.; Chaouch, F.C.; Souagui, S.; Kecha, M.; Mancini, I. Modeling improved production of the chemotherapeutic polypeptide actinomycin D by a novel Streptomyces sp. strain from a Saharan soil. Heliyon 2019, 5, e01695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.-G.; Yuan, B.; Dong, M.-M.; Zhou, P.-Y.; Hao, Y.-X.; Sun, Y.-Y.; Xu, M.-K.; Li, D.; Kai, G.-Y.; Jiang, J.-H. Purification and identification of an actinomycin D analogue from actinomycetes associated with Ganoderma applanatum via magnetic molecularly imprinted polymers and tandem mass spectrometry. Food Chem. Toxicol. 2018, 119, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Development of In Vitro Susceptibility Testing Criteria and Quality Control. Parameters; National Committee for Clinical Laboratory Standards: Annapolis Junction, MD, USA, 1987.
- McFarland, J. The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc. 1907, 49, 141176–141178. [Google Scholar]
- Cooper, K. The theory of antibiotic diffusion zones. In Analytical Microbiology II; Academic Press, Inc.: London, UK, 1972; pp. 13–30. [Google Scholar]
- Locci, R. Streptomycetes and related genera. Bergey’s Man. Syst. Bacteriol. 1989, 4, 2451–2504. [Google Scholar]
- Shirling, E.T.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966, 16, 3313–3340. [Google Scholar] [CrossRef] [Green Version]
- Kaláb, M.; Yang, A.-F.; Chabot, D. Conventional scanning electron microscopy of bacteria. Infocus Mag. 2008, 10, 42–61. [Google Scholar] [CrossRef]
- Hopwood, D.; Bill, M.; Charter, K.; Kieser, T.; Bruton, C.; Kieser, H.; Lydiate, D.; Smith, C.; Ward, J.; Schrempf, H. Genetic Manipulation of Streptomycetes: A Laboratory Manual; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 224673–224680. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 122725–122729. [Google Scholar] [CrossRef] [Green Version]
- Amyes, S.; Miles, R.S.; Thomson, C.J.; Tillotson, G. Antimicrobial Chemotherapy: Pocketbook; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
The Diameter of Inhibition Zones in mm against Multidrug-Resistant S. aureus Strains | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tested Isolate | ATCC | No. 30 | No. 31 | No. 34 | No. 35 | No. 37 | No. 39 | No. 43 | No. 55 | No. 60 |
DH1 | 4 | - | - | - | 10 | - | 4 | - | - | 4 |
DH2 | 4 | - | - | - | - | - | - | - | - | - |
DH3 | 18 | - | - | - | - | - | - | - | - | - |
DH4 | - | - | - | - | - | - | - | 12 | - | - |
DH5 | - | 12 | - | - | - | - | - | - | - | - |
DH6 | - | - | - | - | - | - | - | - | - | - |
DH7 | 15 | 4 | 4 | 6 | 4 | 22 | 22 | 6 | 18 | 22 |
DH8 | - | - | 10 | 8 | 4 | 10 | - | 10 | 8 | 8 |
DH9 | - | 6 | 4 | 6 | - | 2 | 4 | - | - | 4 |
DH10 | - | - | - | - | - | - | 10 | - | - | - |
DH11 | - | - | - | - | - | - | - | - | - | 12 |
DH12 | - | 12 | 12 | 8 | 16 | 10 | 10 | - | - | - |
DH13 | - | - | - | - | - | - | - | - | - | - |
DH14 | - | - | - | - | - | 14 | - | - | 6 | - |
DH15 | - | - | - | - | - | - | - | - | - | - |
DH16 | - | - | - | - | - | - | - | - | - | - |
DH17 | - | - | - | - | - | - | - | - | - | - |
DH18 | - | 12 | 10 | 14 | 10 | 10 | 10 | 16 | 6 | 10 |
DH19 | - | - | - | - | - | - | - | - | - | - |
DH20 | - | - | - | 4 | - | - | - | - | - | 4 |
DH21 | - | 20 | 20 | 2 | - | - | - | 2 | - | - |
DH22 | - | - | - | 2 | - | - | 2 | 6 | - | - |
DH23 | - | - | - | - | - | - | - | - | - | - |
DH24 | - | - | - | - | - | - | - | - | - | - |
DH25 | - | - | - | - | - | - | - | - | - | - |
DH26-DH50 | - | - | - | - | - | - | - | - | - | - |
Crude extract DH7 | - | - | 30 | - | 32 | 24 | 24 | 24 | 20 | - |
Gentamicin (CN10) | - | - | 30 | - | - | - | - | - | 20 | - |
Azithromycin (AZM15) | - | - | 26 | - | - | - | - | - | 28 | - |
No. of (C-Atoms) | Compound 1 | Compound 2 | ||
---|---|---|---|---|
# | δH * | δC * | δH * | δC * |
1 | 4.66 (dd, 7,12) | 58.3 CH | 4.65 (dd, 7,12) | 58.5 CH |
2 | - | 205.4 C | - | 205.7 |
3 | 3.44 (m) 3.29 (m) | 27 CH2 | 3.43 (m) 3.29 (m) | 26.6 CH2 |
4 | 2.59 (m) 2.15 (m) | 30.2 CH2 | 2.58 (m) 2.14 (m) | 30.7 CH2 |
1′ | - | 172.2 C | - | 176.1 C |
2′ | 2.01 (s) | 21.2 CH3 | 2.27 (q, 7.6) | 28.6 CH2 |
3′ | - | - | 1.16 (t, 7.6) | 9 CH3 |
* δH (CD3OD, 400 MHz, J in Hz), δC (CD3OD, 100 MHz) |
Residue * | δH (CDCl3, 400 MHz, and J in Hz) | δC (CDCl3 and 100 MHz) | Residue | δH (CD3OD, 400 MHz, and J in Hz) | δC (CDCl3 and 100 MHz) |
---|---|---|---|---|---|
Ring A | Ring B | ||||
Thr | 7.75 NH (d, 6.5) | - | Thr | 7.18 NH (d, 6.8) | - |
4.62 (dd, 2.3,6.5) | 54.9 CH | 4.54 (dd, 2.3,6.8) | 55.2 CH | ||
5.22 (m) | 75.1 CH | 5.22 (m) | 75.1 CH | ||
1.27 (m) | 17.5 CH3 | 1.29 (m) | 17.4 CH3 | ||
- | 168.5 | - | 167.5 | ||
N-Me Val | 2.92 (s) | 39.2 N-Me | N-Me Val | 2.96 (N-Me) | 39.3 N-Me |
2.7 (m) | 71.2 CH | 2.8 (m) | 71.4 CH | ||
2.69 (m) | 26.9 CH | 2.68 (m) | 26.9 CH | ||
0.75 (m) | 19.07 CH3 | 0.76 (m) | 19.13 CH3 | ||
0.98 (m) | 21.6 CH3 | 0.99 (m) | 21.7 CH3 | ||
- | 167.7 C | 166.5 C | |||
N-Me Gly | 2.9 (s) | 34.8 (N-Me) | N-Me Gly | 2.91 (s) | 34.9 (N-Me) |
4.78, 3.63 (m) | 51.4 CH2 | 4.77, 3.65 | 51.4 CH2 | ||
166.5 C | 167.5 C | ||||
Pro | 6 (d, 9.25) | 56.4 CH | Pro | 6.03 (d, 9.3) | 56.2 CH |
2.11, 2.30 (m) | 22.8 CH2 | 2.13, 2.32 | 23.0 CH2 | ||
3.75, 3.98 (m) | 47.3 CH2 | 3.75, 3.86 | 47.6 CH2 | ||
1.85, 2.71 (m) | 31.0 CH2 | 1.87, 2.95 | 31.2 CH2 | ||
173.2 C | 173.3 C | ||||
D-Val | 8.17 NH (d, 6) | - | Isoleu | 8.01 NH (d, 6.2) | - |
3.57 (m) | 58.9 CH | 3.62 | 58.6 CH | ||
2.24 | 31.6 CH | 1.91 | 38.6 CH | ||
1.15 (d, 6.6) | 19 CH3 | 1.46, 0.96 | 25.01 CH2 | ||
0.92 | 19.3 CH3 | 1.11 (d, 6.6) | 14.9 CH3 | ||
0.91 m | 12.5 CH3 | ||||
- | 173.2 C | - | 173.7 C | ||
Phenoxazinone | |||||
1 | 168.8 C | ||||
2 | 101.8 C | ||||
3 | 147.5 C | ||||
4 | 179.1 C | ||||
5 | 113.5 C | ||||
6 | 145.2 C | ||||
7 | 140.5 C | ||||
8 | 127.9 C | ||||
9 | 7.38 (d, 7.7) | 130.4 CH | |||
10 | 7.66 (d, 7.7) | 125.9 CH | |||
11 | 132.7 C | ||||
12 | 129.4 C | ||||
13 | 166.1 C |
Residue | δH (CDCl3, 400 MHz, and J in Hz) | δC (CD3OD and 100 MHz) | Residue | δH(CD3OD, 400 MHz, and J in Hz) | δC (CDCl3 and 100 MHz) |
---|---|---|---|---|---|
Ring A | Ring B | ||||
Thr | 7.73 NH (d, 6.6) | - | Thr | 7.18 NH (d, 6.9) | - |
4.66 (m) | 54.9 CH | 4.55 (m) | 55.2 CH | ||
5.23 (m) | 75.1 CH | 5.23 (m) | 75.1 CH | ||
1.28 (m) | 17.8 CH3 | 1.29 (m) | 17.4 CH3 | ||
- | 168.9 | - | 166.3 | ||
N-Me Val | 2.93 (s) | 39.2 N-Me | N-Me Val | 2.95 (N-Me) | 39.3 N-Me |
2.7 (m) | 71.2 CH | 2.7 (m) | 71.4 CH | ||
2.68 (m) | 26.90 CH | 2.68 (m) | 26.94 CH | ||
0.75 (m) | 19.07 CH3 | 0.76 (m) | 19.11 CH3 | ||
0.98 (m) | 21.6 CH3 | 0.99 (m) | 21.7 CH3 | ||
- | 168.5 C | 166.2 C | |||
N-Me Gly | 2.89 (s) | 34.9 (N-Me) | N-Me Gly | 2.89 (s) | 35.0 (N-Me) |
4.78, 3.63 (m) | 51.4 CH2 | 4.77, 3.65 | 51.4 CH2 | ||
166.4 C | 166.5 C | ||||
Pro | 6 (d, 9.29) | 56.5 CH | Pro | 6.07 (d, 9.43) | 56.2 CH |
2.11, 2.30 (m) | 22.8 CH2 | 2.13, 2.32 | 23.1 CH2 | ||
3.75, 3.98 (m) | 47.3 CH2 | 3.75, 3.86 | 47.6 CH2 | ||
1.85, 2.71 (m) | 31.0 CH2 | 1.87, 2.65 | 31.2 CH2 | ||
173.2 C | 173.3 C | ||||
Isoleu | 8.22 NH (d, 6.0) | - | Isoleu | 8.01 NH (d, 6.0) | - |
3.60 (m) | 58.4 CH | 3.63 (m) | 58.5 CH | ||
1.96 (m) | 38.4 CH | 1.91 (m) | 38.8 CH | ||
1.45, 0.97 | 25.01 CH2 | 1.46, 0.96 | 25.01 CH2 | ||
1.11 (d,6.6) | 14.8 CH3 | 1.11 (d, 6.6) | 14.9 CH3 | ||
0.92 | 12.4 CH3 | 0.91 m | 12.4 CH3 | ||
- | 174.2 C | - | 173.7 C | ||
Phenoxazinone | |||||
1 | 167.8 C | ||||
2 | 101.8 C | ||||
3 | 147.5 C | ||||
4 | 179.9 C | ||||
5 | 113.3 C | ||||
6 | 145.5 C | ||||
7 | 140.5 C | ||||
8 | 127.7 C | ||||
9 | 7.38 (d, 7.7) | 130.4 CH | |||
10 | 7.66 (d, 7.7) | 125.9 CH | |||
11 | 132.7 C | ||||
12 | 129.4 C | ||||
13 | 167.6 C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, D.H.; Sayed, H.A.E.; Elissawy, A.M.; EL-Ghwas, D.E.; Singab, A.N.B. Antimicrobial Profile of Actinomycin D Analogs Secreted by Egyptian Desert Streptomyces sp. DH7. Antibiotics 2021, 10, 1264. https://doi.org/10.3390/antibiotics10101264
Amin DH, Sayed HAE, Elissawy AM, EL-Ghwas DE, Singab ANB. Antimicrobial Profile of Actinomycin D Analogs Secreted by Egyptian Desert Streptomyces sp. DH7. Antibiotics. 2021; 10(10):1264. https://doi.org/10.3390/antibiotics10101264
Chicago/Turabian StyleAmin, Dina H., Hayam A. E. Sayed, Ahmed M. Elissawy, Dina E. EL-Ghwas, and Abdel Nasser B. Singab. 2021. "Antimicrobial Profile of Actinomycin D Analogs Secreted by Egyptian Desert Streptomyces sp. DH7" Antibiotics 10, no. 10: 1264. https://doi.org/10.3390/antibiotics10101264
APA StyleAmin, D. H., Sayed, H. A. E., Elissawy, A. M., EL-Ghwas, D. E., & Singab, A. N. B. (2021). Antimicrobial Profile of Actinomycin D Analogs Secreted by Egyptian Desert Streptomyces sp. DH7. Antibiotics, 10(10), 1264. https://doi.org/10.3390/antibiotics10101264