Antimicrobial Resistance Patterns in Diabetic Foot Infections, an Epidemiological Study in Northeastern Italy
Abstract
:1. Aim
2. Background
3. Material and Methods
4. Results
5. Discussion
Study Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Enterococcus faecium: -1 isolated R to everything except linezolids (gentamicin, vancomycin, teicoplanin, kanamycin, ampicillin, imipenem) |
Enterococcus faecalis 36 isolated: -10 R high dose gentamicin and kanamycin; 5 of which also R to trimethroprim/sulfametoxazole -4 R to trimethroprim/sulfametoxazole only -2 R to trimethroprim/sulfametoxazole and cephalosporin (ceftaroline) |
Staphylococci coagulase negative 37 isolated: -29 R to at least 1 antibiotic class -26 R to multiple antibiotic classes (3 classes or more in 23 cases) and to methicillin -10 MLSb of which 9 also R to methicillin |
Streptococci 37 isolated: -S. agalactiae 25: 2 MLSb; 2 R to high dose kanamycin and gentamicin; 17 R to tetraciclin -S. anginosus 4: no resistances -S. constellatus 2: no resistances-S. dysgalactiae 5: 3 MLSb; 2 R to Tetraciclin -S. mitis 1: R to levofloxacin |
Staphylococcus aureus 192 isolated: -30 showed no resistances -53 R to penicillins only -11 R to only 1 antibiotic class other than penicillins (5 R to aminoglycosides, 2 R to macrolides, 1 R to trimethroprim/sulfametoxazole, 1 R to fluoroquinolones, 1 R to Mupirocine, 1 R to Fusidic acid)-19 R to 2 classes (13 R to penicillins and one among aminoglycosides, fluoroquinolones, trimethroprim/sulfametoxazole, tetracicline, fusidic acid; 5 R to macrolides and licosamides; 1 R to tetracicline and aminoglycosides) -27 R to at least 3 different classes but not showing methicillin resistance (22 R to penicillins + at least 2 other classes; 5 R to 3 different classes other than penicillins) -28 MLSb or MLSb inducible -52 R to multiple (>3) classes and methicillin resistant-MRSA (8 also R to trimethroprim/sulfametoxazole; 1 also R to Linezolid) |
Staphylococcus epidermidis 22 isolated: -22 R to at least 1 antibiotic class -11 MLSb -17 methicillin R -10 MLSb and methicillin R |
Other gram+: 10 (C striatum 3; S lugdunensis 3; S intermedius 2, F magna 1, S capitis 1) |
Escherichia Coli 32 isolated: -25 resistant to at least 2 antibiotic classes -5 ESBL of which 3 also R to fluoroquinolones and trimethroprim/sulfametoxazole; 2 also R to fluoroquinolones -24 R penicillins (ampicillin 24 R; piperacillin 21 R) of which 1 also R to ertapenem; 1 also R to fluoroquinolones and trimethroprim/sulfametoxazole; 5 also R to fluoroquinolones; 5 also R to trimethroprim/sulfametoxazole -15 R fluoroquinolones 2 of which also R to trimethroprim/sulfametoxazole |
Klebsiella pneumoniae 8 isolated: -6 showed resistance to at least 3 different classes of antibiotics (4 R to penicillins, fluoroquinolones and trimethroprim/sulfametoxazole; 2 KPC) -3 ESBL (all R also to fluoroquinolones and 1 R to fluoroquinolones and trimethroprim/sulfametoxazole) -7 R penicillins -5 R fluoroquinolones |
Acinetobacter spp. 6 isolated: -2 A. baumanii (1 MDR carbapenemase producing R to everything except colistin) -4 A. iwoffii (2 resistant to 3rd gen cephalosporines and ertapenem) |
Enterobacter cloacae 26 isolated: -26 R to amoxicillin/clavulanate and ampicillin -5 R to > 3 antibiotic classes and carbapenemase producers -1 ESBL |
Pseudomonas aeruginosa 68 isolated: -45 R to at least 1 antibiotic class -12 R to fluoroquinolones only -10 R to fluoroquinolones and carbapenems only-2 R to fluoroquinolones and penicillins only-2 R to fluoroquinolones and cephalosporines only -2 R to penicillins and cephalosporines only -1 R to fluoroquinolones and aminoglycosides only -1 R to aminoglycosides only -1 R to fluoroquinolones and colistin only -3 R to colistin only -1 panresistant (R to everything except imipenem mic 1 mg/L) |
Morganella morganii 21 isolated: -21 R to at least 3 antibiotic classes -20 R to ampicillin and amoxicillin/clavulanic acid -11 R to fluoroquinolones -10 R to sulfatrimetrophim |
Serratia marcescens 19 isolated: -17 R to amoxicillin/clavulanic -12 R to at least 3 antibiotic classes |
Proteus mirabilis 15 isolated: -14 R to at least 3 antibiotic classes -9 R to fluoroquinolones and trimethroprim/sulfametoxazole |
Klebsiella oxytoca 9 isolated: -8 R to ampicillin -3 R to at least 3 antibiotic classes |
Other gram–: 34 (C. freundii 2; C. koseri 2; C. braaki 1; E. aerogenes 2; P. putida 4; P. rettgeri 6; P. vulgaris 5; S. maltophilia 5; A. xylosoxydans 2; A. faecalis 2; Enterobacter spp. 1; P. bivia 1; P. stuartii 1) |
Fungi: 7 (Aspergillus spp. 1, C. albicans 1, C. parapsilosis 2, T. metagrophytes 2, T. rubrum 1) |
References
- Chang, A.Y.; Skirbekk, V.F.; Tyrovolas, S.; Kassebaum, N.J.; Dieleman, J.L. Measuring population ageing: An analysis of the Global Burden of Disease Study 2017. Lancet Public Heath 2019, 4, e159–e167. [Google Scholar] [CrossRef] [Green Version]
- Boulton, A.J.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet 2005, 366, 1719–1724. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis. Ann. Med. 2016, 49, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Tchero, H.; Kangambega, P.; Lin, L.; Mukisi-Mukaza, M.; Brunet-Houdard, S.; Briatte, C.; Retali, G.R.; Rusch, E. Cost of diabetic foot in France, Spain, Italy, Germany and United Kingdom: A systematic review. Ann. D’Endocrinol. 2018, 79, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Prompers, L.; Huijberts, M.; Schaper, N.; Apelqvist, J.; Bakker, K.; Edmonds, M.; Holstein, P.; Jude, E.; Jirkovska, A.; Mauricio, D.; et al. Resource utilisation and costs associated with the treatment of diabetic foot ulcers. Prospective data from the Eurodiale Study. Diabetologia 2008, 51, 1826–1834. [Google Scholar] [CrossRef]
- Hicks, C.W.; Selvarajah, S.; Mathioudakis, N.; Sherman, R.L.; Hines, K.F.; Black, J.H.; Abularrage, C.J. Burden of infected diabetic foot ulcers on hospital admissions and costs. Ann. Vasc. Surg. 2016, 33, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Serra-Burriel, M.; Keys, M.; Campillo-Artero, C.; Agodi, A.; Barchitta, M.; Gikas, A.; Palos, C.; López-Casasnovas, G. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE 2020, 15, e0227139. [Google Scholar] [CrossRef]
- World Health Organization. Sixty-Fourth World Health Assembly, Geneva, 16–24 May 2011: Resolutions and Decisions, Annexes; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- European Centre for Disease Prevention and Control: Data Collection and Analysis. Available online: https://www.ecdc.europa.eu/en/about-us/networks/disease-networksandlaboratory-networks/ears-net-data (accessed on 10 June 2021).
- Piano Nazionale di Contrasto dell’Antibiotico Resistenza, PNCAR 2017–2020. Available online: https://www.salute.gov.it/imgs/C_17_opuscoliPoster_362_allegato.pdf (accessed on 10 June 2021).
- “Piano Nazionale di Contrasto dell’Antimicrobico Resistenza, (PNCAR) 2017–2020”. Approvazione dei Documenti Recanti “Strategia Regione Veneto per l’uso Corretto Degli Antibiotici in Ambito Umano” e “Piano Regionale per la Sorveglianza, la Prevenzione e il Controllo delle Infezioni Correlate all’assistenza (ICA)”. Available online: https://bur.regione.veneto.it/BurvServices/Pubblica/DettaglioDgr.aspx?id=404556 (accessed on 10 June 2021).
- Ramírez-Almagro, C.; Campillo-Soto, A.; Morales-Cuenca, G.; Pagán-Ortiz, J.; Aguayo-Albasini, J.L. Diabetic foot infections. Prevalence and antibiotic sensitivity of the causative microorganisms. Enferm. Infecc. Microbiol. Clínica 2009, 27, 317–321. [Google Scholar]
- Singhai, M.; Kumar, A.; Jha, P.K.; Goyal, R.; Rawat, V. Bacteriological and resistance profile in isolates from diabetic patients. N. Am. J. Med. Sci. 2012, 4, 563–568. [Google Scholar] [CrossRef]
- Hassan, M.A.; Tamer, T.M.; Rageh, A.A.; Abou-Zeid, A.M.; El-Zaher, E.H.A.; Kenawy, E.-R. Insight into multidrug-resistant microorganisms from microbial infected diabetic foot ulcers. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1261–1270. [Google Scholar] [CrossRef]
- Monteiro-Soares, M.; Russell, D.; Boyko, E.J.; Jeffcoate, W.; Mills, J.L.; Morbach, S.; Game, F.; The International Working Group on the Diabetic Foot (IWGDF). Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Metab. Res. Rev. 2020, 36, e3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.G.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuan, F.; Tang, K.; Jiang, P.; Zhou, B.; He, X. Reliability and validity of the Perfusion, Extent, Depth, Infection and Sensation (PEDIS) classification system and score in patients with diabetic foot ulcer. PLoS ONE 2015, 10, e0124739. [Google Scholar] [CrossRef] [PubMed]
- Lavery, L.A.; Armstrong, D.G.; Harkless, L.B. Classification of diabetic foot wounds. J. Foot Ankle Surg. 1996, 35, 528–531. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 1.1; EUCAST: Växjö, Sweden, 2010; Available online: http://www.eucast.org/antimicrobial_susceptibility_testing/previous_versions_of_table (accessed on 10 June 2021).
- Boyko, E.J.; Ahroni, J.H.; Smith, D.G.; Davignon, D. Increased mortality associated with diabetic foot ulcer. Diabetes Med. 1996, 13, 967–972. [Google Scholar] [CrossRef]
- Martins-Mendes, D.; Monteiro-Soares, M.; Boyko, E.; Ribeiro, M.; Barata, P.; Lima, J.; Soares, R. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. J. Diabetes Complicat. 2014, 28, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Prompers, L.; Huijberts, M.; Apelqvist, J.; Jude, E.; Piaggesi, A.; Bakker, K.; Edmonds, M.; Holstein, P.; Jirkovska, A.; Mauricio, D.; et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia 2006, 50, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Ndosi, M.; Wright-Hughes, A.; Brown, S.; Backhouse, M.; Lipsky, B.A.; Bhogal, M.; Reynolds, C.; Vowden, P.; Jude, E.B.; Nixon, J.; et al. Prognosis of the infected diabetic foot ulcer: A 12-month prospective observational study. Diabetes Med. 2017, 35, 78–88. [Google Scholar] [CrossRef]
- Sotto, A.; Richard, J.-L.; Combescure, C.; Jourdan, N.; Schuldiner, S.; Bouziges, N.; Lavigne, J.-P. Beneficial effects of implementing guidelines on microbiology and costs of infected diabetic foot ulcers. Diabetologia 2010, 53, 2249–2255. [Google Scholar] [CrossRef] [Green Version]
- Henig, O.; Pogue, J.; Cha, R.; Kilgore, P.; Hayat, U.; Ja’Ara, M.; Ali, R.M.; Mahboob, S.; Pansare, R.; Deeds, K.; et al. Epidemiology of diabetic foot infection in the metro-detroit area with a focus on independent predictors for pathogens resistant to recommended empiric antimicrobial therapy. Open Forum Infect. Dis. 2018, 5. [Google Scholar] [CrossRef]
- Chapman, A.L.N.; Dixon, S.; Andrews, D.; Lillie, P.; Bazaz, R.; Patchett, J.D. Clinical efficacy and cost-effectiveness of outpatient parenteral antibiotic therapy (OPAT): A UK perspective. J. Antimicrob. Chemother. 2009, 64, 1316–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacteria | No Resistances | R to 1 Class | R ≥ 2 Classes | Total | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | |
S. aureus | 30 | 15.7 | 64 | 33.3 | 98 | 51 | 192 | 33.5 |
S. coagulase- | 6 | 10.2 | 7 | 11.9 | 46 | 77.9 | 59 | 10.3 |
E. faecium | 0 | 0 | 0 | 0 | 1 | 100 | 1 | 0.17 |
E. faecalis | 20 | 55.6 | 9 | 25 | 7 | 19.4 | 36 | 6.2 |
Streptococci | 10 | 27 | 18 | 48.6 | 9 | 24.4 | 37 | 6.4 |
Other gram+ | 3 | 30 | 2 | 20 | 5 | 50 | 10 | 1.8 |
E. coli | 6 | 18.75 | 1 | 3.125 | 25 | 78.125 | 32 | 5.6 |
K. pneumoniae | 0 | 0 | 0 | 0 | 8 | 100 | 8 | 1.4 |
Acinetobacter spp | 3 | 50 | 0 | 0 | 3 | 50 | 6 | 1.03 |
P. aeruginosa | 23 | 33.8 | 16 | 23.6 | 29 | 42.6 | 68 | 11.9 |
E. cloacae | 0 | 0 | 3 | 11.5 | 23 | 88.5 | 26 | 4.5 |
M. morganii | 0 | 0 | 0 | 0 | 21 | 100 | 21 | 3.8 |
S. marcescens | 0 | 0 | 0 | 0 | 19 | 100 | 19 | 3.3 |
P. mirabilis | 0 | 0 | 1 | 6.7 | 14 | 93.3 | 15 | 2.6 |
K. oxytoca | 1 | 11.1 | 5 | 55.6 | 3 | 33.3 | 9 | 1.6 |
Other gram– | 8 | 23.5 | 5 | 14.7 | 21 | 61.8 | 34 | 5.9 |
Total | 110 | 19.2 | 131 | 22.9 | 332 | 57.9 | 573 | 100 |
S. aureus 192 | MRSA | Oxacillin | Fluoroquinolones | Aminoglycosides | MLSb | Tetracycline |
MRSA | 52 (27.1%) | 52 (27.1%) | 45 (23.4%) | 19 (9.9%) | 29 (15.1%) | 9 (4.7%) |
oxacillin | 52 (27.1%) | 52 (27.1%) | 45 (23.4%) | 19 (9.9%) | 29 (15.1%) | 9 (4.7%) |
fluoroquinolones | 45 (23.4%) | 45 (23.4%) | 59 (30.7%) | 17 (8.8%) | 34 (17.7%) | 5 (2.6%) |
aminoglycosides | 19 (9.9%) | 19 (9.9%) | 17 (8.8%) | 25 (13%) | 14 (7.3%) | 11 (5.7%) |
MLSb | 29 (15.1%) | 29 (15.1%) | 34 (17.7%) | 14 (7.3%) | 51 (26.6%) | 9 (4.7%) |
Tetracycline | 9 (4.7%) | 9 (4.7%) | 5 (2.6%) | 11 (5.7%) | 9 (4.7%) | 21 (10.9%) |
P. aeruginosa 68 | Piperacillin | Ceftazidime Cefepime | Carbapenems | Fluoroquinolones | Aminoglycosides | Colistin |
penicillins | 14 (20.6%) | 10 (14.7%) | 5 (7.3%) | 12 (17.6%) | 5 (7.3%) | 3 (4.4%) |
ceftazidime cefepime | 10 (14.7%) | 12 (17.6%) | 4 (5.9%) | 10 (14.7%) | 4 (5.9%) | 3 (4.4%) |
carbapenems | 5 (7.3%) | 4 (5.9%) | 16 (23.5%) | 16 (23.5%) | 2 (2.9%) | 2 (2.9%) |
fluoroquinolones | 12 (17.6%) | 10 (14.7%) | 16 (23.5%) | 39 (57.3%) | 6 (8.8%) | 5 (7.3%) |
aminoglycosides | 5 (7.3%) | 4 (5.9%) | 2 (2.9%) | 6 (8.8%) | 7 (10.3%) | 3 (4.4%) |
colistin | 3 (4.4%) | 3 (4.4%) | 2 (2.9%) | 5 (7.3%) | 3 (4.4%) | 8 (11.8%) |
E. Coli 32 | Penicillins | Cephalosporines | Carbapenems | Fluoroquinolones | Co-trimoxazole | ESBL |
penicillins | 24 (75%) | 6 (18.7%) | 1 (3.1%) | 12 (37.5%) | 10 (31.2%) | 5 (15.6%) |
cephalosporines | 6 (18.7%) | 6 (18.7%) | 0 | 5 (15.6%) | 3 (9.4%) | 5 (15.6%) |
carbapenems | 1 (3.1%) | 0 | 1 (3.1%) | 0 | 0 | 0 |
fluoroquinolones | 12 (37.5%) | 6 (18.7%) | 0 | 15 (46.9%) | 7 (21.9%) | 5 (15.6%) |
co-trimoxazole | 10 (31.2%) | 4 (12.5%) | 0 | 7 (21.9%) | 12 (37.5%) | 3 (9.4%) |
ESBL | 5 (15.6%) | 5 (15.6%) | 0 | 5 (15.6%) | 3 (9.4%) | 5 (15.6%) |
K. pneumoniae 8 | Penicillins | Cephalosporines | Carbapenems | Fluoroquinolones | Co-trimoxazole | ESBL |
penicillins | 7 (87.5%) | 4 (50%) | 2 (25%) | 5 (62.5%) | 4 (50%) | 3 (37.5%) |
cephalosporines | 4 (50%) | 4 (50%) | 2 (25%) | 3 (37.5%) | 2 (25%) | 3 (37.5%) |
carbapenems | 2 (25%) | 2 (25%) | 2 (25%) | 1 (12.5%) | 0 | 1 (12.5%) |
fluoroquinolones | 5 (62.5%) | 3 (37.5%) | 1 (12.5%) | 5 (62.5%) | 4 (50%) | 3 (37.5%) |
co-trimoxazole | 4 (50%) | 2 (25%) | 0 | 4 (50%) | 4 (50%) | 2 (25%) |
ESBL | 3 (37.5%) | 3 (37.5%) | 1 (12.5%) | 3 (37.5%) | 2 (25%) | 3 (37.5%) |
Index Pathogens | ESBL | VRE | MLSb | MRSA | Carbapenemase Producer | MDR (≥2 Classes) | Total |
---|---|---|---|---|---|---|---|
Escherichia coli | 5 (87.5%) | 25 (78.1%) | 32 | ||||
Pseudomonas aeruginosa MDR | 29 (42.6%) | 68 | |||||
Klebsiella pneumoniae | 3 (37.5%) | 2 (25%) | 8 (100%) | 8 | |||
Acinetobacter spp. XDR | 3 (50%) | 3 (50%) | 6 | ||||
Staphylococcus aureus | 28 (14.6%) | 52 (27.1%) | 98 (51%) | 192 | |||
Enterococcus faecium | 1 (100%) | 1 (100%) | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boschetti, G.; Sgarabotto, D.; Meloni, M.; Bruseghin, M.; Whisstock, C.; Marin, M.; Ninkovic, S.; Pinfi, M.; Brocco, E. Antimicrobial Resistance Patterns in Diabetic Foot Infections, an Epidemiological Study in Northeastern Italy. Antibiotics 2021, 10, 1241. https://doi.org/10.3390/antibiotics10101241
Boschetti G, Sgarabotto D, Meloni M, Bruseghin M, Whisstock C, Marin M, Ninkovic S, Pinfi M, Brocco E. Antimicrobial Resistance Patterns in Diabetic Foot Infections, an Epidemiological Study in Northeastern Italy. Antibiotics. 2021; 10(10):1241. https://doi.org/10.3390/antibiotics10101241
Chicago/Turabian StyleBoschetti, Giovanni, Dino Sgarabotto, Marco Meloni, Marino Bruseghin, Christine Whisstock, Mariagrazia Marin, Sasa Ninkovic, Michela Pinfi, and Enrico Brocco. 2021. "Antimicrobial Resistance Patterns in Diabetic Foot Infections, an Epidemiological Study in Northeastern Italy" Antibiotics 10, no. 10: 1241. https://doi.org/10.3390/antibiotics10101241
APA StyleBoschetti, G., Sgarabotto, D., Meloni, M., Bruseghin, M., Whisstock, C., Marin, M., Ninkovic, S., Pinfi, M., & Brocco, E. (2021). Antimicrobial Resistance Patterns in Diabetic Foot Infections, an Epidemiological Study in Northeastern Italy. Antibiotics, 10(10), 1241. https://doi.org/10.3390/antibiotics10101241