Susceptibility of Ocular Staphylococcus aureus to Antibiotics and Multipurpose Disinfecting Solutions
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibilities
2.2. Multipurpose Solution Susceptibility
2.3. Antibiotic and MPDS Susceptibility of niCIE Strains
3. Discussion
4. Materials and Methods
4.1. Staphylococcus aureus Isolates
4.2. Susceptibility to Antibiotics
4.3. Susceptibility to Multipurpose Disinfectant Solutions
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mainous, A.G., 3rd; Hueston, W.J.; Everett, C.J.; Diaz, V.A. Nasal carriage of Staphylococcus aureus and methicillin-resistant S. aureus in the United States, 2001–2002. Ann. Fam. Med. 2006, 4, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, F.; Bruttin, O.; Zografos, L.; Guex-Crosier, Y. Bacterial keratitis: A prospective clinical and microbiological study. Br. J. Ophthalmol. 2001, 85, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Mah, F.S.; Davidson, R.; Holland, E.J.; Hovanesian, J.; John, T.; Kanellopoulos, J.; Shamie, N.; Starr, C.; Vroman, D.; Kim, T.; et al. Current knowledge about and recommendations for ocular methicillin-resistant Staphylococcus aureus. J. Cataract Refract. Surg. 2014, 40, 1894–1908. [Google Scholar] [CrossRef]
- Green, M.; Carnt, N.; Apel, A.; Stapleton, F. Queensland microbial keratitis database: 2005–2015. Br. J. Ophthalmol. 2019, 103, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Parker, W.T.; Law, N.W.; Clarke, C.L.; Gisseman, J.D.; Pflugfelder, S.C.; Wang, L.; Al-Mohtaseb, Z.N. Evolving risk factors and antibiotic sensitivity patterns for microbial keratitis at a large county hospital. Br. J. Ophthalmol. 2017, 101, 1483–1487. [Google Scholar] [CrossRef]
- Sand, D.; She, R.; Shulman, I.A.; Chen, D.S.; Schur, M.; Hsu, H.Y. Microbial keratitis in los angeles: The doheny eye institute and the los angeles county hospital experience. Ophthalmology 2015, 122, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Lai, T.Y.; Chi, S.C.; Lam, D.S. Pediatric ocular surface infections: A 5-year review of demographics, clinical features, risk factors, microbiological results, and treatment. Cornea 2011, 30, 995–1002. [Google Scholar] [CrossRef]
- Sweeney, D.F.; Jalbert, I.; Covey, M.; Sankaridurg, P.R.; Vajdic, C.; Holden, B.A.; Sharma, S.; Ramachandran, L.; Willcox, M.D.P.; Rao, G.N. Clinical characterization of corneal infiltrative events observed with soft contact lens wear. Cornea 2003, 22, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, N.S. Medical management approach to infectious keratitis. Indian J. Ophthalmol. 2008, 56, 215–220. [Google Scholar] [CrossRef]
- Asbell, P.A.; DeCory, H.H. Antibiotic resistance among bacterial conjunctival pathogens collected in the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study. PLoS ONE 2018, 13, e0205814. [Google Scholar] [CrossRef] [Green Version]
- Morrow, G.L.; Abbott, R.L. Conjunctivitis. Am. Fam. Physician 1998, 57, 735–746. [Google Scholar]
- Monaco, M.; Pimentel de Araujo, F.; Cruciani, M.; Coccia, E.M.; Pantosti, A. Worldwide Epidemiology and Antibiotic Resistance of Staphylococcus aureus; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 21–56. [Google Scholar]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 4-2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updates 2010, 13, 151–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K. The ABCD’s of β-lactamase nomenclature. J. Infect. Chemother. 2013, 19, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J.M.; James, C.E.; Winterhalter, M. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 2008, 6, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Hancock, R.E.; Brinkman, F.S. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 2002, 56, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Poole, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005, 56, 20–51. [Google Scholar] [CrossRef] [Green Version]
- Floss, H.G.; Yu, T.W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev. 2005, 105, 621–632. [Google Scholar] [CrossRef]
- Vemula, H.; Ayon, N.J.; Burton, A.; Gutheil, W.G. Antibiotic effects on methicillin-resistant Staphylococcus aureus cytoplasmic peptidoglycan intermediate levels and evidence for potential metabolite level regulatory loops. Antimicrob. Agents Chemother. 2017, 61, e02253-16. [Google Scholar] [CrossRef] [Green Version]
- Vemula, H.; Ayon, N.J.; Burton, A.; Gutheil, W.G. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus. Biochimie 2016, 121, 72–78. [Google Scholar] [CrossRef]
- Zhang, M.; O’Donoghue, M.M.; Ito, T.; Hiramatsu, K.; Boost, M.V. Prevalence of antiseptic-resistance genes in Staphylococcus aureus and coagulase-negative staphylococci colonising nurses and the general population in Hong Kong. J. Hosp. Infect. 2011, 78, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Pershing, S.; Walvick, M.; Tanaka, S. Trends in ophthalmic manifestations of methicillin-resistant Staphylococcus aureus (MRSA) in a northern California pediatric population. J. Am. Assoc. Pediatr. Ophthalmol. Strabis. 2013, 17, 243–247. [Google Scholar] [CrossRef]
- Solomon, R.; Donnenfeld, E.D.; Holland, E.J.; Yoo, S.H.; Daya, S.; Güell, J.L.; Mah, F.S.; Scoper, S.V.; Kim, T. Microbial keratitis trends following refractive surgery: Results of the ASCRS infectious keratitis survey and comparisons with prior ASCRS surveys of infectious keratitis following keratorefractive procedures. J. Cataract Refract. Surg. 2011, 37, 1343–1350. [Google Scholar] [CrossRef]
- Jensen, S.O.; Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 2009, 4, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Pantosti, A.; Sanchini, A.; Monaco, M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007, 2, 323–334. [Google Scholar] [CrossRef]
- Kime, L.; Randall, C.P.; Banda, F.I.; Coll, F.; Wright, J.; Richardson, J.; Empel, J.; Parkhill, J.; O’Neill, A.J. Transient silencing of antibiotic resistance by mutation represents a significant potential source of unanticipated therapeutic failure. mBio 2019, 10, e01755-19. [Google Scholar] [CrossRef] [Green Version]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic resistance and the MRSA problem. Microbiol. Spectr. 2019, 7, 7-2. [Google Scholar] [CrossRef] [PubMed]
- Boost, M.; Cho, P.; Wang, Z. Disturbing the balance: Effect of contact lens use on the ocular proteome and microbiome. Clin. Exp. Optom. 2017, 100, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Stapleton, F.; Willcox, M.D.P. Susceptibility of contact lens-related Pseudomonas aeruginosa keratitis isolates to multipurpose disinfecting solutions, disinfectants, and antibiotics. Transl. Vis. Sci. Technol. 2020, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Sauer, A.; Greth, M.; Letsch, J.; Becmeur, P.-H.; Borderie, V.; Daien, V.; Bron, A.; Creuzot-Garcher, C.; Kodjikian, L.; Burillon, C.; et al. Contact lenses and infectious keratitis: From a case-control study to a momputation of the risk for wearers. Cornea 2020, 39, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F. Contact lens-related corneal infection in Australia. Clin. Exp. Optom. 2020, 103, 408–417. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic resistance increases with local temperature. Nat. Clim. Chang. 2018, 8, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, T.R.; Wolpert, M.; Koornhof, H.J. Corneal ulceration at an urban African hospital. Br. J. Ophthalmol. 1985, 69, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, M.P.; Karmacharya, P.C.D.; Koirala, S.; Tuladhar, N.R.; Bryan, L.E.; Smolin, G.; Whitcher, J.P. Epidemiologic characteristics, predisposing factors, and etiologic diagnosis of corneal ulceration in Nepal. Am. J. Ophthalmol. 1991, 111, 92–99. [Google Scholar] [CrossRef]
- Wahl, J.C.; Katz, H.R.; Abrams, D.A. Infectious keratitis in Baltimore. Ann. Ophthalmol. 1991, 23, 234–237. [Google Scholar]
- Goossens, H.; Ferech, M.; Vander Stichele, R.; Elseviers, M. Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet 2005, 365, 579–587. [Google Scholar] [CrossRef]
- Riedel, S.; Beekmann, S.E.; Heilmann, K.P.; Richter, S.S.; Garcia-de-Lomas, J.; Ferech, M.; Goosens, H.; Doern, G.V. Antimicrobial use in Europe and antimicrobial resistance in Streptococcus pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 485. [Google Scholar] [CrossRef]
- Kantzanou, M. Reduced susceptibility to vancomycin of nosocomial isolates of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 1999, 43, 729–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, V.S.; Dhaliwal, D.K.; Raju, L.; Kowalski, R.P. Antibiotic resistance in the treatment of Staphylococcus aureus keratitis: A 20-year review. Cornea 2015, 34, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Aguas, M.; Khoo, P.; George, C.R.R.; Lahra, M.M.; Watson, S.L. Antimicrobial resistance trends in bacterial keratitis over 5 years in Sydney, Australia. Clin. Exp. Ophthalmol. 2020, 48, 183–191. [Google Scholar] [CrossRef]
- Freidlin, J.; Acharya, N.; Lietman, T.M.; Cevallos, V.; Whitcher, J.P.; Margolis, T.P. Spectrum of eye disease caused by methicillin-resistant Staphylococcus aureus. Am. J. Ophthalmol. 2007, 144, 313–315. [Google Scholar] [CrossRef]
- Kwiecinski, J.; Jin, T.; Josefsson, E. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. Apmis 2014, 122, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Cabrera-Aguas, M.; Khoo, P.; Pratama, R.; Gatus, B.J.; Gulholm, T.; El-Nasser, J.; Lahra, M.M. Keratitis antimicrobial resistance surveillance program, Sydney, Australia: 2016 Annual Report. Clin. Exp. Ophthalmol. 2019, 47, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibovitch, I.; Lai, T.F.; Senarath, L.; Hsuan, J.; Selva, D. Infectious keratitis in South Australia: Emerging resistance to cephazolin. Eur. J. Ophthalmol. 2005, 15, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Samarawickrama, C.; Chan, E.; Daniell, M. Rising fluoroquinolone resistance rates in corneal isolates: Implications for the wider use of antibiotics within the community. Healthc. Infect. 2015, 20, 128–133. [Google Scholar] [CrossRef]
- Ly, C.N.; Pham, J.N.; Badenoch, P.R.; Bell, S.M.; Hawkins, G.; Rafferty, D.L.; McClellan, K.A. Bacteria commonly isolated from keratitis specimens retain antibiotic susceptibility to fluoroquinolones and gentamicin plus cephalothin. Clin. Exp. Ophthalmol. 2006, 34, 44–50. [Google Scholar] [CrossRef]
- Pratt, R.; Barton, M.; Hart, W. Antibiotic Resistance in Animals. Commun. Dis. Intell. Q. Rep. 2003, 27, S121–S126. [Google Scholar]
- Smith, T.C.; Gebreyes, W.A.; Abley, M.J.; Harper, A.L.; Forshey, B.M.; Male, M.J.; Martin, H.W.; Molla, B.Z.; Sreevatsan, S.; Thakur, S.; et al. Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS ONE 2013, 8, e63704. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.P.; Evans, S.L.; Price, L.B.; Silbergeld, E.K. Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environ. Res. 2009, 109, 682–689. [Google Scholar] [CrossRef]
- Price, L.B.; Johnson, E.; Vailes, R.; Silbergeld, E. Fluoroquinolone-resistant campylobacter isolates from conventional and antibiotic-free chicken products. Environ. Health Perspect. 2005, 113, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Spellberg, B.; Gilbert, D.N. The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. Clin. Infect. Dis. 2014, 59 (Suppl. 2), S71–S75. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S. Antibiotic resistance in ocular bacterial pathogens. Indian J. Med. Microbiol. 2011, 29, 218–222. [Google Scholar] [CrossRef]
- Dave, S.B.; Toma, H.S.; Kim, S.J. Changes in ocular flora in eyes exposed to ophthalmic antibiotics. Ophthalmology 2013, 120, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.K.; Melton, R.; Asbell, P.A. Antibiotic resistance among ocular pathogens: Current trends from the ARMOR surveillance study (2009–2016). Clin. Optom. 2019, 11, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marangon, F.B.; Miller, D.; Muallem, M.S.; Romano, A.C.; Alfonso, E.C. Ciprofloxacin and levofloxacin resistance among methicillin-sensitive staphylococcus aureus isolates from keratitis and conjunctivitis. Am. J. Ophthalmol. 2004, 137, 453–458. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, S.; Garg, P.; Rao, G.N. Clinical resistance of Staphylococcus keratitis to ciprofloxacin monotherapy. Indian J. Ophthalmol. 2004, 52, 287–292. [Google Scholar] [PubMed]
- Stapleton, F.; Carnt, N. Contact lens-related microbial keratitis: How have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye 2012, 26, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Chalita, M.R.; Höfling-Lima, A.L.; Paranhos, A.; Schor, P.; Belfort, R. Shifting trends in in vitro antibiotic susceptibilities for common ocular isolates during a period of 15 years. Am. J. Ophthalmol. 2004, 137, 43–51. [Google Scholar] [CrossRef]
- Richards, D.M.; Brogden, R.N. Ceftazidime. Drugs 1985, 29, 105–161. [Google Scholar] [CrossRef]
- Banerjee, R.; Gretes, M.; Harlem, C.; Basuino, L.; Chambers, H.F. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob. Agents Chemother. 2010, 54, 4900–4902. [Google Scholar] [CrossRef] [Green Version]
- Schubert, T.L.; Hume, E.B.; Willcox, M.D. Staphylococcus aureus ocular isolates from symptomatic adverse events: Antibiotic resistance and similarity of bacteria causing adverse events. Clin. Exp. Optom. 2008, 91, 148–155. [Google Scholar] [CrossRef]
- Tuft, S.J.; Matheson, M. In vitro antibiotic resistance in bacterial keratitis in London. Br. J. Ophthalmol. 2000, 84, 687–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int. Biodeterior. Biodegrad. 2003, 51, 271–276. [Google Scholar] [CrossRef]
- Murray, I.A.; Shaw, W.V. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob. Agents Chemother. 1997, 41, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Shaw, W.V. Chloramphenicol acetyltransferase: Enzymology and molecular biology. Crit. Rev. Biochem. 1983, 14, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C.; Bunn, C.L.; Eisenstadt, J.M. Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J. Cell Biol. 1975, 67, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Chuang, C.-C.; Hsiao, C.-H.; Tan, H.-Y.; Ma, D.H.-K.; Lin, K.-K.; Chang, C.-J.; Huang, Y.-C. Staphylococcus aureus ocular infection: Methicillin-resistance, clinical features, and antibiotic susceptibilities. PLoS ONE 2012, 8, e42437. [Google Scholar] [CrossRef]
- Kowalski, R.P.; Kowalski, T.A.; Shanks, R.M.; Romanowski, E.G.; Karenchak, L.M.; Mah, F.S. In vitro comparison of combination and monotherapy for the empiric and optimal coverage of bacterial keratitis based on incidence of infection. Cornea 2013, 32, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, S.E.; Sakoulas, G.; Perencevich, E.N.; Schwaber, M.J.; Karchmer, A.W.; Carmeli, Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: A meta-analysis. Clin. Infect. Dis. 2003, 36, 53–59. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, G.; Russell, A.D. Antiseptics, and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavet, C.R.; Chaput, M.P.; Silverman, M.D.; Striplin, M.; Shoff, M.E.; Lucas, A.D.; Hitchins, V.M.; Eydelman, M.B. Impact of contact lens materials on multipurpose contact lens solution disinfection activity against Fusarium Solani. Eye Contact Lens 2012, 38, 379–384. [Google Scholar] [CrossRef]
- Shoff, M.E.; Lucas, A.D.; Brown, J.N.; Hitchins, V.M.; Eydelman, M.B. The effects of contact lens materials on a multipurpose contact lens solution disinfection activity against Staphylococcus aureus. Eye Contact Lens 2012, 38, 368–373. [Google Scholar] [CrossRef]
- Codling, C.E.; Maillard, J.Y.; Russell, A.D. Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. J. Antimicrob. Chemother. 2003, 51, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Linares, M.; Ferrer-Luque, C.M.; Arias-Moliz, T.; de Castro, P.; Aguado, B.; Baca, P. Antimicrobial activity of alexidine, chlorhexidine and cetrimide against Streptococcus mutant’s biofilm. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abjani, F.; Khan, N.A.; Jung, S.Y.; Siddiqui, R. Status of the effectiveness of contact lens disinfectants in Malaysia against keratitis-causing pathogens. Exp. Parasitol. 2017, 183, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Laxmi Narayana, B.; Rao, P.; Bhat, S.; Vidyalakshmi, K. Comparison of the Antimicrobial Efficacy of Various Contact Lens Solutions to Inhibit the Growth of Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Microbiol. 2018, 2018, 5916712. [Google Scholar] [CrossRef]
- Gabriel, M.M.; McAnally, C.; Bartell, J. Antimicrobial efficacy of multipurpose disinfecting solutions in the presence of contact lenses and lens cases. Eye Contact Lens 2018, 44, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Boost, M.V.; Chan, J.; Shi, G.S.; Cho, P. Effect of multipurpose solutions against Acinetobacter carrying QAC genes. Optom. Vis. Sci. 2014, 91, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Zhu, H.; Willcox, M. Susceptibility of Stenotrophomonas maltophilia clinical isolates to antibiotics and contact lens multipurpose disinfecting solutions. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8475–8479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Asbell, P.A.; Sanfilippo, C.M.; Pillar, C.M. Antibiotic resistance among ocular pathogenis in the United States. JAMA Ophthalmol. 2015, 133, 1445. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Clinical Breakpoints and Dosing of Antibiotics. 2018. Available online: https://eucast.org/ast_of_bacteria (accessed on 2 October 2021).
- Taylor, P.C.; Schoenknecht, F.D.; Sherris, J.C.; Linner, E.C. Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: Influence and significance of technical factors. Antimicrob. Agents Chemother. 1983, 23, 142–150. [Google Scholar] [CrossRef] [Green Version]
Antibiotic | Microbial Keratitis (n = 23) | Conjunctivitis (n = 26) | niCIE (n = 14) | |||
---|---|---|---|---|---|---|
% S | % R | % S | % R | % S | % R | |
Ciprofloxacin | 39.1 | 60.8 | 42.3 | 57.6 | 71.4 | 28.5 |
Ceftazidime | 0 | 100 | 11.5 | 88.4 | 28.5 | 71.4 |
Oxacillin | 60.8 | 39.1 | 76.9 | 23 | 92.8 | 7.1 |
Gentamicin | 95.6 | 4.3 | 100 | 0 | 100 | 0 |
Vancomycin | 100 | 0 | 100 | 0 | 100 | 0 |
Chloramphenicol | 30.4 | 69.5 | 92.3 | 7.6 | 78.5 | 21.4 |
Azithromycin | 0 | 100 | 15.3 | 84.6 | 7.1 | 92.8 |
Polymyxin B | 0 | 100 | 15.3 | 84.6 | 7.1 | 92.8 |
S. aureus Strains | OPTI-FREE PureMoist (%) | Renu Advanced Formula (%) | Complete RevitaLens OcuTec (%) | Biotrue (%) | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
12 | 2.84 | 11.36 | 2.84 | 5.64 | 2.84 | 5.64 | 11.36 | 22.72 |
20 | 11.36 | 22.72 | 11.36 | 22.72 | 22.72 | 22.72 | 45.45 | 90.9 |
24 | 5.64 | 11.36 | 2.84 | 11.36 | 45.45 | 90.9 | 11.36 | 22.72 |
25 | 1.42 | 2.84 | 1.42 | 5.64 | 2.84 | 5.64 | 5.64 | 11.36 |
26 | 1.42 | 5.64 | 1.42 | 2.84 | 5.64 | 11.36 | 22.72 | 45.45 |
27 | 22.72 | 22.72 | 90.9 | 90.9 | 22.72 | 45.45 | 90.9 | 90.9 |
28 | 11.36 | 22.72 | 11.36 | 22.72 | 22.72 | 45.45 | 45.45 | 90.9 |
29 | 5.64 | 11.36 | 22.72 | 45.45 | 22.72 | 45.45 | 45.45 | 90.9 |
31 | 11.36 | 22.72 | 22.72 | 45.45 | 22.72 | 45.45 | 5.64 | 11.36 |
32 | 5.64 | 11.36 | 22.72 | 45.45 | 22.72 | 45.45 | 22.72 | 45.45 |
33 | 11.36 | 22.72 | 22.72 | 45.45 | 22.72 | 45.45 | 45.45 | 90.9 |
41 | 5.64 | 11.36 | 11.36 | 45.45 | 11.36 | 45.45 | 22.72 | 45.45 |
48 | 2.84 | 5.64 | 2.84 | 5.64 | 2.84 | 5.64 | 5.64 | 11.36 |
117 | 11.36 | 22.72 | 5.64 | 22.72 | 11.36 | 11.36 | 11.36 | 22.72 |
Strains | ANTIBIOTICS | MPDS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CIP | CEFT | OXA | GEN | VAN | CHL | AZI | P-B | OPTI | RENU | REV | BIO | |
12 | ||||||||||||
20 | ||||||||||||
24 | ||||||||||||
25 | ||||||||||||
27 | ||||||||||||
28 | ||||||||||||
32 | ||||||||||||
33 | ||||||||||||
48 | ||||||||||||
117 | ||||||||||||
26 | ||||||||||||
29 | ||||||||||||
31 | ||||||||||||
41 |
S. aureus Isolates | Origin | Associated Condition | Year of Isolation |
---|---|---|---|
106 | Bascom Palmer Institute, Miami (USA) | Microbial keratitis (MK) | 2004 |
107 | |||
108 | |||
109 | |||
110 | |||
111 | |||
112 | |||
113 | |||
114 | |||
129 | Prince of Wales Hospital (Australia) | 2006 | |
34 | 1997 | ||
M5-01 | 2018 | ||
M19-01 | |||
M27-01 | |||
M28-01 | |||
M30-01 | |||
M36-01 | |||
M43-01 | |||
M49-02 | |||
M65-02 | |||
M71-01 | |||
M90-01 | |||
M91-01 | |||
84 | Bascom Palmer Institute, Miami (USA) | Conjunctivitis | 2004 |
85 | |||
86 | |||
87 | |||
88 | |||
89 | |||
90 | |||
91 | |||
92 | |||
93 | |||
94 | |||
95 | |||
96 | |||
97 | |||
98 | |||
99 | |||
100 | |||
101 | |||
102 | |||
103 | |||
104 | |||
105 | |||
46 | Prince of Wales Hospital (Australia) | 2006 | |
134 | |||
136 | |||
140 | |||
12 | SOVS, UNSW (Australia) | Contact lens-related non-infectious corneal infiltrative events (niCIE) | 1995 |
20 | |||
24 | 1996 | ||
25 | |||
26 | |||
27 | 1997 | ||
28 | |||
29 | |||
31 | |||
32 | |||
33 | |||
41 | 1999 | ||
48 | 2001 | ||
117 | 1999 |
MPDS | Manufacturer | Disinfectants and Their Concentrations |
---|---|---|
OPTI-FREE® PureMoist® | Alcon, Fort Worth, TX, USA | Polyquaternium-1, 10 ppm; Aldox, 6 ppm |
Complete RevitaLens OcuTec (now sold as ACUVUE™ RevitaLens) | Abbot Medical Optics, Hangzhou, ZJ, China (Johnson and Johnson Vision) | Alexidine dihydrochloride, 1.6 ppm; polyquaternium-1, 3 ppm |
Biotrue® | Bausch + Lomb, Rochester, NY, USA | Polyaminopropyl biguanide, 1.3 ppm; polyquaternium-1, 1 ppm |
Renu® Advanced Formula | Polyaminopropyl biguanide, 0.5 ppm; polyquaternium-1, 1.5 ppm; alexidine, 2 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, M.; Vijay, A.K.; Stapleton, F.; Willcox, M.D.P. Susceptibility of Ocular Staphylococcus aureus to Antibiotics and Multipurpose Disinfecting Solutions. Antibiotics 2021, 10, 1203. https://doi.org/10.3390/antibiotics10101203
Afzal M, Vijay AK, Stapleton F, Willcox MDP. Susceptibility of Ocular Staphylococcus aureus to Antibiotics and Multipurpose Disinfecting Solutions. Antibiotics. 2021; 10(10):1203. https://doi.org/10.3390/antibiotics10101203
Chicago/Turabian StyleAfzal, Madeeha, Ajay Kumar Vijay, Fiona Stapleton, and Mark D. P. Willcox. 2021. "Susceptibility of Ocular Staphylococcus aureus to Antibiotics and Multipurpose Disinfecting Solutions" Antibiotics 10, no. 10: 1203. https://doi.org/10.3390/antibiotics10101203