Risk Factors for the Acquisition of Enterococcus faecium Infection and Mortality in Patients with Enterococcal Bacteremia: A 5-Year Retrospective Analysis in a Tertiary Care University Hospital
Abstract
:1. Introduction
2. Results
2.1. Patient Data
2.2. Demographic and Clinical Characteristics
2.3. Microbiological Data
2.4. Clinical Management and Outcomes
3. Discussion
4. Materials and Methods
4.1. Setting and Patients
4.2. Definitions
4.3. Identification and Antibiotic Susceptibility Testing
4.4. Statistical Analysis
4.5. Ethics Approval
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caballero-Granado, F.J.; Becerril, B.; Cuberos, L.; Bernabeu, M.; Cisneros, J.M.; Pachón, J. Attributable mortality rate and duration of hospital stay associated with enterococcal bacteremia. Clin. Infect. Dis. 2001, 32, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moses, V.; Jerobin, J.; Nair, A.; Sathyendara, S.; Balaji, V.; George, I.A.; Peter, J.V. Enterococcal bacteremia is associated with prolonged stay in the medical intensive care unit. J. Glob. Infect. Dis. 2012, 4, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.-Y.; Perencevich, E.N.; Nair, R.; Nelson, R.E.; Samore, M.; Khader, K.; Chorazy, M.L.; Herwaldt, L.A.; Blevins, A.; Ward, M.A.; et al. Incidence and Outcomes Associated with Infections Caused by Vancomycin-Resistant Enterococci in the United States: Systematic Literature Review and Meta-Analysis. Infect. Control Hosp. Epidemiol. 2017, 38, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare. Japan Nosocomial Infections Surveillance. Available online: https://janis.mhlw.go.jp/english/index.asp (accessed on 1 December 2020).
- Weber, S.; Hogardt, M.; Reinheimer, C.; Wichelhaus, T.A.; Kempf, V.A.J.; Kessel, J.; Wolf, S.; Serve, H.; Steffen, B.; Scheich, S. Bloodstream Infections with Vancomycin-Resistant Enterococci Are Associated with a Decreased Survival in Patients with Hematological Diseases. Ann. Hematol. 2019, 98, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478. [Google Scholar] [CrossRef]
- Harbarth, S.; Cosgrove, S.; Carmeli, Y. Effects of Antibiotics on Nosocomial Epidemiology of Vancomycin-Resistant Enterococci. Antimicrob. Agents Chemother. 2002, 46, 1619–1628. [Google Scholar] [CrossRef] [Green Version]
- Data from the ECDC Surveillance Atlas—Antimicrobial Resistance. Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc (accessed on 1 January 2021).
- Webb, M.; Riley, L.; Roberts, R.B. Cost of Hospitalization for and Risk Factors Associated with Vancomycin-Resistant Enterococcus Faecium Infection and Colonization. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2001, 33, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Morales, E.; Cots, F.; Sala, M.; Comas, M.; Belvis, F.; Riu, M.; Salvadó, M.; Grau, S.; Horcajada, J.P.; Montero, M.M.; et al. Hospital Costs of Nosocomial Multi-Drug Resistant Pseudomonas Aeruginosa Acquisition. BMC Health Serv. Res. 2012, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Mauldin, P.D.; Salgado, C.D.; Hansen, I.S.; Durup, D.T.; Bosso, J.A. Attributable Hospital Cost and Length of Stay Associated with Health Care-Associated Infections Caused by Antibiotic-Resistant Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2010, 54, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Tenney, J.; Hudson, N.; Alnifaidy, H.; Li, J.T.C.; Fung, K.H. Risk Factors for Aquiring Multidrug-Resistant Organisms in Urinary Tract Infections: A Systematic Literature Review. Saudi Pharm. J. 2018, 26, 678–684. [Google Scholar] [CrossRef]
- Kaye, K.S.; Cosgrove, S.; Harris, A.; Eliopoulos, G.M.; Carmeli, Y. Risk Factors for Emergence of Resistance to Broad-Spectrum Cephalosporins among Enterobacter Spp. Antimicrob. Agents Chemother. 2001, 45, 2628–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagas, M.E.; Kopterides, P. Risk Factors for the Isolation of Multi-Drug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa: A Systematic Review of the Literature. J. Hosp. Infect. 2006, 64, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Gudiol, C.; Ayats, J.; Camoez, M.; Domínguez, M.Á.; García-Vidal, C.; Bodro, M.; Ardanuy, C.; Obed, M.; Arnan, M.; Antonio, M.; et al. Increase in bloodstream infection due to vancomycin-susceptible Enterococcus faecium in cancer patients: Risk factors, molecular epidemiology and outcomes. PLoS ONE 2013, 8, e74734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treitman, A.N.; Yarnold, P.R.; Warren, J.; Noskin, G.A. Emerging Incidence of Enterococcus faecium among hospital isolates (1993 to 2002). J. Clin. Microbiol. 2005, 43, 462–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajihara, T.; Nakamura, S.; Iwanaga, N.; Oshima, K.; Takazono, T.; Miyazaki, T.; Izumikawa, K.; Yanagihara, K.; Kohno, N.; Kohno, S. Clinical Characteristics and Risk Factors of Enterococcal Infections in Nagasaki, Japan: A Retrospective Study. BMC Infect. Dis. 2015, 15, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Hase, R.; Otsuka, Y.; Hosokawa, N. A 10-Year Profile of Enterococcal Bloodstream Infections at a Tertiary-Care Hospital in Japan. J. Infect. Chemother. 2017, 23, 390–393. [Google Scholar] [CrossRef]
- Morvan, A.C.; Hengy, B.; Garrouste-Orgeas, M.; Ruckly, S.; Forel, J.M.; Argaud, L.; Rimmelé, T.; Bedos, J.P.; Azoulay, E.; Dupuis, C.; et al. Impact of species and antibiotic therapy of enterococcal peritonitis on 30-day mortality in critical care—An analysis of the OUTCOMEREA database. Crit. Care 2019, 23, 307. [Google Scholar] [CrossRef] [Green Version]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef]
- Uda, A.; Tokimatsu, I.; Koike, C.; Osawa, K.; Shigemura, K.; Kimura, T.; Miyara, T.; Yano, I. Antibiotic de-escalation therapy in patients with community-acquired nonbacteremic pneumococcal pneumonia. Int. J. Clin. Pharm. 2019, 41, 1611–1617. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Available online: https://www.mhlw.go.jp/topics/2020/04/tp20200401-01.html (accessed on 1 December 2020).
- Noskin, G.A.; Peterson, L.R.; Warren, J.R. Enterococcus faecium and Enterococcus faecalis bacteremia: Acquisition and outcome. Clin. Infect. Dis. 1995, 20, 296–301. [Google Scholar] [CrossRef]
- Izumikawa, K.; Tomita, T.; Nishimura, N.; Niwa, T.; Takayama, K.; Ohana, N.; Kusama, F.; Hida, Y.; Negayama, K.; Matsuda, J.; et al. The current status and issue of usage of intravenous antimicrobial agents in national and public university hospitals in Japan. Jpn. J. Chemother. 2018, 66, 738–748. (In Japanese) [Google Scholar]
- Harris, A.D.; Perencevich, E.; Roghmann, M.-C.; Morris, G.; Kaye, K.S.; Johnson, J.A. Risk factors for piperacillin-tazobactam-resistant Pseudomonas aeruginosa among hospitalized patients. Antimicrob. Agents Chemother. 2002, 46, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Uda, A.; Sakaue, T.; Yamashita, K.; Nishioka, T.; Nishimura, S.; Ebisawa, K.; Nagata, M.; Ohji, G.; Nakamura, T.; et al. Long-term efficacy of comprehensive multidisciplinary antibiotic stewardship programs centered on weekly prospective audit and feedback. Infection 2018, 46, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uda, A.; Shigemura, K.; Kitagawa, K.; Osawa, K.; Onuma, K.; Inoue, S.; Kotani, J.; Yan, Y.; Nakano, Y.; Nishioka, T.; et al. How does antimicrobial stewardship affect inappropriate antibiotic therapy in urological patients? Antibiotics 2020, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uda, A.; Kimura, T.; Nishimura, S.; Ebisawa, K.; Ohji, G.; Kusuki, M.; Yahata, M.; Izuta, R.; Sakaue, T.; Nakamura, T.; et al. Efficacy of educational intervention on reducing the inappropriate use of oral third-generation cephalosporins. Infection 2019, 47, 1037–1045. [Google Scholar] [CrossRef]
- Kullar, R.; Davis, S.L.; Levine, D.P.; Rybak, M.J. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: Support for consensus guidelines suggested targets. Clin. Infect. Dis. 2011, 52, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Foo, H.; Chater, M.; Maley, M.; van Hal, S.J. Glycopeptide use is associated with increased mortality in Enterococcus faecalis bacteraemia. J. Antimicrob. Chemother. 2014, 69, 2252–2257. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Li, H.; Pu, Z.; Wang, H.; Deng, X.; Liu, X.; Deng, Q.; Yu, Z. Bloodstream infections caused by Enterococcus spp: A 10-year retrospective analysis at a tertiary hospital in China. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2017, 37, 257–263. [Google Scholar] [CrossRef]
- McBride, S.J.; Upton, A.; Roberts, S.A. Clinical characteristics and outcomes of patients with vancomycin-susceptible Enterococcus faecalis and Enterococcus faecium bacteraemia—A five-year retrospective review. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 107–114. [Google Scholar] [CrossRef]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 29, 813–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Du, M.; Chang, Y.; Chen, L.; Zhang, Q. Incidence, clinical characteristics, and outcomes of nosocomial Enterococcus spp. bloodstream infections in a tertiary-care hospital in Beijing, China: A four-year retrospective study. Antimicrob. Resist. Infect. Control 2017, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Courjon, J.; Demonchy, E.; Degand, N.; Risso, K.; Ruimy, R.; Roger, P.-M. Patients with community-acquired bacteremia of unknown origin: Clinical characteristics and usefulness of microbiological results for therapeutic issues: A single-center cohort study. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
E. faecalis (n = 88) | E. faecium (n = 94) | p | Adjusted OR (95% CI) | p | |
Age (years), median (IQR) | 73.5 (66–80) | 72 (65–75) | 0.073 | ||
Male sex, n (%) | 53 (60) | 54 (58) | 0.82 | ||
Hospitalization ward, n (%) | |||||
Medical ward | 24 (27) | 30 (32) | 0.60 | ||
Surgical ward | 41 (47) | 33 (35) | 0.15 | ||
Intensive Care Unit | 23 (26) | 31 (33) | 0.40 | ||
Comorbidities, n (%) | |||||
Chronic renal failure | 35 (40) | 32 (34) | 0.52 | ||
Dialysis | 8 (9.1) | 10 (11) | 0.9 | ||
Diabetes mellitus | 21 (24) | 18 (19) | 0.55 | ||
Cardiovascular disease | 23 (26) | 12 (13) | 0.058 | ||
Previous cardiac valve replacement | 11 (13) | 9 (9.6) | 0.69 | ||
Coronary artery bypass grafting | 3 (3.4) | 3 (3.2) | 0.9 | ||
Hepatobiliary tumor | 5 (5.7) | 20 (21) | 0.005 | 3.01 (0.87–10.5) | 0.083 |
Other solid tumors | 15 (17) | 13 (14) | 0.69 | ||
Hematologic tumor | 3 (3.4) | 13 (14) | 0.027 | 7.85 (1.96–31.4) | 0.004 |
Solid organ transplant recipient | 1 (1.1) | 1 (1.1) | 1 | ||
Bone marrow transplant recipient | 1 (1.1) | 2 (2.1) | 1 | ||
Neutropenia | 0 (0.0) | 9 (9.6) | 0.008 | ||
Hepatobiliary disease | 6 (6.8) | 3 (3.2) | 0.43 | ||
Collagen disease | 1 (1.1) | 10 (11) | 0.018 | 8.41 (0.91–77.7) | 0.061 |
Source of infections, n (%) | |||||
Central venous catheter | 18 (21) | 23 (25) | 0.64 | ||
Cholecystocholangitis | 8 (9.1) | 30 (32) | <0.001 | 5.21 (1.89–14.3) | 0.001 |
Urinary tract infection | 14 (16) | 4 (4.3) | 0.017 | ||
Intra-abdominal infection | 3 (3.4) | 9 (9.6) | 0.17 | ||
Febrile neutropenia | 0 (0.0) | 8 (8.5) | 0.015 | ||
Infectious endocarditis | 4 (4.6) | 0 (0.0) | 0.11 | ||
Wound infection | 2 (2.3) | 1 (1.1) | 0.95 | ||
Unknown | 24 (27) | 14 (15) | 0.041 | ||
Others | 6 (6.8) | 2 (2.1) | 0.24 | ||
Hospital stay before the onset of bacteremia (days), median (IQR) | 23.5 (8–56.5) | 31 (13.3–75.8) | 0.13 | ||
qSOFA score ≥ 2, n (%) | 27 (31) | 29 (31) | 1 | ||
Recent surgery, n (%) | 32 (36) | 31 (33) | 0.75 | ||
Invasive devices, n (%) | |||||
Central intravenous catheter | 39 (44) | 50 (53) | 0.29 | ||
Urinary catheter | 43 (49) | 39 (42) | 0.40 | ||
Immunosuppression (within 30 days), n (%) | |||||
Immunosuppressive treatment | 2 (2.3) | 9 (9.6) | 0.079 | ||
Corticosteroid treatment | 13 (15) | 26 (28) | 0.053 | ||
Chemotherapy | 5 (5.7) | 13 (14) | 0.11 | ||
Previous antibiotic therapy (within 30 days) | |||||
Non-antipseudomonal penicillins | |||||
Number of patients (%) | 16 (18) | 27 (29) | 0.13 | ||
Duration of use, median (IQR) | 6 (3–9) | 5 (2.5–8.5) | 0.68 | ||
Antipseudomonal penicillins | |||||
Number of patients (%) | 14 (16) | 42 (45) | <0.001 | 4.04 (1.81–9.0) | <0.001 |
Duration of use, median (IQR) | 7 (4.3–9.5) | 6 (4–8) | 0.89 | ||
Cephalosporins | |||||
Number of patients (%) | 51 (58) | 53 (56) | 0.95 | ||
Duration of use, median (IQR) | 5 (3–7) | 5 (2–10) | 1 | ||
Carbapenems | |||||
Number of patients (%) | 16 (18) | 42 (45) | <0.001 | 3.33 (1.51–7.36) | 0.003 |
Duration of use, median (IQR) | 7 (3.8–9) | 6.5 (4.3–10.8) | 0.24 | ||
Quinolones | |||||
Number of patients (%) | 9 (10) | 19 (20) | 0.097 | ||
Duration of use, median (IQR) | 4 (4–6) | 7 (4–9) | 0.69 | ||
Aminoglycosides | |||||
Number of patients (%) | 0 (0.0) | 3 (3.2) | 0.27 | ||
Duration of use, median (IQR) | 0 (0–0) | 3 (2.5–3.5) | <0.001 | ||
Anti-MRSA agents (VCM) | |||||
Number of patients (%) | 15 (17) | 28 (30) | 0.065 | ||
Duration of use, median (IQR) | 5 (2.5–9.5) | 4 (2–5.3) | 0.26 | ||
Anti-MRSA agents (DAP, LZD) | |||||
Number of patients (%) | 6 (6.8) | 10 (11) | 0.52 | ||
Duration of use, median (IQR) | 3.5 (2.3–7) | 2.5 (1.3–6) | 0.51 |
E. faecalis (n = 88) | E. faecium (n = 94) | p | |
---|---|---|---|
Polymicrobial culture, n (%) | 22 (25) | 29 (31) | 0.48 |
Antibiotic susceptibility, n (%) | |||
Ampicillin | 88 (100) | 14 (15) | <0.001 |
Vancomycin | 88 (100) | 94 (100) | 0.66 |
Imipenem | 88 (100) | 0 (0.0) | <0.001 |
Levofloxacin | 80 (91) | 11 (12) | <0.001 |
E. faecalis (n = 88) | E. faecium (n = 94) | p | |
---|---|---|---|
Source control with drainage, n (%) | 13 (15) | 23 (25) | 0.15 |
Antibiotic therapy against enterococci | |||
Non–antipseudomonal penicillins | |||
Number of patients (%) | 55 (63) | 4 (4.3) | <0.001 |
Duration of use, median (IQR) | 10 (6–14) | 5 (3–8) | 0.022 |
Antipseudomonal penicillins | |||
Number of patients (%) | 25 (28) | 1 (1.1) | <0.001 |
Duration of use, median (IQR) | 7 (3–10) | 5 (5–5) | 0.74 |
Cephalosporins | |||
Number of patients (%) | 2 (2.3) | 2 (2.1) | 1 |
Duration of use, median (IQR) | 14 (12–15) | 11 (10–12) | 0.41 |
Carbapenems | |||
Number of patients (%) | 2 (2.3) | 0 (0.0) | 0.16 |
Duration of use, median (IQR) | 11 (9–13) | 0 (0–0) | 0.74 |
Quinolones | |||
Number of patients (%) | 4 (4.6) | 0 (0.0) | 0.046 |
Duration of use, median (IQR) | 9 (7–11) | 0 (0–0) | 0.022 |
Aminoglycosides | |||
Number of patients (%) | 6 (6.8) | 0 (0.0) | 0.031 |
Duration of use, median (IQR) | 14 (11–35) | 0 (0–0) | 1 |
Anti–MRSA agent (VCM) | |||
Number of patients (%) | 33 (38) | 74 (79) | <0.001 |
Duration of use, median (IQR) | 4 (2–11) | 12 (7–16) | <0.001 |
Anti–MRSA agents (DAP, LZD) | |||
Number of patients (%) | 13 (15) | 28 (30) | 0.028 |
Duration of use, median (IQR) | 5 (4–15) | 4 (3–8) | 0.12 |
Time to antibiotic therapy against enterococci (days), median (IQR) | 0 (0–1) | 1 (0–1) | 0.049 |
Total duration of antibiotic therapy (days), median (IQR) | 14 (8–19.3) | 13 (8–17) | 0.99 |
Daily antimicrobial cost ($), median (IQR) | 23 (13–34) | 34 (22–58) | <0.001 |
Vancomycin median serum trough concentrations (≥20 mg/L), n (%) | 5 (5.7) | 19 (20) | 0.007 |
AKI after the onset of bacteremia, n (%) | 7 (8.0) | 20 (21) | 0.02 |
Hospital length after the onset of bacteremia until discharge (days), median (IQR) | 33 (14.8–69.5) | 29 (15.3–58.5) | 0.34 |
Survived (n = 141) | Died (n = 41) | p | Adjusted OR (95% CI) | p | |
---|---|---|---|---|---|
Admission to intensive care unit, n (%) | 32 (23) | 22 (54) | <0.001 | 1.65 (0.61–4.47) | 0.33 |
Comorbidities at bacteremia, n (%) | |||||
Chronic renal failure | 52 (37) | 18 (44) | 0.38 | ||
Dialysis | 16 (11) | 3 (7.3) | 0.74 | ||
Diabetes mellitus | 27 (19) | 9 (22) | 0.46 | ||
Cardiovascular disease | 19 (14) | 6 (15) | 0.54 | ||
Cardiac valve replacement | 11 (7.8) | 8 (20) | 0.089 | ||
Source of infections, n (%) | |||||
Central venous catheter | 34 (25) | 7 (17) | 0.003 | ||
Cholecystocholangitis | 29 (21) | 9 (22) | 1 | ||
Unknown | 24 (17) | 16 (39) | 0.014 | 2.79 (1.14–6.85) | 0.025 |
Hospital stay before the onset of bacteremia (days), median (IQR) | 25 (10–55) | 39 (14–80) | 0.16 | ||
qSOFA score ≥ 2 at bacteremia, n (%) | 33 (23) | 23 (56) | <0.001 | 2.96 (1.15–7.62) | 0.024 |
Previous immunosuppression (within 30 days), n (%) | |||||
Immunosuppressive treatment | 5 (3.6) | 6 (15) | 0.024 | 2.31 (0.46–11.5) | 0.31 |
Corticosteroid treatment | 24 (17) | 15 (37) | 0.014 | 2.84 (1.08–7.46) | 0.034 |
Chemotherapy | 16 (11) | 2 (4.9) | 0.36 | ||
Acute kidney injury after the onset of bacteremia, n (%) | 15 (11) | 12 (29) | <0.001 | 4.51 (1.61–12.7) | 0.004 |
E. faecium bacteremia, n (%) | 67 (48) | 27 (66) | 0.059 | ||
Antibiotic susceptibility, n (%) | |||||
Ampicillin | 57 (40) | 24 (59) | 0.11 | ||
Imipenem | 67 (48) | 27 (66) | 0.059 | ||
Levofloxacin | 65 (46) | 26 (63) | 0.076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uda, A.; Shigemura, K.; Kitagawa, K.; Osawa, K.; Onuma, K.; Yan, Y.; Nishioka, T.; Fujisawa, M.; Yano, I.; Miyara, T. Risk Factors for the Acquisition of Enterococcus faecium Infection and Mortality in Patients with Enterococcal Bacteremia: A 5-Year Retrospective Analysis in a Tertiary Care University Hospital. Antibiotics 2021, 10, 64. https://doi.org/10.3390/antibiotics10010064
Uda A, Shigemura K, Kitagawa K, Osawa K, Onuma K, Yan Y, Nishioka T, Fujisawa M, Yano I, Miyara T. Risk Factors for the Acquisition of Enterococcus faecium Infection and Mortality in Patients with Enterococcal Bacteremia: A 5-Year Retrospective Analysis in a Tertiary Care University Hospital. Antibiotics. 2021; 10(1):64. https://doi.org/10.3390/antibiotics10010064
Chicago/Turabian StyleUda, Atsushi, Katsumi Shigemura, Koichi Kitagawa, Kayo Osawa, Kenichiro Onuma, Yonmin Yan, Tatsuya Nishioka, Masato Fujisawa, Ikuko Yano, and Takayuki Miyara. 2021. "Risk Factors for the Acquisition of Enterococcus faecium Infection and Mortality in Patients with Enterococcal Bacteremia: A 5-Year Retrospective Analysis in a Tertiary Care University Hospital" Antibiotics 10, no. 1: 64. https://doi.org/10.3390/antibiotics10010064
APA StyleUda, A., Shigemura, K., Kitagawa, K., Osawa, K., Onuma, K., Yan, Y., Nishioka, T., Fujisawa, M., Yano, I., & Miyara, T. (2021). Risk Factors for the Acquisition of Enterococcus faecium Infection and Mortality in Patients with Enterococcal Bacteremia: A 5-Year Retrospective Analysis in a Tertiary Care University Hospital. Antibiotics, 10(1), 64. https://doi.org/10.3390/antibiotics10010064