The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Preparation of Antibiotics
2.2. Quantitation of Biofilms
2.3. MIC Determination
2.4. Effects of Sub-MIC Daptomycin and Tigecycline on S. aureus Growth
2.5. Effect of Sub-MIC Daptomycin and Tigecycline on S. aureus Adhesion and Biofilm Gene Expression.
2.6. Primers and Their Specificities for qPCR
2.7. Quantitative Real-Time PCR and Analysis
2.8. Effects of Sub-MIC Tigecycline on Secreted Proteins
2.9. Liquid Chromatography-Mass Spectrometry (LC-MS)
2.10. Statistical Analysis
3. Results
3.1. Biofilm Quantitative Assay
3.2. MIC Determination
3.3. Effects of sub-MIC Daptomycin and Tigecyclineon Growth of S. aureus Isolates
3.4. Effects of Sub-MIC Daptomycin and Tigecycline Treatment on the Expression of Adhesion and Biofilm Genes
3.5. Effects of Sub-MIC Tigecycline Treatment on the Expression of Extracellular Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, R.J.; Henderson, B.; Sharp, L.J.; Nair, S.P. Identification of a Fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun. 2002, 70, 6805–6810. [Google Scholar] [CrossRef] [Green Version]
- Cramton, S.E.; Gerke, C.; Schnell, N.F.; Nichols, W.W.; Götz, F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999, 67, 5427–5433. [Google Scholar] [CrossRef] [Green Version]
- Maree, C.L.; Robert, S.D.; Susan, B.V.; Kelli, M.; Loren, G.M. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg. Infect. Dis. 2007, 13, 236–242. [Google Scholar] [CrossRef]
- Kumaran, D.; Mariam, T.; Qi, L.Y.; Sandra, R.A.; Jean, S.D.; Alberto, C.; Hesham, A. Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against staphylococcus aureus biofilms. Front. Microbiol. 2018, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Shen, X.; Yu, J.; Cao, X.; Zhan, Q.; Guo, Y.; Yu, F. Subinhibitory Concentrations of Fusidic Acid May Reduce the Virulence of S. aureus by Down-Regulating sarA and saeRS to Reduce Biofilm Formation and α-Toxin Expression. Front. Microbiol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Lehman, S.M.; Gillian, M.; Deborah, R.; Robert, A.C.; Frenk, S.; Steven, D.B.; Sandra, M. Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-Resistant Staphylococcus Aureus. Infect. Viruses 2019, 21, 11–88. [Google Scholar]
- Dieter, W.; Hayal, K.; Andrea, S.; Axel, D.; Konrad, B.; Gerd, D. Effects of Amoxicillin, Gentamicin, and Moxifloxacin on the Hemolytic Activity of Staphylococcus aureus In Vitro and In Vivo. Antimicrob. Agents Chemother. 2001, 45, 196–202. [Google Scholar]
- Bernardo, K.; Pakulat, N.; Fleer, S.; Schnaith, A.; Utermöhlen, O.; Krut, O.; Müller, S.; Krönke, M. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob. Agents Chemother. 2004, 48, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Gardete, S.; Wu, S.W.; Gill, S.; Tomasz, A. Role of VraSR in Antibiotic Resistance and Antibiotic-Induced Stress Response in Staphylococcus Aureus. Antimicrob. Agents Chemother. 2006, 50, 3424–3434. [Google Scholar] [CrossRef] [Green Version]
- Stevens, D.L.; Yongsheng, M.; Daniel, B.S.; Eric, M.; Randi, J.W.; Amy, E.B. Impact of antibiotics on expression of virulence- associated exotoxin genes in methicillinsensitive and methicillin-resistant Staphylococcus aureus. J. Infect Dis. 2007, 195, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Aires, D.S.M.; Herminia, D.L. Bridges from hospitals to the laboratory: Genetic portraits of methicillin-resistant Staphylococcus aureus clones. Immunol. Med. Microbiol. 2004, 40, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Majidpour, A.; Sara, F.; Mastaneh, A.; Mohammad, R.; Mina, B.; Marjan, H.; Leila, A.; Somayeh, S.M. Dose-Dependent Effects of Common Antibiotics Used to Treat Staphylococcus aureus on Biofilm Formation. Iran J. Pathol. 2017, 12, 362–370. [Google Scholar] [CrossRef]
- Atshan, S.S.; Mariana, N.S.; Leslie, T.T.; Zamberi, S.; Chong, P.P.; Arunkumar, K.; Jayakayatri, J.N.; Alreshidi, M.A.; Ehsanollah, G.R.; Salwa, A.A.; et al. Genotypically Different Clones of Staphylococcus aureus Are Diverse in the Antimicrobial Susceptibility Patterns and Biofilm Formations. BioMed Res. Int. 2013, 2013, 515712. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Daptomycin activity tested against 164 457 bacterial isolates from hospitalised patients: Summary of 8 years of a worldwide surveillance Programme (2005–2012). Int. J. Antimicrob. Agents. 2014, 43, 465–469. [Google Scholar] [CrossRef]
- Pranav, H.N.; Vikram, K.Y.; Pathak, A.N. A Review on Daptomycin; the first US-FDA approved Lipopeptide antibiotics. J. Sci. Ind. Res. 2013, 25, 970–980. [Google Scholar]
- Shariati, A.; Masoud, D.; Zahra, C.; Alex, V.B.; Mehdi, M.; Seyed, S.K.; Davood, D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase–negative staphylococci strains: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Ghaznavi, R.E.; Nor, S.M.; Sekawi, Z.; Khoon, L.Y.; Aziz, M.N. Predominance and emergence of clones of hospital-acquired methicillin resistant Staphylococcus aureus in Malaysia. J. Clin. Microbiol. 2010, 48, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Atshan, S.S.; Mariana, N.S.; Zamberi, S.; Leslie, T.T.L.; Rukman, A.H.; Arunkumar, K.; Alreshidi, M.A.; Ehsanollah, G.R.; Hamed, G.M.; Johnson, S.C.S.; et al. Prevalence of Adhesion and Regulation of Biofilm-Related Genes in Different Clones of Staphylococcus aureus. BioMed Res. Int. 2012, 2012, 976972. [Google Scholar]
- Atshan, S.S.; Mariana, N.S.; Leslie, T.T.L.; King, H.L.; Zamberi, S.; Chong, P.P.; Ehsanollah, G.R. Improved method for the isolation of RNA from bacteria refractory to disruption, including S. aureus producing biofilm. Gene 2012, 494, 219–224. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011; Available online: https://vchmedical.ajums.ac.ir/_vchmedical/documents/CLSI%202011.pdf (accessed on 11 December 2020).
- Atshan, S.S.; Mariana, N.S.; Arunkumar, K.; Alex, V.B.; Leslie, T.T.L.; Zamberi, S.; Jayakayatri, J.N.; King, H.L.; Johnson, S.C.S.; Alreshidi, M.A.; et al. Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus. Infect. Genet. Evol. 2013, 18, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Eleaume, H.; Jabbouri, D.S. Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J. Med. Microbiol. 2004, 59, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Matthew, H.; Chiew, D.; Pfaffl, M.W. New stand- alone software for gene expression analysis. Corbett Research: Sydney, Australia, 2006. Available online: http://rest.gene-quantification.info/ (accessed on 11 December 2020).
- Otto, M.P.; Emilie, M.; Cedric, B.; Segolene, L.; Michele, B.; Franc, V.; Jerome, E.; Gerard, L.; Oana, D. Effects of subinhibitory concentrations of antibiotics on virulence factor expression by community-acquired methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2013, 68, 1524–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, Z.; Wang, H.; Ding, T.; Zhu, W.; Zhuang, X.; Chu, W. Azithromycin reduces the production of hemolysin and biofilm formation in Staphylococcus aureus. Indian J. Microbiol. 2014, 54, 114–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, A.; Ahn, J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol. 2016, 16, 170. [Google Scholar] [CrossRef] [Green Version]
- Hodille, E.; Warren, R.; Binh, A.D.; Sylvain, G.; Gerard, L.; Oana, D. The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus. Clin. Med. Res. 2017, 30, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Teng, Z.; Dongxue, S.; Huanyu, L.; Ziying, S.; Yonghong, Z.; Wenhua, L.; Xuming, D.; Jianfeng, W. Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression. Appl. Microbiol. Biotechnol. 2017, 101, 6697–6703. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Si, X.; Liu, X.; Deng, X.; Niu, X.; Jin, Y.; Wang, D.; Wang, J. Quercetin protects rats from catheter-related Staphylococcus aureus infections by inhibiting coagulase activity. J. Cell. Mol. Med. 2019, 23, 4808–4818. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, G.; Dey, D.; Das, S.; Banerjee, A. Exposure to subinhibitory concentrations of gentamicin, ciprofloxacin and cefotaxime induces multidrug resistance and reactive oxygen species generation in methicillin sensitive Staphylococcus aureus. J. Med. Microbiol. 2017, 66, 762–769. [Google Scholar] [CrossRef]
- Abdulla, A.; Annemieke, D.; Nicole, G.M.; Hunfeld, H.E.; Soma, B.; Tim, M.J.; Ewoldt, A.E.; Muller, T.G.; Diederik, G.; Birgit, C.P.K. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study. Crit. Care 2020, 24, 558. [Google Scholar] [CrossRef]
- Kuroda, M.H.; Kuroda, T.O.; Fumihiko, T.; Hirotada, M.; Keiichi, H. Two-component system VraSR positively modulates theregulation of cell-wall biosynthesis pathway in Staphylococcus Aureus. Mol. Microbiol. 2003, 49, 807–821. [Google Scholar] [CrossRef]
- Bronner, S.; Monteil, H.; Gilles, P. Regulation of virulence determinants in Staphylococcus aureus: Complexity and applications. FEMS Microbiol. 2004, 28, 183–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimee, R.P.T.; Philip, N.R. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol. 2019, 14, 6. [Google Scholar]
- Tsui, W.; Grace, Y.; Helena, H.W.; JoAnn, E.M.; Michael, G.S.; Julian, D. Dual Effects of MLS Antibiotics: Transcriptional Modulation and Interactions on the Ribosome. Chem. Biol. 2004, 11, 1307–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schilcher, K.; Federica, A.; Vanina, D.H.; Kati, S.; Barbara, H.; Annelies, S.Z. Modulation of Staphylococcus aureus Biofilm Matrix by Subinhibitory Concentrations of Clindamycin. Antimicrob. Agents Chemother. 2016, 60, 5957–5967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steven, J.P. Francis Tally and the Discovery and Development of Tigecycline: A Personal Reminiscence. Clin. Infect. Dis. 2010, 50, 24–25. [Google Scholar]
- Villanueva, M.; García, B.; Valle, J.; Rapún, B.; Igor, R.D.M.; Cristina, S.; Miguel, M.; José, R.P.; Alejandro, T.A.; Iñigo, L. Sensory deprivation in Staphylococcus aureus. Nat. Commun. 2018, 9, 523. [Google Scholar] [CrossRef]
- Deneve, C.; Claudine, D.; Marie, C.B.; Anne, C.; Claire, J. Antibiotics involved in Clostridium difficile associated disease increase colonization factor gene expression. J. Med. Microbiol. 2008, 57, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Xuezhi, D.; Xuemei, L.; Shuang, L.; Yunjun, S.; Ziquan, Y. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microb. Cell Fact. 2014, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Goerke, C.; Fluckiger, U.; Steinhuber, A.; Bisanzio, V.; Ulrich, M.; Bischoff, M. Role of Staphylococcus aureus global regulators sae and sigma B in virulence gene expression during device-related infection. Infect. Immun. 2005, 73, 3415–3421. [Google Scholar] [CrossRef] [Green Version]
- Atshan, S.S.; Mariana, N.S.; Zamberi, S.; Leslie, T.T.L.; Fatemeh, B.; Yun, K.L.; Alreshidi, M.A.; Salwa, A.A.; Rukman, A.H. Comparative proteomic analysis of extracellular proteins expressed by various clone types of Staphylococcus aureus and during biofilm development growth. Front. Microbiol. 2015, 6, 524. [Google Scholar] [CrossRef]
- Shaw, L.N.; Joanne, A.; Jessica, E.; Davenport, M.C.; Brown, J.K.; Lithgow, K.S.; Howard, C.; James, T.; Jan, P.; Simon, J.F. Investigations into B-Modulated Regulatory Pathways Governing Extracellular Virulence Determinant Production in Staphylococcus aureus. J. Bacteriol. 2006, 188, 6070–6080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Hu, Y.; Pai, P.J.; Chen, D.; Lam, H. Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. J. Proteome Res. 2014, 13, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Awad, S.; Alharbi, A.E.; Alshami, I. Exposure of vancomycin-sensitive Staphylococcus aureus to subinhibitory levels of vancomycin leads to upregulated capsular gene expression. Br. J. Biomed. Sci. 2013, 70, 58–61. [Google Scholar] [CrossRef] [PubMed]
Strain/Ho.Des.No. | spa Types | MLST | SCCmec | * Adhesion and Biofilm Genes | * Antibiotic Susceptibility | Isolation Site |
---|---|---|---|---|---|---|
ST CC | ||||||
MRSA-527 | t037 | ST-239 CC8 | IIIA | + | S | Pus swab |
MRSA-13 | t4150 | ST-239 CC8 | IIIA | + | S | Wound swab |
MRSA-139 | t138 | ST-1283 CC8 | IIIA | + | S | Blood |
MSSA-10E | t084 | ST-15 CC15 | V | + | S | CSF |
MSSA-12E | t701 | ST-152 CC8 | V | + | S | Hematoma |
MSSA-22d | t548 | ST-5 CC5 | V | + | S | Urine |
Genes | Nucleotide Sequence of Primers (5′-3′) | Accession Numbers | Annealing Temperature | Amplicon Size (bp) |
---|---|---|---|---|
icaA | 5-GAGGTAAAGCCAACGCACTC-3 | AF086783 | * 60 | 151 |
5-CCTGTAACCGCACCAAGTTT-3 | ||||
icaD | 5-ACCCAACGCTAAAATCATCG-3 | AF086783 | 60 | 211 |
5-GCGAAAATGCCCATAGTTTC-3 | ||||
icaB | 5-ATACCGGCGACTGGGTTTAT-3 | AF086783 | 60 | 140 |
5-T TGCAAATCGTGGGTATGTGT-3 | ||||
icaC | 5-CTTGGGTATTTGCACGCATT-3 | AF086783 | 60 | 209 |
5-GCAATATCATGCCGACACCT-3 | ||||
fnbA | 5-AAATTGGGAGCAGCATCAGT-3 | X95848.1 | 60 | 121 |
5-GCAGCTGAATTCCCATTTTC-3 | ||||
fnbB | 5-ACGCTCAAGGCGACGGCAAAG-3 | X62992.1 | 60 | 197 |
5-ACCTTCTGCATGACCTTCTGCACCT-3 | ||||
clfA | 5-ACCCAGGTTCAGATTCTGGCAGCG-3 | Z18852.1 | 60 | 165 |
5-TCGCTGAGTCGGAATCGCTTGCT-3 | ||||
clfB | 5-AACTCCAGGGCCGCCGGTTG-3 | AJ224764.1 | 60 | 159 |
5-CCTGAGTCGCTGTCTGAGCCTGAG-3 | ||||
fib | 5-CGTCAACAGCAGATGCGAGCG-3 | X72014.1 | 60 | 239 |
5-TGCATCAGTTTTCGCTGCTGGTTT-3 | ||||
ebps | 5-GGTGCAGCTGGTGCAATGGGTGT-3 | U48826.2 | 60 | 191 |
5-GCTGCGCCTCCAGCCAAACCT-3 | ||||
eno | 5-TGCCGTAGGTGACGAAGGTGGTT-3 | AF065394.1 | 60 | 195 |
5-GCACCGTGTTCGCCTTCGAACT-3 | ||||
cna | 5-AATAGAGGCGCCACGACCGT-3 | M81736.1 | 60 | 156 |
5-GTGCCTTCCCAAACCTTTTGAGCA-3 | ||||
16S rRNA | 5-GGGACCCGCACAAGCGGTGG-3 | L37597.1 | 60 | 191 |
5-GGGTTGCGCTCGTTGCGGGA-3 |
Step | Voltage | Time | Voltage-Hours | Ramp |
---|---|---|---|---|
1 | 300 | 30 min | - | Liner |
2 | 4000 | 2 h | - | Liner |
3 | 4000 | - | 10,000 | Rapid |
Total | - | ~5 h | ~1400 | - |
Hold | 500 | 3 h | - | Rapid |
Strain/Ho.Des.No | Antibiotic Concentration (µg/mL) | |||
---|---|---|---|---|
Tigecycline | Daptomycin | |||
MIC | 1/2 MIC a | MIC | 1/2 MIC a | |
MRSA-527 | 0.25 | 0.125 | 0.5 | 0.25 |
MRSA-13 | 0.25 | 0.125 | 1 | 0.5 |
MRSA-139 | 0.5 | 0.25 | 1 | 0.5 |
MSSA-22d | 0.125 | 0.06 | 0.125 | 0.06 |
MSSA-10E | 0.125 | 0.06 | 1 | 0.5 |
MSSA-12E | 0.125 | 0.06 | 2 | 1 |
Gene | Type | 0.5 MIC/daptomycin | 0.5 MIC /Tigecycline | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSSA | MRSA | MSSA | MRSA | ||||||||||
10E | 12E | 22d | 527 | 13 | 139 | 10E | 12E | 22d | 527 | 13 | 139 | ||
16s | REF | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
fnbA | TRG | 1.8↑ | 1.0 * | 0.0↓ | 1.5↑ | 1.5↑ | 0.4↓ | 1.1 * | 3.4↑ | 0.1↓ | 1.6↑ | 1.8↑ | 0.4↓ |
fnbB | TRG | 1.7↑ | 2.7↑ | 0.8 * | 2.5↑ | 1.0 * | 0.2↓ | 1.5↑ | 2.7↑ | 2.1↑ | 2.8↑ | 1.4↑ | 0.2↓ |
clfA | TRG | 1.4 * | 1.2↑ | 0.5↓ | 1.0 * | 3.3↑ | 2.1↑ | 1.2 * | 2.5↑ | 0.5↓ | 1.52↑ | 3.9↑ | 2.1↑ |
clfB | TRG | 1.9↑ | 1.0 * | 0.3↓ | 1.2 * | 1.5↑ | 0.2↓ | 3.5↑ | 6.4↑ | 0.4↓ | 1.1 * | 2.5↑ | 0.2↓ |
Fib | TRG | 0.7↓ | 1.1 * | 0.0↓ | 2.3↑ | 22.9↑ | 0.4↓ | 0.86 * | 1.2 * | 0.0↓ | 2.3↑ | 21.8↑ | 0.5↓ |
eno | TRG | 1.0 * | 7.9↑ | 0.6 * | 1.8↑ | 22.9↑ | 0.2↓ | 1.05 * | 9.7↑ | 0.5↓ | 2.3↑ | 21.9↑ | 0.3↓ |
cna | TRG | 2.9↑ | 0.5↓ | 8.9↑ | 1.9↑ | 7.8↑ | 0.5↓ | 2.7↑ | 0.4↓ | 6.5↑ | 2.6↑ | 6.6↑ | 0.6↓ |
ebps | TRG | 0.9 * | 2.9↑ | 0.1↓ | 1.9↑ | 10.9↑ | 0.4↓ | 1.2 * | 3.1↑ | 0.1↓ | 1.5↑ | 7.7↑ | 0.4↓ |
icaA | TRG | 0.8 * | 1.1 * | 0.0↓ | 4.8↑ | 1.1 * | 0.4↓ | 0.6↓ | 1.0 * | 0.0↓ | 5.6↑ | 7.0↑ | 0.4↓ |
icaD | TRG | 1.5↑ | 1.9↑ | 0.0↓ | 1.2 * | 2.6↑ | 0.3↓ | 1.3 * | 1.9↑ | 0.0↓ | 1.2 * | 3.9↑ | 0.3↓ |
icaB | TRG | 1.6↑ | 0.9 * | 0.0↓ | 1.3 * | 2.7↑ | 0.6 * | 1.3 * | 0.8 * | 0.0↓ | 1.4↑ | 3.4↑ | 0.6↓ |
icaC | TRG | 2.5↑ | 0.9 * | 0.0↓ | 1.4↑ | 2.1↑ | 0.2↓ | 1.9↑ | 0.5↓ | 0.0↓ | 2.0↑ | 2.7↑ | 0.2↓ |
Spot No. | Protein Name | Accession No. | Molecular Mass pI/Mw | Sequence Recovery |
---|---|---|---|---|
1 | Putative uncharacterized protein | H1SYF7 | 5.29/21915.83 | 11% |
2 | Alkaline shock protein 23 | H0DPE7 | 4.92/18648.79 | 16% |
3 | Alkyl hydroperoxide reductase subunit C | Q6GJR7 | 4.88/20976.61 | 25% |
4 | protein SA21194_0967 | H0C9Z5 | 4.80/19312.74 | 12% |
5 | Superoxide dismutase | I0JDL1 | 5.08/22723.42 | 11% |
6 | Arabinose efflux permease family protein | H5XR59 | 8.94/46114.44 | 2% |
7 | Alcohol dehydrogenase, propanol-preferring | H1SYV0 | 5.24/35948.42 | 6% |
8 | Exotoxin 15 | H4A246 | 8.45/26320.81 | 17% |
9 | Putative Cytochrome c4 | D6CKS8 | 9.08/25250.81 | 7% |
10 | Putative septation protein spoVG | F0D890 | 4.79/10861.31 | 16% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atshan, S.S.; Hamat, R.A.; Coolen, M.J.L.; Dykes, G.; Sekawi, Z.; Mullins, B.J.; Than, L.T.L.; Abduljaleel, S.A.; Kicic, A. The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics 2021, 10, 39. https://doi.org/10.3390/antibiotics10010039
Atshan SS, Hamat RA, Coolen MJL, Dykes G, Sekawi Z, Mullins BJ, Than LTL, Abduljaleel SA, Kicic A. The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics. 2021; 10(1):39. https://doi.org/10.3390/antibiotics10010039
Chicago/Turabian StyleAtshan, Salman Sahab, Rukman Awang Hamat, Marco J. L. Coolen, Gary Dykes, Zamberi Sekawi, Benjamin J. Mullins, Leslie Thian Lung Than, Salwa A. Abduljaleel, and Anthony Kicic. 2021. "The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus" Antibiotics 10, no. 1: 39. https://doi.org/10.3390/antibiotics10010039
APA StyleAtshan, S. S., Hamat, R. A., Coolen, M. J. L., Dykes, G., Sekawi, Z., Mullins, B. J., Than, L. T. L., Abduljaleel, S. A., & Kicic, A. (2021). The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics, 10(1), 39. https://doi.org/10.3390/antibiotics10010039