Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon
Abstract
:1. Introduction
2. Results
2.1. General Characteristics of Farms
2.2. Antibiotic Use in Farms
2.3. Prevalence of E. coli and Salmonella spp.
2.4. Susceptibility and Resistance Patterns of E. coli and Salmonella spp.
2.5. Risks Factors for Salmonella Contamination
3. Discussion
3.1. Antibiotic Use
3.2. Antibiotic Resistance
4. Materials and Methods
4.1. Study Site and Population
4.2. Inclusion Criteria
4.3. Samples Collection and Processing
4.4. Microbiological Assays
4.5. Susceptibility Testing
4.6. Data Collation and Analysis
4.7. Administrative Authorization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pujiastuti, E.S.; Tarigan, J.R.; Sianturi, E.; Ginting, B.B. The effect of chicken manure and beneficial microorganisms of EM-4 on growth and yield of kale (Brassica oleraceae acephala) grown on Andisol. IOP Conf. Ser. Earth Environ. Sci. 2018, 205, 012020. [Google Scholar] [CrossRef]
- Viegas, C.; Carolino, E.; Malta-Vacas, J.; Sabino, R.; Viegas, S.; Veríssimo, C. Fungal Contamination of Poultry Litter: A Public Health Problem. J. Toxicol. Environ. Health Part A 2012, 75, 1341–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchant, L.E.; Rempel, H.; Forge, T.; Kannangara, T.; Bittman, S.; Delaquis, P.; Topp, E.; Ziebell, K.A.; Diarra, M.S. Characterization of antibiotic-resistant and potentially pathogenic Escherichia coli from soil fertilized with litter of broiler chickens fed antimicrobial-supplemented diets. Can. J. Microbiol. 2012, 58, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Vinas, I.; Usall, J.; Anguera, M.; Abadias, M. Presence and survival of Escherichia coli O157:H7 on lettuce leaves and in soil treated with contaminated compost and irrigation water. Int. J. Food Microbiol. 2012, 156, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2018, 98, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Dahshan, H.; Abd-Elall, A.M.M.; Megahed, A.M.; Abd-El-Kader, M.A.; Nabawy, E.E. Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms, Egypt. Environ. Monit. Assess. 2015, 187, 10. [Google Scholar] [CrossRef]
- Ngatchou, A.N.E. Revue du Secteur Avicole; Organisation des Nations Unies Pour L’alimentation et L’agriculture: Yaoundé, Cameroon, 2006; p. 54. [Google Scholar]
- Nzouankeu, A.; Ngandjio, A.; Ejenguele, G.; Njine, T.; Ndayo Wouafo, M. Multiple contaminations of chickens with Campylobacter, Escherichia coli and Salmonella in Yaounde (Cameroon). J. Infect. Dev. Ctries. 2010, 4, 583–686. [Google Scholar] [CrossRef] [PubMed]
- WHO. Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach; WHO; OIE; FAO: Geneva, Switzerland, 2017; p. 88. [Google Scholar]
- WHO. WHO Model List of Essential Medicines; WHO: Geneva, Switzerland, 2017; p. 62. [Google Scholar]
- Gondam Kamini, M.; Tatfo Keutchatang, F.; Yangoua Mafo, H.; Kansci, G.; Medoua Nama, G. Antimicrobial usage in the chicken farming in Yaoundé, Cameroon: A cross-sectional study. Int. J. Food Contam. 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Guetiya Wadoum, R.E.; Zambou, N.F.; Anyangwe, F.F.; Njimou, J.R.; Coman, M.M.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A.; et al. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci. 2016, 57, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Kouam, M.K.; Tchouankui, H.N.; Ngapagna, A.N. Epidemiological Features of Highly Pathogenic Avian Influenza in Cameroon. Vet. Med. Int. 2019, 2019, 3796369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mund, M.; Khan, U.H.; Tahir, U.; Mustafa, B.; Fayyaz, A. Antimicrobial Drug Residues in Poultry Products and Implications on Public Health: A Review. Int. J. Food Prop. 2017, 20, 1433–1446. [Google Scholar] [CrossRef]
- Chow, L.; Waldron, L.; Gillings, M. Potential impacts of aquatic pollutants: Sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, H.; Mendiratta, S.K.; Agarwal, R.K.; Kumar, S.; Soni, A. Evaluation of anti-oxidant and anti-microbial activity of various essential oils in fresh chicken sausages. J. Food Sci. Technol. 2017, 54, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Trong Le, N.; Viet Ho, D.; Quoc Doan, T.; Tuan Le, A.; Raal, A.; Usai, D.; Sanna, G.; Carta, A.; Rappelli, P.; Diaz, N.; et al. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics 2020, 9, 207. [Google Scholar] [CrossRef]
- Hernandez-Patlan, D.; Solis-Cruz, B.; M. Hargis, B.; Tellez, G. The Use of Probiotics in Poultry Production for the Control of Bacterial Infections and Aflatoxins. In Prebiotics and Probiotics—Potential Benefits in Nutrition and Health; IntechOpen: London, UK, 2020; pp. 1–21. [Google Scholar] [CrossRef] [Green Version]
- Fakhruzzaman, M.; Islam, M.M.; Islam, M.N.; Sharifuzzaman, J.U.; Sarker, E.H.; Shahiduzzaman, M.; Mostofa, M.; Sharifuzzaman, M.M. Isolation and Identification of Escherichia coli and Salmonella from Poultry Litter and Feed. Int. J. Nat. Soc. Sci. 2014, 1, 1–7. [Google Scholar]
- Eyasu, A.; Moges, F.; Alemu, A. Bacterial isolates from poultry litters and their antimicrobial susceptibility patterns in Gondar, Northwest Ethiopia. Int. J. Microbiol. Res. Rev. 2012, 6, 197–204. [Google Scholar]
- Abraham, S.; O’Dea, M.; Sahibzada, S.; Hewson, K.; Pavic, A.; Veltman, T.; Abraham, R.; Harris, T.; Trott, D.J.; Jordan, D. Escherichia coli and Salmonella spp. isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. PLoS ONE 2019, 14, e0224281. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.R.; Thummeepak, R.; Leungtongkam, U.; Pooarlai, R.; Paudel, S.; Acharya, M.; Dhital, S.; Sitthisak, S. The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. FEMS Microbiol. Lett. 2019, 366. [Google Scholar] [CrossRef]
- Monte, D.F.; Mem, A.; Fernandes, M.R.; Cerdeira, L.; Esposito, F.; Galvao, J.A.; Franco, B.; Lincopan, N.; Landgraf, M. Chicken Meat as a Reservoir of Colistin-Resistant Escherichia coli Strains Carrying mcr-1 Genes in South America. Antimicrob. Agents Chemother. 2017, 61, e02718-16. [Google Scholar] [CrossRef] [Green Version]
- Gad, G.F.; Mohamed, H.A.; Ashour, H.M. Aminoglycoside resistance rates, phenotypes, and mechanisms of Gram-negative bacteria from infected patients in upper Egypt. PLoS ONE 2011, 6, e17224. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Jiang, X. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture 2014, 4, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Tabo, D.A.; Diguimbaye, C.D.; Granier, S.A.; Moury, F.; Brisabois, A.; Elgroud, R.; Millemann, Y. Prevalence and antimicrobial resistance of non-typhoidal Salmonella serotypes isolated from laying hens and broiler chicken farms in N’Djamena, Chad. Vet. Microbiol. 2013, 166, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Shang, K.; Wei, B.; Kang, M. Distribution and dissemination of antimicrobial-resistant Salmonella in broiler farms with or without enrofloxacin use. BMC Vet. Res. 2018, 14, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abunna, F.; Bedasa, M.; Tufa, T.; Ayana, D.; Mamo, B.; Abdi, R. Salmonella: Isolation and Antimicrobial Susceptibility Tests on Isolates Collected from Poultry Farms in and Around Modjo, Central Oromia, and Ethiopia. JAPSC 2016, 5, 21–35. [Google Scholar]
- Bythwood, T.N.; Soni, V.; Lyons, K.; Hurley-Bacon, A.; Lee, M.D.; Hofacre, C.; Sanchez, S.; Maurer, J.J. Antimicrobial Resistant Salmonella enterica Typhimurium Colonizing Chickens: The Impact of Plasmids, Genotype, Bacterial Communities, and Antibiotic Administration on Resistance. Front. Sustain. Food Syst. 2019, 3. [Google Scholar] [CrossRef]
- ECDC. Laboratory Manual for Carbapenem and Colistin Resistance Detection and Characterization for the Survey of Carbapenem and or Colistin Resistant Enterobacteriaceae; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. In M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; p. 240. [Google Scholar]
Variable | Outcome |
---|---|
Type of farms | Semi intensive farms 96% (25/26) Traditional farms 4% (1/26) |
Types of species breed | Broiler chicken 86% (21/26) Broiler and layer chicken 12% (13/26) Layer chicken 7% (2/26) |
Size of the flock | Median size 1000 (10–6000) |
Location of the farm | Within a household compound 69% (18/26) Outside an household compound 31% (8/26) |
Number of people working on the farm | Mean 2.4 ± 1.3 (SD) |
Number of people living near the farm | Mean 5.8 ± 4.7 (SD) |
Food origin | Commercial feed mills 100% (26/26) |
Type of bedding material used | Wood shavings 100% (26/26) |
Decontamination of bedding material before use | Yes 46% (12/26) No 54% (14/26) |
Mean duration of poultry litter prior disposal | Broiler farms 41 days Layer farms 324 days |
E. coli spp. | Salmonella spp. | |
---|---|---|
Samples | Prevalence | Prevalence |
In House Samples (N = 45) | 26 (57.8%) | 7 (15.6%) |
Bags (N = 26) | 16 (61.5%) | 4 (15.4%) |
Total | 59.2% (95% Confidence Interval-CI 46.8–70.5) | 15.5% (95%CI 8.4–26.5) |
Number of Antibiotics | Isolates | Antibiotic Resistance Pattern | Number of Isolates | Origin of Sample |
---|---|---|---|---|
1 | Salmonella spp. | CRO | 1 | IN HOUSE |
2 | Salmonella spp. | C + TET | 1 | BAG |
3 | E. coli spp. | SXT + C + CIP | 1 | IN HOUSE |
SXT + TET + AMP | 3 | IN HOUSE, BAG | ||
AMP + CRO + C | 1 | IN HOUSE | ||
SXT + TET + STREP | 2 | IN HOUSE | ||
Salmonella spp. | TET + SXT + CIP | 1 | IN HOUSE | |
4 | E. coli spp. | AMP + S + TET + SXT | 2 | IN HOUSE, BAG |
AMP + TET + SXT + CIP | 1 | IN HOUSE | ||
Salmonella spp. | AMP + TET + SXT + CIP | 1 | IN HOUSE | |
AMP + S + TET + SXT | 1 | IN HOUSE | ||
5 | E. coli spp. | AMC + AMP + TET + SXT + CHL | 3 | IN HOUSE, BAG |
AMP + S + TET + SXT + CIPR | 1 | IN HOUSE | ||
AMP + CRO + S + SXT + CIPR | 1 | BAG | ||
AMP + AMC + CRO + TET + SXT | 1 | IN HOUSE | ||
AMP + AMC + S + TET + SXT | 2 | IN HOUSE | ||
GEN + S + TET + SXT + CIP | 1 | IN HOUSE | ||
Salmonella spp. | AMP + S + TET + SXT + CIP | 1 | IN HOUSE | |
6 | E. coli spp. | AMP + S + TET + SXT + C + CIP | 4 | IN HOUSE, BAG |
AMC + AMP + CRO + S + TET + SXT | 1 | IN HOUSE | ||
AMC + AMP + S + TET + SXT + CIP | 1 | IN HOUSE | ||
7 | E. coli spp. | AMP + AMC + CRO + S + TET + SXT + CIP | 2 | IN HOUSE |
AMP + GEN + S + TET + SXT + C + CIP | 1 | IN HOUSE | ||
AMP + CRO + S + TET + SXT + C + CIP | 1 | BAG | ||
AMP + AMC + S + TET + SXT + C + CIP | 1 | IN HOUSE | ||
AMP + AMC + GEN + TET + SXT + C + CIP | 1 | IN HOUSE | ||
9 | E. coli spp. | AMP + AMC + CRO + S + TET + GEN + SXT + C + CIP | 1 | IN HOUSE |
Resistance to CIP E.coli Isolates (%) | Resistance to TET E.coli Isolates (%) | Resistance to SXT E.coli Isolates (%) | Resistance to CIP Salmonella Isolates (%) | Resistance to Tet Salmonella Isolates (%) | Resistance to SXT Salmonella Isolates (%) | |||
---|---|---|---|---|---|---|---|---|
Family of Antibiotics Given at Farm | Number of E. coli Isolates | Number of Salmonella Isolates | ||||||
Polymyxins | 1 | 100 | 100% | 100% | 0 | |||
Quinolones | 13 | 69 | 85% | 100% | 4 | 0 | 0 | 0 |
Tetracyclin | 12 | 33 | 100% | 100% | 1 | 0 | 100 | 100 |
Sulfonamides | 3 | 100 | 100% | 100% | 2 | 0 | 50 | 0 |
Antibiotic Combinations | 1 | 0 | 100% | 100% | 4 | 75% | 75 | 75 |
No Antibiotic | 2 | 50% | 50% | 50% | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngogang, M.P.; Ernest, T.; Kariuki, J.; Mouliom Mouiche, M.M.; Ngogang, J.; Wade, A.; van der Sande, M.A.B. Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon. Antibiotics 2021, 10, 20. https://doi.org/10.3390/antibiotics10010020
Ngogang MP, Ernest T, Kariuki J, Mouliom Mouiche MM, Ngogang J, Wade A, van der Sande MAB. Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon. Antibiotics. 2021; 10(1):20. https://doi.org/10.3390/antibiotics10010020
Chicago/Turabian StyleNgogang, Marie Paule, Tambo Ernest, Jennifer Kariuki, Mohamed Moctar Mouliom Mouiche, Jeanne Ngogang, Abel Wade, and Marianne Antonia Bernada van der Sande. 2021. "Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon" Antibiotics 10, no. 1: 20. https://doi.org/10.3390/antibiotics10010020
APA StyleNgogang, M. P., Ernest, T., Kariuki, J., Mouliom Mouiche, M. M., Ngogang, J., Wade, A., & van der Sande, M. A. B. (2021). Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon. Antibiotics, 10(1), 20. https://doi.org/10.3390/antibiotics10010020