Continuous Monitoring of pH and Blood Gases Using Ion-Sensitive and Gas-Sensitive Field Effect Transistors Operating in the Amperometric Mode in Presence of Drift
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Method for Correction of Drift
2.2. ISFET Fabrication
2.3. Drift Characterization and Measurement of Sensitivity
2.4. Continuous Monitoring of pH
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bergveld, P. Development of an Ion-sensitive Solid State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Lundström, I.; Shivaraman, M.S.; Svensson, C. A Hydrogen sensitive Pd-Gated MOS Transistor. J. Appl. Phys. 1975, 46, 3876–3881. [Google Scholar] [CrossRef]
- Jamasb, S.; Collins, S.D.; Smith, R.L. A Physical Model for Threshold Voltage Instability in Si3N4-gate H+-sensitive FET’s (pH ISFET’s). IEEE Trans. Electron Devices 1998, 45, 1239–1245. [Google Scholar] [CrossRef]
- Jamasb, S.; Collins, S.; Smith, R.L. A Physical Model for Drift in pH ISFETs. Sens. Actuators B Chem. 1998, 49, 146–155. [Google Scholar] [CrossRef]
- Elyasi, A.; Fouladian, M.; Jamasb, S. Counteracting Threshold-Voltage Drift in Ion-Selective Field Effect Transistors (ISFETs) Using Threshold-Setting Ion Implantation. IEEE J. Electron Devices Soc. 2018, 6, 747–754. [Google Scholar] [CrossRef]
- Jang, H.J.; Kim, M.S.; Cho, W.J. Development of Engineered Sensing Membranes for Field-Effect Ion-Sensitive Devices Based on Stacked High- Dielectric Layers. IEEE Electron Device Lett. 2011, 32, 973–975. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chan, P.K. An Intelligent ISFET Sensory System with Temperature and Drift Compensation for Long-Term Monitoring. IEEE Sens. J. 2013, 8, 1948–1959. [Google Scholar] [CrossRef]
- Jamasb, S. An Analytical Technique for Counteracting Drift in Ion-selective Field Effect Transistors (ISFETs). IEEE Sens. J. 2004, 4, 795–801. [Google Scholar] [CrossRef]
- Das, M.P.; Bhuyan, M. Drift and temperature compensation scheme for an intelligent ion-sensitive field effect transistor sensory system. In Proceedings of the 5th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, 17–19 December 2012; pp. 1–4. [Google Scholar]
- Padilla, M.; Perera, A.; Montoliu, I.; Chaudry, A.; Persaud, K.; Marco, S. Drift compensation of gas sensor array data by orthogonal signal correction. Chemom. Intell. Lab. Syst. 2010, 100, 28–35. [Google Scholar] [CrossRef]
- Gardner, J.; Bartlett, P. Electronic Noses: Principles and Applications; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Zuppa, M.; Distante, C.; Persaud, K.C.; Siciliano, P. Recovery of drifting sensor responses by means of dwt analysis. Sens. Actuators B Chem. 2007, 120, 411–416. [Google Scholar] [CrossRef]
- Eisele, I.; Doll, T.; Burgmair, M. Low power gas detection with FET sensors. Sens. Actuators B Chem. 2001, 78, 19–25. [Google Scholar] [CrossRef]
- Bousse, L.; Van Den Vlekkert, H.H.; De Rooij, N.F. Hysteresis in Al2O3-gate ISFETs. Sens. Actuators B Chem. 1990, 2, 103–110. [Google Scholar] [CrossRef]
- Premanode, B.; Silawan, N.; Toumazou, C. Drift reduction in ion-sensitive FETs using correlated double sampling. Electron. Lett. 2007, 43, 857–859. [Google Scholar] [CrossRef]
Transition Order | Measured Changes in pH | ||
---|---|---|---|
pH Meter | ISFET with Correction | Relative Error (%) | |
1(3.5→5.4) | 1.90 | 1.98 | 4.2 |
2(5.4→7.0) | 1.42 | 1.60 | 12.7 |
3(7.0→9.0) | 2.0 | 1.99 | 0.50 |
4(9.0→10.0) | 1.0 | 0.59 | 41.0 |
5(10.0→7.0) | −3.0 | −2.71 | 9.67 |
6(7.0→3.5) | −3.5 | −3.70 | 5.70 |
7(3.5→7.0) | 3.5 | 3.48 | 0.57 |
8(7.0→5.4) | −1.50 | −1.48 | 1.33 |
9(5.4→9.0) | 3.60 | 3.12 | 13.3 |
10(9.0→10.0) | 1.0 | 0.44 | 56.0 |
11(10.0→7.0) | −3.0 | −2.27 | 24.3 |
12(7.0→5.4) | −1.6 | −1.52 | 5.0 |
13(5.4→3.5) | −1.9 | −2.09 | 5.3 |
14(3.5→5.4) | 1.90 | 2.07 | 8.94 |
15(5.4→7.0) | 1.60 | 1.43 | 10.6 |
16(7.0→9.0) | 2.0 | 1.83 | 8.50 |
17(9.0→5.4) | −3.6 | −3.3 | 8.30 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamasb, S. Continuous Monitoring of pH and Blood Gases Using Ion-Sensitive and Gas-Sensitive Field Effect Transistors Operating in the Amperometric Mode in Presence of Drift. Biosensors 2019, 9, 44. https://doi.org/10.3390/bios9010044
Jamasb S. Continuous Monitoring of pH and Blood Gases Using Ion-Sensitive and Gas-Sensitive Field Effect Transistors Operating in the Amperometric Mode in Presence of Drift. Biosensors. 2019; 9(1):44. https://doi.org/10.3390/bios9010044
Chicago/Turabian StyleJamasb, Shahriar. 2019. "Continuous Monitoring of pH and Blood Gases Using Ion-Sensitive and Gas-Sensitive Field Effect Transistors Operating in the Amperometric Mode in Presence of Drift" Biosensors 9, no. 1: 44. https://doi.org/10.3390/bios9010044
APA StyleJamasb, S. (2019). Continuous Monitoring of pH and Blood Gases Using Ion-Sensitive and Gas-Sensitive Field Effect Transistors Operating in the Amperometric Mode in Presence of Drift. Biosensors, 9(1), 44. https://doi.org/10.3390/bios9010044