Development and Bioanalytical Applications of a White Light Reflectance Spectroscopy Label-Free Sensing Platform
Abstract
:1. Introduction
2. Operating Principle
3. System Development and Applications
3.1. Application to Sensors for Detection of Volatile Organic Compounds
3.2. Application to Biomolecular Reaction Monitoring
3.3. Multi-Analyte Determinations
3.4. Applications to Other Fields
3.5. Current Status and Ongoing Work
4. Future Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Estevez, M.C.; Alvarez, M.; Lechuga, L.M. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photonics Rev. 2012, 6, 463–487. [Google Scholar] [CrossRef] [Green Version]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Luong, J.H.T. Trends in in vitro diagnostics and mobile healthcare. Biotechnol. Adv. 2016, 34, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol. 2016, 36, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging applications of label-free optical biosensors. Nanophotonics 2017, 6, 627. [Google Scholar] [CrossRef]
- Gauglitz, G. Direct optical detection in bioanalysis: An update. Anal. Bioanal. Chem. 2010, 398, 2363–2372. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, G.; Nahm, W. Observation of spectral interferences for the determination of volume and surface effects of thin films. Fresenius J. Anal. Chem. 1991, 341, 279–283. [Google Scholar] [CrossRef]
- Brecht, A.; Lang, G.; Gauglitz, G. Wavelength dependencies in interferometric measurements of thin protein films. Fresenius J. Anal. Chem. 1993, 346, 615–617. [Google Scholar] [CrossRef]
- Lang, G.; Brecht, A.; Gauglitz, G. Low molecular weight analytes in water by spectral interferometry using a competitive immunoassay. Fresenius J. Anal. Chem. 1994, 348, 602–605. [Google Scholar] [CrossRef]
- Rothmund, M.; Schütz, A.; Brecht, A.; Gauglitz, G.; Berthel, G.; Gräfe, D. Label free binding assay with spectroscopic detection for pharmaceutical screening. Fresenius J. Anal. Chem. 1997, 359, 15–22. [Google Scholar] [CrossRef]
- Gauglitz, G. Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev. Sci. Instrum. 2005, 76, 062224. [Google Scholar] [CrossRef]
- Bleher, O.; Schindler, A.; Yin, M.-X.; Holmes, A.B.; Luppa, P.B.; Gauglitz, G.; Proll, G. Development of a new parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies. Anal. Bioanal. Chem. 2014, 406, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
- Lin, V.S.-Y.; Motesharei, K.; Dancil, K.-P.S.; Sailor, M.J.; Ghadiri, M.R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Dancil, K.-P.S.; Greiner, D.P.; Sailor, M.J. A porous silicon optical biosensor: Detection of reversible binding of igg to a protein a-modified surface. J. Am. Chem. Soc. 1999, 121, 7925–7930. [Google Scholar] [CrossRef]
- Pacholski, C.; Sartor, M.; Sailor, M.J.; Cunin, F.; Miskelly, G.M. Biosensing using porous silicon double-layer interferometers: Reflective interferometric fourier transform spectroscopy. J. Am. Chem. Soc. 2005, 127, 11636–11645. [Google Scholar] [CrossRef] [PubMed]
- Pacholski, C.; Perelman, L.A.; VanNieuwenhze, M.S.; Sailor, M.J. Small molecule detection by reflective interferometric fourier transform spectroscopy (rifts). Phys. Status Solidi 2009, 206, 1318–1321. [Google Scholar] [CrossRef]
- Ruminski, A.M.; King, B.H.; Salonen, J.; Snyder, J.L.; Sailor, M.J. Porous silicon-based optical microsensors for volatile organic analytes: Effect of surface chemistry on stability and specificity. Adv. Funct. Mater. 2010, 20, 2874–2883. [Google Scholar] [CrossRef]
- Schwartz, M.P.; Alvarez, S.D.; Sailor, M.J. Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: Binding of protein a to immunoglobulins derived from different species. Anal. Chem. 2007, 79, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.K.; Kelly, T.L.; Sailor, M.J.; Li, Y.Y. Highly stable porous silicon–carbon composites as label-free optical biosensors. ACS Nano 2012, 6, 10546–10554. [Google Scholar] [CrossRef] [PubMed]
- Mun, K.-S.; Alvarez, S.D.; Choi, W.-Y.; Sailor, M.J. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano 2010, 4, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- ForteBio. Available online: http://www.fortebio.com/ (accessed on 12 October 2017).
- Biametrics. Available online: http://www.biametrics.com/ (accessed on 12 October 2017).
- Kitsara, M.; Petrou, P.; Kontziampasis, D.; Misiakos, K.; Makarona, E.; Raptis, I.; Beltsios, K. Biomolecular layer thickness evaluation using white light reflectance spectroscopy. Microelectron. Eng. 2010, 87, 802–805. [Google Scholar] [CrossRef]
- Kokkinis, A.; Valamontes, E.S.; Raptis, I. Dissolution properties of ultrathin photoresist films with multiwavelength interferometry. J. Phys. Conf. Ser. 2005, 10, 401. [Google Scholar] [CrossRef]
- Vourdas, N.; Karadimos, G.; Goustouridis, D.; Gogolides, E.; Boudouvis, A.G.; Tortai, J.H.; Beltsios, K.; Raptis, I. Multiwavelength interferometry and competing optical methods for the thermal probing of thin polymeric films. J. Appl. Polym. Sci. 2006, 102, 4764–4774. [Google Scholar] [CrossRef]
- Goustouridis, D.; Manoli, K.; Chatzandroulis, S.; Sanopoulou, M.; Raptis, I. Characterization of polymer layers for silicon micromachined bilayer chemical sensors using white light interferometry. Sens. Actuators B Chem. 2005, 111, 549–554. [Google Scholar] [CrossRef]
- Chatzandroulis, S.; Goustouridis, D.; Raptis, I. Polymeric film characterization for use in bimorph chemical sensors. Microelectron. Eng. 2005, 78, 118–124. [Google Scholar] [CrossRef]
- Manoli, K.; Goustouridis, D.; Chatzandroulis, S.; Raptis, I.; Valamontes, E.S.; Sanopoulou, M. Vapor sorption in thin supported polymer films studied by white light interferometry. Polymer 2006, 47, 6117–6122. [Google Scholar] [CrossRef]
- Leopold, N.; Busche, S.; Gauglitz, G.; Lendl, B. Ir absorption and reflectometric interference spectroscopy (rifs) combined to a new sensing approach for gas analytes absorbed into thin polymer films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 72, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Manoli, K.; Goustouridis, D.; Raptis, I.; Valamontes, E.; Sanopoulou, M. Vapor-induced swelling of supported methacrylic and siloxane polymer films: Determination of interaction parameters. J. Appl. Polym. Sci. 2010, 116, 184–190. [Google Scholar] [CrossRef]
- Jaczewska, J.; Raptis, I.; Budkowski, A.; Goustouridis, D.; Raczkowska, J.; Sanopoulou, M.; Pamuła, E.; Bernasik, A.; Rysz, J. Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters. Synth. Met. 2007, 157, 726–732. [Google Scholar] [CrossRef]
- Jaczewska, J.; Budkowski, A.; Bernasik, A.; Raptis, I.; Raczkowska, J.; Goustouridis, D.; Rysz, J.; Sanopoulou, M. Humidity and solvent effects in spin-coated polythiophene–polystyrene blends. J. Appl. Polym. Sci. 2007, 105, 67–79. [Google Scholar] [CrossRef]
- Zavali, M.; Petrou, P.S.; Kakabakos, S.E.; Kitsara, M.; Raptis, I.; Beltsios, K.; Misiakos, K. Label-free kinetic study of biomolecular interactions by white light reflectance spectroscopy. Micro amp Nano Lett. 2006, 1, 94–98. [Google Scholar] [CrossRef]
- Leca-Bouvier, B.; Blum, L.J. Biosensors for protein detection: A review. Anal. Lett. 2005, 38, 1491–1517. [Google Scholar] [CrossRef]
- Petrou, P.S.; Zavali, M.; Raptis, I.; Kakabakos, S.E.; Misiakos, K.; Beltsios, K.; Ricklin, D.; Lambris, J.D. Proceedings of the 2009 IEEE Sensors a Flow-Through Optical Sensor System for Label-Free Detection of Proteins and DNA, Christchurch, New Zealand, 25–28 October 2009; pp. 27–30.
- Zavali, M.; Petrou, P.S.; Goustouridis, D.; Raptis, I.; Misiakos, K.; Kakabakos, S.E. A regenerable flow-through affinity sensor for label-free detection of proteins and DNA. J. Chromatogr. B 2010, 878, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Petrou, P.S.; Ricklin, D.; Zavali, M.; Raptis, I.; Kakabakos, S.E.; Misiakos, K.; Lambris, J.D. Real-time label-free detection of complement activation products in human serum by white light reflectance spectroscopy. Biosens. Bioelectron. 2009, 24, 3359–3364. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Reis, E.S.; Mastellos, D.C.; Gros, P.; Lambris, J.D. Complement component c3—The “swiss army knife” of innate immunity and host defense. Immunol. Rev. 2016, 274, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Koukouvinos, G.; Petrou, P.S.; Misiakos, K.; Drygiannakis, D.; Raptis, I.; Goustouridis, D.; Kakabakos, S.E. A label-free flow-through immunosensor for determination of total- and free-psa in human serum samples based on white-light reflectance spectroscopy. Sens. Actuators B Chem. 2015, 209, 1041–1048. [Google Scholar] [CrossRef]
- Cao, C.; Kim, J.P.; Kim, B.W.; Chae, H.; Yoon, H.C.; Yang, S.S.; Sim, S.J. A strategy for sensitivity and specificity enhancements in prostate specific antigen-α1-antichymotrypsin detection based on surface plasmon resonance. Biosens. Bioelectron. 2006, 21, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Reekmans, G.; Saerens, D.; Friedt, J.-M.; Frederix, F.; Francis, L.; Muyldermans, S.; Campitelli, A.; Hoof, C.V. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens. Bioelectron. 2005, 21, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Na, K.; Lee, J.; Kim, K.-W.; Hyun, J. Enhanced surface plasmon resonance by au nanoparticles immobilized on a dielectric sio2 layer on a gold surface. Anal. Chim. Acta 2009, 651, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-H.; Erdene, N.; Park, J.-H.; Jeong, D.-H.; Lee, H.-Y.; Lee, S.-K. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor. Biosens. Bioelectron. 2013, 39, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.; Lin, Y.; Wei, J.; Bono, T.; Lindquist, R.G. An enhanced lspr fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron. 2014, 61, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Koukouvinos, G.; Petrou, P.; Misiakos, K.; Drygiannakis, D.; Raptis, I.; Stefanitsis, G.; Martini, S.; Nikita, D.; Goustouridis, D.; Moser, I.; et al. Simultaneous determination of crp and d-dimer in human blood plasma samples with white light reflectance spectroscopy. Biosens. Bioelectron. 2016, 84, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Mitsakakis, K.; Gizeli, E. Detection of multiple cardiac markers with an integrated acoustic platform for cardiovascular risk assessment. Anal. Chim. Acta 2011, 699, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Furin, D.; Sämann, M.; Proll, G.; Schubert, M.; Gauglitz, G. Salt and pepper for point-of-care diagnostics. Procedia Eng. 2011, 25, 80–83. [Google Scholar] [CrossRef]
- Vashist, S.K.; Venkatesh, A.G.; Marion Schneider, E.; Beaudoin, C.; Luppa, P.B.; Luong, J.H.T. Bioanalytical advances in assays for c-reactive protein. Biotechnol. Adv. 2016, 34, 272–290. [Google Scholar] [CrossRef] [PubMed]
- Marques, S.M.; Santos, A.; Gonçalves, L.M.; Sousa, J.C.; Bueno, P.R. Sensitive label-free electron chemical capacitive signal transduction for d-dimer electroanalysis. Electrochim. Acta 2015, 182, 946–952. [Google Scholar] [CrossRef]
- Koukouvinos, G.; Τsialla, Z.; Petrou, P.S.; Misiakos, K.; Goustouridis, D.; Ucles Moreno, A.; Fernandez-Alba, A.R.; Raptis, I.; Kakabakos, S.E. Fast simultaneous detection of three pesticides by a white light reflectance spectroscopy sensing platform. Sens. Actuators B Chem. 2017, 238, 1214–1223. [Google Scholar] [CrossRef]
- Rajan; Chand, S.; Gupta, B.D. Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sens. Actuators B Chem. 2007, 123, 661–666. [Google Scholar]
- Mauriz, E.; Calle, A.; Manclús, J.J.; Montoya, A.; Escuela, A.M.; Sendra, J.R.; Lechuga, L.M. Single and multi-analyte surface plasmon resonance assays for simultaneous detection of cholinesterase inhibiting pesticides. Sens. Actuators B Chem. 2006, 118, 399–407. [Google Scholar] [CrossRef]
- Estevez, M.C.; Belenguer, J.; Gomez-Montes, S.; Miralles, J.; Escuela, A.M.; Montoya, A.; Lechuga, L.M. Indirect competitive immunoassay for the detection of fungicide thiabendazole in whole orange samples by surface plasmon resonance. Analyst 2012, 137, 5659–5665. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-L.; You, M.-L.; Tsai, C.-H.; Lin, E.-H.; Hsieh, S.-Y.; Ho, M.-H.; Hsu, J.-C.; Wei, P.-K. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens. Bioelectron. 2016, 75, 88–95. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.F.; Campbell, K.; Fodey, T.L.; O’Kennedy, R.; Elliott, C.T. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants. Anal. Bioanal. Chem. 2013, 405, 2535–2544. [Google Scholar] [CrossRef] [PubMed]
- Koukouvinos, G.; Metheniti, A.; Karachaliou, C.-E.; Goustouridis, D.; Livaniou, E.; Misiakos, K.; Raptis, I.; Kondili, A.; Miniati, P.; Petrou, P.; et al. White light reflectance spectroscopy biosensing system for fast quantitative prostate specific antigen determination in forensic samples. Talanta 2017, 175, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Koukouvinos, G.; Goustouridis, D.; Misiakos, K.; Kakabakos, S.; Raptis, I.; Petrou, P. Rapid c-reactive protein determination in whole blood with a white light reflectance spectroscopy label-free immunosensor for point-of-care applications. Sens. Actuators B Chem. 2017, in press. [Google Scholar]
- Chan, H.N.; Tan, M.J.A.; Wu, H. Point-of-care testing: Applications of 3d printing. Lab Chip 2017, 17, 2713–2739. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Han, Y.D.; Chun, H.J.; Yoon, H.C. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor. Biosens. Bioelectron. 2017, 93, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Acuna, G.; Kim, S.; Vietz, C.; Tseng, D.; Chae, J.; Shir, D.; Luo, W.; Tinnefeld, P.; Ozcan, A. Plasmonics enhanced smartphone fluorescence microscopy. Sci. Rep. 2017, 7, 2124. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Mudanyali, O.; Schneider, E.M.; Zengerle, R.; Ozcan, A. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 2014, 406, 3263–3277. [Google Scholar] [CrossRef] [PubMed]
- Raptis, I.; Goustouridis, D.; Kakabakos, S.; Petrou, P.; Misiakos, K. Optical Sensor Based on Three-Dimensional Micropatterned Layer of a Transparent Material for the Simultaneous Label-Free Monitoring of Multiple (bio)Reactions with White Light Reflectance Spectroscopy. GR1008698/23-07-2014. Available online: https://worldwide.espacenet.com/publicationDetails/originalDocument?FT=D&date=20160302&DB=&locale=en_EP&CC=GR&NR=1008698B&KC=B&ND=4 (accessed on 12 October 2017).
Analyte | Assay Format | Assay Duration | Sample | Detection Limit | Dynamic Range | Ref# |
---|---|---|---|---|---|---|
C3b | Direct binding/Kinetic | 1 min | plasma | 20 ng/mL (1/6000 diluted plasma) | 0.05–2.0 μg/mL (1/3000–1/100 diluted plasma) | [24] |
Total-PSA | Two-site immunoassay with biotinylated reporter antibody and streptavidin | 65 min | serum | 0.2 ng/mL | 0.5–100 ng/mL | |
Free-PSA | 0.15 ng/mL | 0.5–20 ng/mL | [26] | |||
CRP | Direct | 20 min | plasma | 25 ng/mL | 0.05–2.5 μg/mL | |
Two-site immunoassay | 40 min | 2.0 ng/mL | 5.0–1000 ng/mL | |||
Two-site immunoassay with biotinylated reporter antibody and streptavidin | 45 min | 0.05 ng/mL | 0.1–10 ng/mL | [32] | ||
D-dimer | Two-site immunoassay | 40 min | plasma | 200 ng/mL | 0.5–10 μg/mL | |
Two-site immunoassay with biotinylated reporter antibody and streptavidin | 45 min | 25 ng/mL | 0.05–1.0 μg/mL | [32] | ||
Chlorpyrifos | Competitive immunoassay | 10 min | water or 10-times diluted wine | 30 pg/mL | 0.06–50 μg/mL | |
Imazalil | 30 pg/mL | 0.06–50 μg/mL | [37] | |||
Thiabendazole | 40 pg/mL | 0.08–20 μg/mL |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koukouvinos, G.; Petrou, P.; Goustouridis, D.; Misiakos, K.; Kakabakos, S.; Raptis, I. Development and Bioanalytical Applications of a White Light Reflectance Spectroscopy Label-Free Sensing Platform. Biosensors 2017, 7, 46. https://doi.org/10.3390/bios7040046
Koukouvinos G, Petrou P, Goustouridis D, Misiakos K, Kakabakos S, Raptis I. Development and Bioanalytical Applications of a White Light Reflectance Spectroscopy Label-Free Sensing Platform. Biosensors. 2017; 7(4):46. https://doi.org/10.3390/bios7040046
Chicago/Turabian StyleKoukouvinos, Georgios, Panagiota Petrou, Dimitrios Goustouridis, Konstantinos Misiakos, Sotirios Kakabakos, and Ioannis Raptis. 2017. "Development and Bioanalytical Applications of a White Light Reflectance Spectroscopy Label-Free Sensing Platform" Biosensors 7, no. 4: 46. https://doi.org/10.3390/bios7040046
APA StyleKoukouvinos, G., Petrou, P., Goustouridis, D., Misiakos, K., Kakabakos, S., & Raptis, I. (2017). Development and Bioanalytical Applications of a White Light Reflectance Spectroscopy Label-Free Sensing Platform. Biosensors, 7(4), 46. https://doi.org/10.3390/bios7040046