An Affordable Microsphere-Based Device for Visual Assessment of Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Microspheres Using a Double-Emulsion Process
2.2. Morphological Analysis of Microspheres
2.3. Determination of Encapsulation Efficiency for the Microspheres Encapsulating Lysozyme and DNA Probes
2.4. Characterization of the Controlled Release of Biomolecules
2.5. Testing the Bioactivity of the Release Lysozyme
2.6. Gold Nanoparticle Fabrication
2.7. Water Quality Testing Device Prototype Assembly and Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Lysozyme-Releasing Microspheres
3.2. Characterization of Hairpin DNA-Releasing Microspheres
3.3. Gold Nanoparticle Synthesis
3.4. Prototype Validation
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Preventing Diarrhoea through Better Water, Sanitation and Hygiene: Exposures and Impacts in Low- and Middle-Income Countries; WHO: Geneva, Switzerland, 2014; pp. 1–48. [Google Scholar]
- Clasen, T.; Schmidt, W.-P.; Rabie, T.; Roberts, I.; Cairncross, S. Interventions to improve water quality for preventing diarrhoea: Systematic review and meta-analysis. BMJ 2007, 334, 782. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, L.; Kaufmann, R.B.; Kay, D.; Enanoria, W.; Haller, L.; Colford, J.M. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. Lancet Infect. Dis. 2005, 5, 42–52. [Google Scholar] [CrossRef]
- Ashbolt, N.J. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 2004, 198, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-González, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne pathogens: Detection methods and challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef] [PubMed]
- Girones, R.; Ferrus, M.A.; Alonso, J.L.; Rodriguez-Manzano, J.; Calgua, B.; de Abreu Corrêa, A.; Hundesa, A.; Carratala, A.; Bofill-Mas, S. Molecular detection of pathogens in water—The pros and cons of molecular techniques. Water Res. 2010, 44, 4325–4339. [Google Scholar] [CrossRef] [PubMed]
- Tsen, H.; Lin, C.; Chi, W. Development and use of 16s rrna gene targeted pcr primers for the identification of escherichia coli cells in water. J. Appl. Microbiol. 1998, 85, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Omiccioli, E.; Amagliani, G.; Brandi, G.; Magnani, M. A new platform for real-time pcr detection of salmonella spp., listeria monocytogenes and escherichia coli O157 in milk. Food Microbiol. 2009, 26, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J. Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol. 2003, 6, 288–294. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.T.; Kim, Y.-K. Optical enzyme-linked immunosorbent assay on a strip for detection of salmonella typhimurium. BioChip J. 2010, 4, 110–116. [Google Scholar] [CrossRef]
- Storey, M.V.; Van der Gaag, B.; Burns, B.P. Advances in on-line drinking water quality monitoring and early warning systems. Water Res. 2011, 45, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Bridle, H.; Balharry, D.; Gaiser, B.; Johnston, H. Exploitation of nanotechnology for the monitoring of waterborne pathogens: State-of-the-art and future research priorities. Environ. Sci. Technol. 2015, 49, 10762–10777. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.D.; Jani, G.K.; Kapadia, J.R. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin. Drug Deliv. 2015, 12, 1283–1299. [Google Scholar] [CrossRef] [PubMed]
- Dash, T.K.; Konkimalla, V.B. Poly-small je, ukrainian-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control Release 2012, 158, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Jameela, S.; Suma, N.; Jayakrishnan, A. Protein release from poly (ε-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: A comparative study. J. Biomater. Sci. Polym. Ed. 1997, 8, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Mkhabela, V.J.; Ray, S.S. Poly(epsilon-caprolactone) nanocomposite scaffolds for tissue engineering: A brief overview. J. Nanosci. Nanotechnol. 2014, 14, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-epsilon-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm. 2004, 278, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J.C.; Edgar, J.M.; Agbay, A.M.; Bibault, E.; Montgomery, A.; Mohtaram, N.K.; Willerth, S.M. Incorporation of retinoic acid releasing microspheres into pluripotent stem cell aggregates for inducing neuronal differentiation. Cell. Mol. Bioeng. 2015, 8, 307–319. [Google Scholar] [CrossRef]
- Agbay, A.; Mohtaram, N.K.; Willerth, S.M. Controlled release of glial cell line-derived neurotrophic factor from poly(epsilon-caprolactone) microspheres. Drug Deliv. Transl. Res. 2014, 4, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Mohtaram, N.K.; Ko, J.; Montgomery, A.; Carlson, M.; Sun, L.; Wong, A.; Robinson, M.; Jun, M.B.-G.; Willerth, S.M. Multifunctional electrospun scaffolds for promoting neuronal differentiation of induced pluripotent stem cells. J. Biomater. Tissue Eng. 2014, 4, 906–914. [Google Scholar] [CrossRef]
- Mohtaram, N.K.; Ko, J.; King, C.; Sun, L.; Muller, N.; Jun, M.B.; Willerth, S.M. Electrospun biomaterial scaffolds with varied topographies for neuronal differentiation of human-induced pluripotent stem cells. J. Biomed. Mater. Res. A 2015, 103, 2591–2601. [Google Scholar] [CrossRef] [PubMed]
- Mohtaram, N.K.; Ko, J.; Agbay, A.; Rattray, D.; O Neill, P.; Rajwani, A.; Vasandani, R.; Thu, H.L.; Jun, M.; Willerth, S.M. Development of a glial cell-derived neurotrophic factor-releasing artificial dura for neural tissue engineering applications. J. Mater. Chem. Part B 2015, in press. [Google Scholar] [CrossRef]
- Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491–506. [Google Scholar] [CrossRef]
- Daniel, M.-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-B.; Tseng, W.Y.; Lee, H.-C.; Tsai, C.-K.; Huang, J.-T.; Hou, S.-Y. Identification of salmonella using colony-print and detection with antibody-coated gold nanoparticles. J. Microbiol. Methods 2009, 77, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Singh, A.K.; Senapati, D.; Neely, A.; Yu, H.; Ray, P.C. Rapid colorimetric identification and targeted photothermal lysis of salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chem. A Eur. J. 2010, 16, 5600–5606. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yang, X.; Sun, S.; Wang, Q.; Wang, K.; Huang, J.; Liu, J.; He, L. Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal. Chem. 2013, 85, 7689–7695. [Google Scholar] [CrossRef] [PubMed]
- Freytag, T.; Dashevsky, A.; Tillman, L.; Hardee, G.; Bodmeier, R. Improvement of the encapsulation efficiency of oligonucleotide-containing biodegradable microspheres. J. Control. Release 2000, 69, 197–207. [Google Scholar] [CrossRef]
- Sinha, V.R.; Trehan, A. Biodegradable microspheres for protein delivery. J. Control. Release 2003, 90, 261–280. [Google Scholar] [CrossRef]
- Addison, C.J.; Brolo, A.G. Nanoparticle-containing structures as a substrate for surface-enhanced raman scattering. Langmuir 2006, 22, 8696–8702. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.H.; Millard, M.; Brolo, A.G. Optimizing plasmonic silicon photovoltaics with Ag and Au nanoparticle mixtures. J. Phys. Chem. C 2014, 118, 5889–5895. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Nafissi Varcheh, N.; Luginbuehl, V.; Aboofazeli, R.; Merkle, H.P. Preparing poly (Lactic-co-Glycolic Acid)(PLGA) microspheres containing lysozyme-zinc precipitate using a modified double emulsion method. Iran. J. Pharm. Res. 2011, 10, 203–209. [Google Scholar] [PubMed]
- Valmikinathan, C.M.; Defroda, S.; Yu, X.J. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules 2009, 10, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, H.-I.; Li, X.; Alpar, O.; Coombes, A.G. Delivery of bioactive macromolecules from microporous polymer matrices: Release and activity profiles of lysozyme, collagenase and catalase. Eur. J. Pharm. Sci. 2009, 37, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.S.; Song, S.H.; Choi, J.Y.; Park, T.G. Lysozyme microencapsulation within biodegradable plga microspheres: Urea effect on protein release and stability. Biotechnol. Bioeng. 2000, 70, 270–277. [Google Scholar] [CrossRef]
- Srinivas, S.S.; Rao, K.P. Controlled release of lysozyme from succinylated gelatin microspheres. J. Biomater. Sci. Polym. Ed. 2001, 12, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Zorzin, L.; Cocchietto, M.; Voinovich, D.; Marcuzzi, A.; Fnipovic-Grcic, J.; Mulloni, C.; Crembiale, G.; Casarsa, C.; Bulla, R.; Sava, G. Lysozyme-containing chitosan-coated alginate microspheres for oral immunisation. J. Drug Deliv. Sci. Technol. 2006, 16, 413–420. [Google Scholar] [CrossRef]
- Bhavsar, M.D.; Amiji, M.M. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech 2008, 9, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Kalidasan, K.; Neo, J.L.; Uttamchandani, M. Direct visual detection of salmonella genomic DNA using gold nanoparticles. Mol. Biosyst. 2013, 9, 618–621. [Google Scholar] [CrossRef] [PubMed]
Molecule Encapsulated | Average Diameter | Encapsulation Efficiency | Percentage Released after 28 Days |
---|---|---|---|
Lysozyme | 232 ± 11 μm (n = 46) | 32 ± 7% (n = 3) | 83 ± 11% (n = 3) |
H1 DNA probe | 243 ± 17 μm (n = 24) | 35 ± 2% (n = 3) | 30 ± 2% (n = 3) |
H2 DNA probe | 227 ± 13 μm (n = 30) | 49 ± 2% (n = 3) | 26 ± 2% (n = 3) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajwani, A.; Restall, B.; Muller, N.J.; Roebuck, S.; Willerth, S.M. An Affordable Microsphere-Based Device for Visual Assessment of Water Quality. Biosensors 2017, 7, 31. https://doi.org/10.3390/bios7030031
Rajwani A, Restall B, Muller NJ, Roebuck S, Willerth SM. An Affordable Microsphere-Based Device for Visual Assessment of Water Quality. Biosensors. 2017; 7(3):31. https://doi.org/10.3390/bios7030031
Chicago/Turabian StyleRajwani, Azra, Brendon Restall, Nathan J. Muller, Scott Roebuck, and Stephanie M. Willerth. 2017. "An Affordable Microsphere-Based Device for Visual Assessment of Water Quality" Biosensors 7, no. 3: 31. https://doi.org/10.3390/bios7030031
APA StyleRajwani, A., Restall, B., Muller, N. J., Roebuck, S., & Willerth, S. M. (2017). An Affordable Microsphere-Based Device for Visual Assessment of Water Quality. Biosensors, 7(3), 31. https://doi.org/10.3390/bios7030031