Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. ATR Spectroscopy
3. Results and Discussion
3.1. Vibrational Analysis of the Individual Components
3.1.1. Bilberry Extract Solution
3.1.2. Emulsifier
3.1.3. MCT Oil and Oil Phase
3.2. Spectroscopy of Emulsions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PGPR | PolyGlycerine-PolyRicinoleat |
MCT | Medium Chain Triglyceride |
IR | InfraRed |
FTIR | Fourier-Transform InfraRed |
ATR | Attenuated Total Reflection |
References
- Kiefer, J.; Noack, K.; Bartelmess, J.; Walter, C.; Dörnenburg, H.; Leipertz, A. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy. J. Mol. Struct. 2010, 965, 121–124. [Google Scholar] [CrossRef]
- Noack, K.; Leipertz, A.; Kiefer, J. Molecular interactions and macroscopic effects in binary mixtures of an imidazolium ionic liquid with water, methanol, and ethanol. J. Mol. Struct. 2012, 1018, 45–53. [Google Scholar] [CrossRef]
- Joseph, J.; Jemmis, E.D. Red-, blue-, or no-shift in hydrogen bonds: A unified explanation. J. Am. Chem. Soc. 2007, 129, 4620–4632. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, L.; Van de Weert, M.; Vermehren, C.; Bjerregaard, S.; Frokjaer, S. Probing structural changes of proteins incorprated into water-in-oil emulsions. J. Pharm. Sci. 2004, 93, 1847–1859. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.W.; Li, G.Z.; Chen, W.J. Fourier-transform infrared investigation on water states and the conformations of Aerosol-OT in reverse microemulsions. Langmuir 2002, 18, 4566–4571. [Google Scholar] [CrossRef]
- Valero, M.; Sanchez, F.; Gomez-Herrera, C.; Lopez-Cornejo, P. Study of water solubilized in AOT/n-decane/water microemulsions. Chem. Phys. 2008, 345, 65–72. [Google Scholar] [CrossRef]
- Sechler, T.D.; DelSole, E.M.; Deak, J.C. Measuring properties of interfacial and bulk water regions in a reverse micelle with IR spectroscopy: A volumetric analysis of the inhomogeneously broadened OH band. J. Colloid Interface Sci. 2010, 346, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Kemsley, E.K.; Appleton, G.P.; Wilson, R.H. Quantitative analysis of emulsions using attenuated total reflectance (ATR). Spectrochim. Acta 1994, 50A, 1235–1242. [Google Scholar] [CrossRef]
- Nickolov, Z.S.; Paruchuri, V.; Shah, D.O.; Miller, J.D. FTIR-ATR studies of water structure in reverse micelles during the synthesis of oxalate precursor nanoparticles. Colloids Surf. A 2004, 232, 93–99. [Google Scholar] [CrossRef]
- Kiefer, J.; Frank, K.; Schuchmann, H.P. Attenuated total reflection infrared (ATR-IR) spectroscopy of a water-in-oil emulsion. Appl. Spectrosc. 2011, 65, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Newsome, A.G.; Culver, C.A.; van Breemen, R.B. Nature’s Palette: The Search for Natural Blue Colorants. J. Agric. Food Chem. 2014, 62, 6498–6511. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, T. Anthocyanins as Functional Food Factors—Chemistry, Nutrition and Health Promotion. Food Sci. Technol. Res. 2012, 18, 315–324. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G.H.; Martin, A.; Sofic, E.; McEwen, J.; O'Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Cooke, D.; Schwarz, M.; Boocock, D.; Winterhalter, P.; Steward, W.P.; Gescher, A.J.; Marczylo, T.H. Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on ademona development in the Apc(Min) mouse model of intestinal carcinogenesis—Relationship with tissue anthocyanin levels. Int. J. Cancer 2006, 119, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Nielsen, I.L.F.; Haren, G.R.; Magnussen, E.L.; Dragsted, L.O.; Rasmussen, S.E. Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. J. Agric. Food Chem. 2003, 51, 5861–5866. [Google Scholar] [CrossRef] [PubMed]
- Hubbermann, E.M. Functional properties of anthocyanin concentrates and the influence of physicochemical parameters and food additives on the color and stability of isolated anthocyanins in food. PhD Dissertation, Christian-Albrecht-Universität zu Kiel, Kiel, Germany, 2005. [Google Scholar]
- Frank, K.; Köhler, K.; Schuchmann, H.P. Formulation of labile hydrophilic ingredients in multiple emulsions: Influence of the formulation's composition on the emulsion’s stability and on the stability of entrapped bioactives. J. Dispers. Sci. Technol. 2011, 32, 1–6. [Google Scholar] [CrossRef]
- Baum, M.; Schantz, M.; Leick, S.; Berg, S.; Betz, M.; Frank, K.; Rehage, H.; Schwarz, K.; Kulozik, U.; Schuchmann, H.P.; et al. Is the antioxidative effectiveness of a bilberry extract influenced by encapsulation? J. Sci. Food Agric. 2014, 94, 2301–2307. [Google Scholar] [CrossRef] [PubMed]
- Ax, K. Emulsionen und Liposomen als Trägersysteme für Carotinoide. PhD Dissertation, Universität Karlsruhe, Karlsruhe, Germany, 2004. [Google Scholar]
- Ribeiro, H.S.; Schuchmann, H.P.; Engel, R.; Briviba, K.; Walz, E. Encapsulation of Caroteniods and Vitamins. In Encapsulation Technologies for Food Active Ingredients and Food Processing; Zuidam, N.J., Nedovic, V.A., Eds.; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Palzer, S. Food structures for nutrition, health and wellness. Trends Food Sci. Technol. 2009, 20, 194–200. [Google Scholar] [CrossRef]
- Schmidt, D.A.; Miki, K. Structural correlations in liquid water: A new interpretation of IR spectroscopy. J. Phys. Chem. A 2007, 111, 10119–10122. [Google Scholar] [CrossRef] [PubMed]
- Wallace, V.M.; Dhumal, N.R.; Zehentbauer, F.M.; Kim, H.J.; Kiefer, J. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations. J. Phys. Chem. B 2015, 119, 14780–14789. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, J.; Grabow, J.; Kurland, H.-D.; Müller, F.A. Characterization of Nanoparticles by Solvent Infrared Spectroscopy. Anal. Chem. 2015, 87, 12313–12317. [Google Scholar] [CrossRef] [PubMed]
Profile | Center Wavenumber in cm−1 | Width in cm−1 | Intensity in % |
---|---|---|---|
peak 1 | 3625 | 94 | 2.24 |
peak 2 | 3522 | 155 | 12.48 |
peak 3 | 3375 | 188 | 39.27 |
peak 4 | 3230 | 172 | 29.07 |
peak 5 | 3117 | 200 | 14.14 |
peak 6 | 2950 | 200 | 2.80 |
Profile | Aqueous Solution | Emulsion with 1% PGPR | Emulsion with 5% PGPR | Emulsion with 10% PGPR |
---|---|---|---|---|
peak 1 | 3625 | 3625 | 3625 | 3624 |
peak 2 | 3522 | 3544 | 3544 | 3542 |
peak 3 | 3375 | 3416 | 3416 | 3414 |
peak 4 | 3230 | 3291 | 3290 | 3290 |
peak 5 | 3117 | 3198 | 3198 | 3198 |
peak 6 | 2950 | 3025 | 3025 | 3025 |
Profile | Aqueous Solution | Emulsion with 1% PGPR | Emulsion with 5% PGPR | Emulsion with 10% PGPR |
---|---|---|---|---|
peak 1 | 94 | 94 | 94 | 94 |
peak 2 | 155 | 155 | 155 | 155 |
peak 3 | 188 | 188 | 188 | 188 |
peak 4 | 172 | 172 | 172 | 172 |
peak 5 | 200 | 195 | 195 | 195 |
peak 6 | 200 | 160 | 160 | 160 |
Profile | Aqueous Solution | Emulsion with 1% PGPR | Emulsion with 5% PGPR | Emulsion with 10% PGPR |
---|---|---|---|---|
peak 1 | 2.24 | 2.68 | 2.64 | 2.61 |
peak 2 | 12.48 | 13.23 | 12.61 | 12.76 |
peak 3 | 39.27 | 41.34 | 42.61 | 41.90 |
peak 4 | 29.07 | 18.06 | 17.80 | 17.41 |
peak 5 | 14.14 | 20.14 | 19.85 | 20.00 |
peak 6 | 2.80 | 4.55 | 4.49 | 5.32 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiefer, J.; Frank, K.; Zehentbauer, F.M.; Schuchmann, H.P. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface. Biosensors 2016, 6, 13. https://doi.org/10.3390/bios6020013
Kiefer J, Frank K, Zehentbauer FM, Schuchmann HP. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface. Biosensors. 2016; 6(2):13. https://doi.org/10.3390/bios6020013
Chicago/Turabian StyleKiefer, Johannes, Kerstin Frank, Florian M. Zehentbauer, and Heike P. Schuchmann. 2016. "Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface" Biosensors 6, no. 2: 13. https://doi.org/10.3390/bios6020013
APA StyleKiefer, J., Frank, K., Zehentbauer, F. M., & Schuchmann, H. P. (2016). Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface. Biosensors, 6(2), 13. https://doi.org/10.3390/bios6020013