Potentiodynamic Fabrication of Aromatic Diamine Linkers on Electrochemically Reduced Graphene Oxide Surface for Environmental Pollutant Nitrobenzene Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Preparation of GO
2.4. Formation of ADM Monolayers on GC-Electrode
2.5. Self-Assembly of GO and Conversion to ERGO Using ADM Linkers
3. Results and Discussion
3.1. Formation Mechanism of ADM Monolayers on the GC Surface
3.2. Modification of ERGO-Fabricated Electrodes
3.3. Investigation of Surface Structural Chemistry Through ATR-FTIR and Raman Spectroscopy
3.4. Surface Chemical Investigation by XPS
3.5. Morphological Analysis of AFM and SEM
3.6. Electrochemical Characterization of ADM-Modified Electrodes Before and After ERGO Attachment
3.7. Analysis of ET Dynamics Using EIS
3.8. Electrocatalytic Reduction of NBz on ERGO-Modified Electrodes
3.9. Sensitive Analysis of NBz
3.10. Selective Detection of NBz Using Amperometry
3.11. Practical Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharjya, T.; Nalepa, M.; Dědek, I.; Jakubec, P.; Panáček, D.; Otyepka, M. Recent Advances in Graphene-Based Electrochemical Biosensors for Major Non-Communicable Diseases. Curr. Opin. Electrochem. 2025, 53, 101737. [Google Scholar] [CrossRef]
- Izquierdo-García, P.; Fernández-García, J.M.; Martín, N. Twenty Years of Graphene: From Pristine to Chemically Engineered Nano-Sized Flakes. J. Am. Chem. Soc. 2024, 146, 32222–32234. [Google Scholar] [CrossRef] [PubMed]
- Raj, M.A.; John, S.A. Fabrication of Electrochemically Reduced Graphene Oxide Films on Glassy Carbon Electrode by Self-Assembly Method and Their Electrocatalytic Application. J. Phys. Chem. C 2013, 117, 4326–4335. [Google Scholar] [CrossRef]
- Raj, M.A.; John, S.A. Electrochemical Determination of Xanthine Oxidase Inhibitor Drug in Urate Lowering Therapy Using Graphene Nanosheets Modified Electrode. Electrochim. Acta 2014, 117, 360–366. [Google Scholar] [CrossRef]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. Graphene Production via Electrochemical Reduction of Graphene Oxide: Synthesis and Characterisation. Chem. Eng. J. 2014, 251, 422–434. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, Y.; Dong, S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem. 2009, 81, 5603–5613. [Google Scholar] [CrossRef]
- Gooding, J.J.; Mearns, F.; Yang, W.; Liu, J. Self-Assembled Monolayers into the 21 St Century: Recent Advances and Applications. Electroanalysis 2003, 15, 81–96. [Google Scholar] [CrossRef]
- Li, C.; Iqbal, M.; Lin, J.; Luo, X.; Jiang, B.; Malgras, V.; Wu, K.C.-W.; Kim, J.; Yamauchi, Y. Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Acc. Chem. Res. 2018, 51, 1764–1773. [Google Scholar] [CrossRef]
- Ma, M.; Zhe, T.; Ma, Y.; Wang, Z.; Chen, Q.; Wang, J. Highly Sensitive and Reproducible Non-Enzymatic Glucose Sensor Fabricated by Drop-Casting Novel Nanocomposite with 3D Architecture and Tailorable Properties Prepared in Controllable Way. Talanta 2018, 180, 133–143. [Google Scholar] [CrossRef]
- Iost, R.M.; Crespilho, F.N. Layer-by-Layer Self-Assembly and Electrochemistry: Applications in Biosensing and Bioelectronics. Biosens. Bioelectron. 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Gonzalez-Gallardo, C.L.; Morales-Hernández, J.; Álvarez-Contreras, L.; Arjona, N.; Guerra-Balcázar, M. Electrochemical Detection of Creatinine on Cu/Carbon Paper Electrodes Obtained by Physical Vapor Deposition. J. Appl. Electrochem. 2024, 54, 115–126. [Google Scholar] [CrossRef]
- Sánchez-Paniagua, M.; Palenzuela-Batista, S.; Manzanares-Palenzuela, C.L.; López-Ruiz, B. Electrochemical Genosensor for Klotho Detection Based on Aliphatic and Aromatic Thiols Self-Assembled Monolayers. Talanta 2020, 212, 120735. [Google Scholar] [CrossRef]
- Vericat, C.; Vela, M.E.; Benitez, G.; Carro, P.; Salvarezza, R.C. Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System. Chem. Soc. Rev. 2010, 39, 1805. [Google Scholar] [CrossRef]
- Zhao, Q.-L.; Zhang, Z.-L.; Bao, L.; Pang, D.-W. Surface Structure-Related Electrochemical Behaviors of Glassy Carbon Electrodes. Electrochem. Commun. 2008, 10, 181–185. [Google Scholar] [CrossRef]
- Muthukrishnan, K.; Baskar, B.J.; Sinduja, B.; Muthukumar, P.; Muralikrishnan, M.; Kumar, R.S.; Gowthaman, N.S.K.; Sethuraman, M.G. Revealing the Influence of Chain Length of Alkyldiamine Linkers on the Effective Attachment of Graphene on a Glassy Carbon Electrode for Sensitive Detection of Nitrobenzene. Colloids Surf. A Physicochem. Eng. Asp. 2025, 718, 136898. [Google Scholar] [CrossRef]
- Muthukrishnan, K.; Sinduja, B.; Wadaan, M.A.; Gowthaman, N.S.K.; John, S.A.; Sethuraman, M.G. Exploring Alkyl-Diamine Chain Length Effects on Electrochemical Behavior of AuNPs Fabricated Electrodes: Influence of Linkers on the Sensitive Detection of Hydrazine. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133501. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Z. Industrial Water Pollution, Water Environment Treatment, and Health Risks in China. Environ. Pollut. 2016, 218, 358–365. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Oliferenko, P.; Oliferenko, A.; Lomaka, A.; Karelson, M. Nitrobenzene Toxicity: QSAR Correlations and Mechanistic Interpretations. J. Phys. Org. Chem. 2003, 16, 811–817. [Google Scholar] [CrossRef]
- Bilal, M.; Bagheri, A.R.; Bhatt, P.; Chen, S. Environmental Occurrence, Toxicity Concerns, and Remediation of Recalcitrant Nitroaromatic Compounds. J. Environ. Manag. 2021, 291, 112685. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, X.; Su, X. Transport and Fate Modeling of Nitrobenzene in Groundwater after the Songhua River Pollution Accident. J. Environ. Manag. 2010, 91, 2378–2384. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Zeng, H.; Gu, X.; Zheng, J. Determination of Nitrobenzene Potential Genotoxic Impurities in Nifedipine with GC-MS. J. Pharm. Biomed. Anal. 2024, 248, 116274. [Google Scholar] [CrossRef] [PubMed]
- Patra, D.; Mishra, A.K. Fluorescence Quenching of Benzo[k]Fluoranthene in Poly(Vinyl Alcohol) Film: A Possible Optical Sensor for Nitro Aromatic Compounds. Sensors Actuators B Chem. 2001, 80, 278–282. [Google Scholar] [CrossRef]
- Ji, H.; Wang, E. Flow Injection Amperometric Detection Based on Ion Transfer across a Water-Solidified Nitrobenzene Interface for the Determination of Tetracycline and Terramycin. Analyst 1988, 113, 1541. [Google Scholar] [CrossRef]
- Liu, B.; Lin, X.; Li, H.; Li, K.; Huang, H.; Bai, L.; Hu, H.; Liu, Y.; Kang, Z. Luminescent Coordination Polymers for Highly Sensitive Detection of Nitrobenzene. Cryst. Growth Des. 2015, 15, 4355–4362. [Google Scholar] [CrossRef]
- Moss, M.L.; Mellon, M.G. Colorimetric Determination of Trinitrobenzene in Dinitrobenzene. Ind. Eng. Chem. Anal. Ed. 1942, 14, 861–862. [Google Scholar] [CrossRef]
- Gallardo, I.; Pinson, J.; Vilà, N. Spontaneous Attachment of Amines to Carbon and Metallic Surfaces. J. Phys. Chem. B 2006, 110, 19521–19529. [Google Scholar] [CrossRef]
- Gowthaman, N.S.K.; Raj, M.A.; John, S.A. Nitrogen-Doped Graphene as a Robust Scaffold for the Homogeneous Deposition of Copper Nanostructures: A Nonenzymatic Disposable Glucose Sensor. ACS Sustain. Chem. Eng. 2017, 5, 1648–1658. [Google Scholar] [CrossRef]
- Deinhammer, R.S.; Ho, M.; Anderegg, J.W.; Porter, M.D. Electrochemical Oxidation of Amine-Containing Compounds: A Route to the Surface Modification of Glassy Carbon Electrodes. Langmuir 1994, 10, 1306–1313. [Google Scholar] [CrossRef]
- Buttry, D.A.; Peng, J.C.M.; Donnet, J.-B.; Rebouillat, S. Immobilization of Amines at Carbon Fiber Surfaces. Carbon 1999, 37, 1929–1940. [Google Scholar] [CrossRef]
- Samanta, D.; Sarkar, A. Immobilization of Bio-Macromolecules on Self-Assembled Monolayers: Methods and Sensor Applications. Chem. Soc. Rev. 2011, 40, 2567. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.T.; Lowinsohn, D.; Compton, R.G. Simultaneous Detection of Homocysteine and Cysteine in the Presence of Ascorbic Acid and Glutathione Using a Nanocarbon Modified Electrode. Electroanalysis 2014, 26, 1488–1496. [Google Scholar] [CrossRef]
- Kong, N.; Vaka, M.; Nam, N.D.; Barrow, C.J.; Liu, J.; Conlan, X.A.; Yang, W. Controllable Graphene Oxide Mediated Efficient Electron Transfer Pathways across Self-Assembly Monolayers: A New Class of Graphene Based Electrodes. Electrochim. Acta 2016, 210, 539–547. [Google Scholar] [CrossRef]
- Kesavan, S.; Raj, M.A.; John, S.A. Formation of Electrochemically Reduced Graphene Oxide on Melamine Electrografted Layers and Its Application toward the Determination of Methylxanthines. Anal. Biochem. 2016, 496, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, M.A.; Chrétien, J.-M.; Pinczewska, A.; Kilburn, J.D.; Bartlett, P.N. Covalent Modification of Glassy Carbon Surface with Organic Redox Probes through Diamine Linkers Using Electrochemical and Solid-Phase Synthesis Methodologies. J. Mater. Chem. 2008, 18, 4917. [Google Scholar] [CrossRef]
- Khan, R.; Nishina, Y. Grafting Redox-Active Molecules on Graphene Oxide through a Diamine Linker: Length Optimization for Electron Transfer. Dalt. Trans. 2022, 51, 1874–1878. [Google Scholar] [CrossRef]
- Brownson, D.A.C.; Lacombe, A.C.; Gómez-Mingot, M.; Banks, C.E. Graphene Oxide Gives Rise to Unique and Intriguing Voltammetry. RSC Adv. 2012, 2, 665–668. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Latiff, N.M.; Loo, A.H.; Wong, C.H.A.; Eng, A.Y.S.; Bonanni, A.; Pumera, M. Graphene and Its Electrochemistry—An Update. Chem. Soc. Rev. 2016, 45, 2458–2493. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chem.–A Eur. J. 2009, 15, 6116–6120. [Google Scholar] [CrossRef]
- Marrani, A.G.; Motta, A.; Schrebler, R.; Zanoni, R.; Dalchiele, E.A. Insights from Experiment and Theory into the Electrochemical Reduction Mechanism of Graphene Oxide. Electrochim. Acta 2019, 304, 231–238. [Google Scholar] [CrossRef]
- Fan, Z.-J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L.-J.; Feng, J.; Ren, Y.; Song, L.-P.; Wei, F. Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano 2011, 5, 191–198. [Google Scholar] [CrossRef]
- Noto, R.; Leone, M.; La Manna, G.; Brugè, F.; Fornili, S.L. Ab Initio Calculations and Vibrational Spectroscopy on the Phenylenediamine Isomers. J. Mol. Struct. Theochem 1998, 422, 35–48. [Google Scholar] [CrossRef]
- Badawi, H.M.; Förner, W.; Ali, S.A. A Comparative Study of the Infrared and Raman Spectra of Aniline and O-, m-, p-Phenylenediamine Isomers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 112, 388–396. [Google Scholar] [CrossRef]
- Gupta, R.; Sanotra, S.; Sheikh, H.N.; Kalsotra, B.L. Room Temperature Aqueous Phase Synthesis and Characterization of Novel Nano-Sized Coordination Polymers Composed of Copper(II), Nickel(II), and Zinc(II) Metal Ions with p-Phenylenediamine (PPD) as the Bridging Ligand. J. Nanostruct. Chem. 2013, 3, 41. [Google Scholar] [CrossRef]
- Dai, S.; Peng, B.; Zhang, L.; Chai, L.; Wang, T.; Meng, Y.; Li, X.; Wang, H.; Luo, J. Sustainable Synthesis of Hollow Cu-Loaded Poly(m-Phenylenediamine) Particles and Their Application for Arsenic Removal. RSC Adv. 2015, 5, 29965–29974. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 2009, 9, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, T.; Hubert Joe, I.; Reghunadhan Nair, C.P.; Jayakumar, V.S. Non-Bonded Interactions and Its Contribution to the NLO Activity of Glycine Sodium Nitrate—A Vibrational Approach. J. Mol. Struct. 2008, 877, 20–35. [Google Scholar] [CrossRef]
- Stewart, S.; Fredericks, P.M. Surface-Enhanced Raman Spectroscopy of Peptides and Proteins Adsorbed on an Electrochemically Prepared Silver Surface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1615–1640. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Byrne, J.A. Effect of Surface Structure and Wettability of DLC and N-DLC Thin Films on Adsorption of Glycine. Appl. Surf. Sci. 2012, 258, 5166–5174. [Google Scholar] [CrossRef]
- Campos-Delgado, J.; Kim, Y.A.; Hayashi, T.; Morelos-Gómez, A.; Hofmann, M.; Muramatsu, H.; Endo, M.; Terrones, H.; Shull, R.D.; Dresselhaus, M.S.; et al. Thermal Stability Studies of CVD-Grown Graphene Nanoribbons: Defect Annealing and Loop Formation. Chem. Phys. Lett. 2009, 469, 177–182. [Google Scholar] [CrossRef]
- Jin, T.; Easton, C.D.; Tang, Y.; Yin, H.; Hao, X. Nitrogen-Doped Graphene Oxide Monoliths Crosslinked by Short Chain Aliphatic Amines. J. Hazard. Mater. 2018, 357, 100–108. [Google Scholar] [CrossRef]
- Ahmar, H.; Shahvandi, S.K. Determination of 4-Nitrobenzaldehyde in Water Samples by Combination of Switchable Solvent Based Microextraction and Electrochemical Detection on MWCNTs Modified Electrode. Electroanalysis 2019, 31, 1238–1244. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Yun, Y.-J.; Kim, D.-Y.; Han, S.-H. Formation of a Self-Assembled Monolayer of Diaminododecane and a Heteropolyacid Monolayer on the ITO Surface. Langmuir 1999, 15, 4690–4692. [Google Scholar] [CrossRef]
- Nasraoui, R.; Bergamini, J.-F.; Ababou-Girard, S.; Geneste, F. Sequential Anodic Oxidations of Aliphatic Amines in Aqueous Medium on Pyrolyzed Photoresist Film Surfaces for the Covalent Immobilization of Cyclam Derivatives. J. Solid State Electrochem. 2011, 15, 139–146. [Google Scholar] [CrossRef]
- Raj, M.A.; Gowthaman, N.S.K.; John, S.A. Highly Sensitive Interference-Free Electrochemical Determination of Pyridoxine at Graphene Modified Electrode: Importance in Parkinson and Asthma Treatments. J. Colloid Interface Sci. 2016, 474, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.J.M. March’s Advanced Organic Chemistry Reactions, Mechanisms, and Structure; Wiley-Interscience a John Wiley & Sons, Inc., Publication: Hoboken, NJ, USA, 2007. [Google Scholar]
- Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Faulkner Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Chou, A.; Eggers, P.K.; Paddon-Row, M.N.; Gooding, J.J. Self-Assembled Carbon Nanotube Electrode Arrays: Effect of Length of the Linker between Nanotubes and Electrode. J. Phys. Chem. C 2009, 113, 3203–3211. [Google Scholar] [CrossRef]
- Papavasileiou, A.V.; Antonatos, N.; Luxa, J.; Děkanovský, L.; Ashtiani, S.; Lontio Fomekong, R.; Sofer, Z. Two-Dimensional VSe2 Nanoflakes as a Promising Sensing Electrocatalyst for Nitrobenzene Determination in Water Samples. Electrochim. Acta 2024, 475, 143653. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, T.; Ren, H.; Wang, L.; Meng, T.; Zhao, J.; Wang, H.; Zhang, Y. Nitrogen-Doped Hollow Carbon Nanospheres for Highly Sensitive Electrochemical Sensing of Nitrobenzene. Mater. Res. Bull. 2018, 104, 15–19. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Balamurugan, T.S.T.; Chen, S.-M.; Chen, T.-W.; Tseng, T.-W.; Lou, B.-S. A Simple Architecture of Cellulose Microfiber/Reduced Graphene Oxide Nanocomposite for the Electrochemical Determination of Nitrobenzene in Sewage Water. Cellulose 2018, 25, 2381–2391. [Google Scholar] [CrossRef]
- Keyan, A.K.; Vasu, D.; Sakthinathan, S.; Chiu, T.-W.; Lee, Y.-H.; Lin, C.-C. Facile Synthesis of Silver-Doped Copper Selenide Composite for Enhanced Electrochemical Detection of Ecological Toxic Nitrobenzene. Electrocatalysis 2023, 14, 448–462. [Google Scholar] [CrossRef]
- Gowri, V.M.; Senthil Kumar, P.; Shankar, V.U.; Thongmee, S.; Rangasamy, G. Environmental Analysis of Nitrobenzene Using Newly Synthesized Anisotropic Gold Nanostructures: Reaction Kinetics and Electrocatalytic Activity. J. Mol. Liq. 2024, 408, 125303. [Google Scholar] [CrossRef]
- Vinoth, S.; Mary Rajaitha, P.; Pandikumar, A. In-Situ Pyrolytic Processed Zinc Stannate Incorporated Graphitic Carbon Nitride Nanocomposite for Selective and Sensitive Electrochemical Determination of Nitrobenzene. Compos. Sci. Technol. 2020, 195, 108192. [Google Scholar] [CrossRef]
- Cai, C.; Hao, L.; Wang, R.; Yan, J.; Zhang, Y. A Ni-Doped Coral-like Three-Dimensional Mo2C Nanorod for Sensitive Electrochemical Monitoring of Environmentally Polluting Nitrobenzene. Ceram. Int. 2024, 50, 31630–31638. [Google Scholar] [CrossRef]
- Dong, Q.; Sun, X. Enhanced Electrochemical Detection of Nitrobenzene Using Zinc Oxide-Carboxylated Graphene Oxide Composite as Sensor. Int. J. Electrochem. Sci. 2023, 18, 100344. [Google Scholar] [CrossRef]
- An, S.; Shang, N.; Zhang, J.; Nsabimana, A.; Su, M.; Zhang, S.; Zhang, Y. Fabrication of Electrocatalytically Active, Cobalt-Embedded Nitrogen-Doped Ordered Macroporous Carbon for Sensitive Detection of Nitrobenzene. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130078. [Google Scholar] [CrossRef]
- Yuan, C.; Li, N.; Zhang, X.; Wang, Y.; Zhou, S.; Zhang, L.; Zhou, M.; Hu, G. Flower-like Copper Sulfide-Decorated Boron-Nitrogen Co-Doped Carbon-Modified Glassy Carbon Electrode for Selective and Sensitive Electrochemical Detection of Nitrobenzene in Natural Water. Colloids Surf. A Physicochem. Eng. Asp. 2023, 675, 132011. [Google Scholar] [CrossRef]
- Karuppiah, C.; Muthupandi, K.; Chen, S.-M.; Ali, M.A.; Palanisamy, S.; Rajan, A.; Prakash, P.; Al-Hemaid, F.M.A.; Lou, B.-S. Green Synthesized Silver Nanoparticles Decorated on Reduced Graphene Oxide for Enhanced Electrochemical Sensing of Nitrobenzene in Waste Water Samples. RSC Adv. 2015, 5, 31139–31146. [Google Scholar] [CrossRef]
- Pellitero, M.A.; Arroyo-Currás, N. Study of Surface Modification Strategies to Create Glassy Carbon-Supported, Aptamer-Based Sensors for Continuous Molecular Monitoring. Anal. Bioanal. Chem. 2022, 414, 5627–5641. [Google Scholar] [CrossRef]
- Saby, C.; Ortiz, B.; Champagne, G.Y.; Bélanger, D. Electrochemical Modification of Glassy Carbon Electrode Using Aromatic Diazonium Salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups. Langmuir 1997, 13, 6805–6813. [Google Scholar] [CrossRef]
- Habibi, E. Mesoporous Pd|β-SiCNW-NC Based Home Made Screen Printed Electrode for High Sensitive Detection of Hydrazine. Microchem. J. 2019, 149, 104004. [Google Scholar] [CrossRef]












| Electrode | pH (PBS) | Linear Range (μM) | LOD (μM) | Reference |
|---|---|---|---|---|
| VSe2 a/GCE b | 7 | 0.1–4 | 0.03 | [61] |
| NHCPs-750 c–GCE | 7 | 5–2610 | 2.29 | [62] |
| CMF-RGO d/GCE | 7 | 0.2–927.7 | 0.088 | [63] |
| Ag-CuSe e/GCE | 7 | 0.1 to 400 | 0.01 | [64] |
| GC/CA-AuNS f | 7 | 0.1–1000 | 0.0282 | [65] |
| ZSO-gCN g/GCE | 7.2 | 30–900 | 2.2 | [66] |
| Ni/Mo2C h–GCE | 7 | 2.11–1053.61 | 0.64 | [67] |
| ZnO@c-GO i (2:3)/GCE | 7.02 | 10–600 | 1.68 | [68] |
| Co-NC-800 j-GCE | 7 | 0.1–6363–863 | 0.086 | [69] |
| CuS-BCN k/GCE | 7 | 0.5–150, 150–1000 | 0.120 | [70] |
| GO-AgNPs l/GCE | 7 | 0.5 to 900 | 0.261 | [71] |
| GC/p-PDA/ERGO | 7.2 | 0.5 to 1000 | 0.040 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Muthukrishnan, K.; Vinothkumar, V.; Sethuraman, M.G.; Kim, T.H. Potentiodynamic Fabrication of Aromatic Diamine Linkers on Electrochemically Reduced Graphene Oxide Surface for Environmental Pollutant Nitrobenzene Monitoring. Biosensors 2026, 16, 33. https://doi.org/10.3390/bios16010033
Muthukrishnan K, Vinothkumar V, Sethuraman MG, Kim TH. Potentiodynamic Fabrication of Aromatic Diamine Linkers on Electrochemically Reduced Graphene Oxide Surface for Environmental Pollutant Nitrobenzene Monitoring. Biosensors. 2026; 16(1):33. https://doi.org/10.3390/bios16010033
Chicago/Turabian StyleMuthukrishnan, Karmegam, Venkatachalam Vinothkumar, Mathur Gopalakrishnan Sethuraman, and Tae Hyun Kim. 2026. "Potentiodynamic Fabrication of Aromatic Diamine Linkers on Electrochemically Reduced Graphene Oxide Surface for Environmental Pollutant Nitrobenzene Monitoring" Biosensors 16, no. 1: 33. https://doi.org/10.3390/bios16010033
APA StyleMuthukrishnan, K., Vinothkumar, V., Sethuraman, M. G., & Kim, T. H. (2026). Potentiodynamic Fabrication of Aromatic Diamine Linkers on Electrochemically Reduced Graphene Oxide Surface for Environmental Pollutant Nitrobenzene Monitoring. Biosensors, 16(1), 33. https://doi.org/10.3390/bios16010033

