SERS-Based Immunoassay for α-Fetoprotein Biomarker Detection Using an Au-Ag Nanostars Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Nanostars
2.3. SERS Evaluation of Au-Ag Nanostars Using MB and MPA
2.4. Bioconjugation of Au-Ag Nanostars with AFP Antibodies and Antigens
2.5. Optical and Morphological Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vo-Dinh, T.; Wang, H.; Scaffidi, J. Plasmonic Nanoprobes for SERS Biosensing and Bioimaging. J. Biophotonics 2010, 3, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, P.; Yosri, N.; Chen, Q.; Elseedi, H.; Zou, X.; Yang, H. Detection of Heavy Metals in Food and Agricultural Products by Surface-Enhanced Raman Spectroscopy. Food Rev. Int. 2023, 39, 1440–1461. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Li, J. Facile Construction of Silver Nanocubes/Graphene Oxide Composites for Highly Sensitive SERS Detection of Multiple Organic Contaminants by a Portable Raman Spectrometer. J. Environ. Chem. Eng. 2022, 10, 108278. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, K.; Yadav, U.; Srivastava, R.; Gagwar, M.; Nath, G.; Saxena, P.; Srivastava, A. SERS Based Rapid and Ultrasensitive Detection of Japanese Encephalitis Virus. Antivir. Res. 2022, 205, 105382. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Formoso, M.; Alvarez-Puebla, R. Cancer Diagnosis through SERS and Other Related Techniques. Int. J. Mol. Sci. 2020, 21, 2253. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Iglesias, L.; Casagrande, G.; García-Lojo, D.; Leal, L.; Ngo, T.; Pérez-Juste, J.; Reis, R.; Kant, K.; Pastoriza-Santo, I. SERS Sensing for Cancer Biomarker: Approaches and Directions. Bioact. Mater. 2024, 34, 248–268. [Google Scholar] [CrossRef]
- Wu, L.; Qu, X. Cancer Biomarker Detection: Recent Achievements and Challenges. Chem. Soc. Rev. 2015, 44, 2963–2997. [Google Scholar] [CrossRef]
- Devi, R.; Doble, M.; Verma, R. Nanomaterials for Early Detection of Cancer Biomarker with Special Emphasis on Gold Nanoparticles in Immunoassays/Sensors. Biosens. Bioelectron. 2015, 68, 688–698. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Zhang, P.; Zhang, J.; Li, X.; Gan, D.; Cao, X.; Du, H.; Ye, Y. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0228857. [Google Scholar] [CrossRef]
- Yeo, Y.; Lee, Y.; Tseng, H.; Zhu, Y.; You, S.; Agopian, V.; Yang, J. Alpha-fetoprotein: Past, present, and future. Hepatol. Commun. 2024, 8, e0422. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, B.; Li, M. The role of alpha-fetoprotein in the tumor microenvironment of hepatocellular carcinoma. Front. Oncol. 2024, 14, 1363695. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Chen, B.; Yu, J.; Zheng, J.; Zheng, Y.; Sun, M.; Peng, L.; Guo, Z.; Wang, X. Elevated Serum Alpha-Fetoprotein Is a Significant Prognostic Factor for Patients with Gastric Cancer: Results Based on a Large-Scale Retrospective Study. Front. Oncol. 2022, 12, 901061. [Google Scholar] [CrossRef]
- He, X.; Ge, C.; Zheng, X.; Tang, B.; Chen, L.; Li, S.; Wang, L.; Zhang, L.; Xu, Y. Rapid Identification of Alpha-Fetoprotein in Serum by a Microfluidic SERS Chip Integrated with Ag/Au Nanocomposites. Sens. Actuators B Chem. 2020, 317, 128196. [Google Scholar] [CrossRef]
- Zhu, A.; Zhao, X.; Cheng, M.; Chen, L.; Wang, Y.; Zhang, X.; Zhang, Y.; Zhang, X. Nanohoneycomb Surface-Enhanced Raman Spectroscopy-Active Chip for the Determination of Biomarkers of Hepatocellular Carcinoma. Appl. Mater. Interfaces 2019, 11, 44617–44623. [Google Scholar] [CrossRef]
- Ma, H.; Sun, X.; Chen, L.; Cheng, W.; Han, X.; Zhao, B.; He, C. Multiplex Immunochips for High-Accuracy Detection of AFP-L3% Based on Surface-Enhanced Raman Scattering: Implications for Early Liver Cancer Diagnosis. Anal. Chem. 2017, 89, 8877–8883. [Google Scholar] [CrossRef]
- Pollap, A.; Swit, P. Recent Advances in Sandwich SERS Immunosensors for Cancer Detection. Int. J. Mol. Sci. 2022, 23, 4740. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, C.; Zhai, L.; Shi, X.; Li, X.; Weng, G.; Zhu, J.; Li, J.; Zhao, J. A SERS-Based Immunoassay for the Detection of α-Fetoprotein Using AuNS@ Ag@SiO2 Core–Shell Nanostars. J. Mater. Chem. C 2019, 7, 8432–8441. [Google Scholar] [CrossRef]
- Er, E.; Sánchez-Iglesias, A.; Silvestri, A.; Arnaiz, B.; Liz-Marzán, L.; Prato, M.; Criado, A. Metal Nanoparticles/MoS2 Surface-Enhanced Raman Scattering Based Sandwich Immunoassay for α Fetoprotein Detection. Appl. Mater. Interfaces 2021, 13, 8823–8831. [Google Scholar] [CrossRef]
- Li, J.; Fang, C.; Yao, Y.; Chen, L.; Lin, B.; Wang, Y.; Guo, L. Rapid antibody conjugation strategy via instant charge inversion of AuNBPs toward ultrasensitive SERS-LFIA detection of AFP. Microchem. J. 2024, 202, 110832. [Google Scholar] [CrossRef]
- Uotila, M.; Ruoslahti, E.; Engvall, E. Two-Site Sandwich Enzyme Immunoassay with Monoclonal Antibodies to Human Alpha-Fetoprotein. J. Immunol. Methods 1981, 42, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yang, F.; Lu, X.; Li, H.; Yang, Z.; Yin, Q.; Zhang, L.; Long, Y.; Shen, C.; Chen, L. Facile Immunoassay Constructed by Gold Nanostar-Labeled Rabbit-AFP Antibody and Gold Nanoparticle-Conjugated Goat Anti-Rabbit IgG. Nanomaterials 2025, 15, 612. [Google Scholar] [CrossRef]
- Koutsompeli, E.; Murray, J.; Langford, D.; Bon, R.; Johnson, S. Probing molecular interactions with methylene blue derivatized self-assembled monolayers. Sens. Bio-Sens. Res. 2015, 6, 1–6. [Google Scholar]
- Bollinger, J.-C.; Lima, E.; Mouni, L.; Savestrini, S.; Nguyen, H. Molecular properties of methylene blue, a common probe in sorption and degradation studies: A review. Environ. Chem. Lett. 2025, 23, 1403–1424. [Google Scholar] [CrossRef]
- Chah, S.; Yi, J.; Pettit, C.; Roy, D.; Fendler, J. Ionization and Reprotonation of Self-Assembled Mercaptopropionic Acid Monolayers Investigated by Surface Plasmon Resonance Measurements. Langmuir 2002, 18, 314–318. [Google Scholar] [CrossRef]
- Kudelski, A. Raman study on the structure of 3-mercaptopropionic acid monolayers on silver. Surf. Sci. 2002, 502–503, 219–223. [Google Scholar] [CrossRef]
- Smolsky, J.; Kaur, S.; Hayashi, C.; Batra, S.; Krasnslobodtsev, A. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers. Biosensors 2017, 7, 7. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Peng, Y.; Zhao, S.; Xu, M.; Zhang, L.; Huang, Z.; Shi, J.; Yang, Y. Recent development of surface-enhanced Raman scattering for biosensing. J. Nanobiotechnol. 2023, 21, 149. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yu, T.; Zois, C.; Cheng, J.-X.; Tang, Y.; Harris, A.; Huang, W. Unveiling Cancer Metabolism through Spontaneous and Coherent Raman Spectroscopy and Stable Isotope Probing. Cancers 2021, 13, 1718. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Li, C.; Celentano, M.; Lindley, M.; O’Reilly, T.; Greer, A.; Huang, Y.; Hardacre, C.; Haigh, S.; Xu, Y. Surfactant-Free Synthesis of Spiky Hollow Ag–Au Nanostars with Chemically Exposed Surfaces for Enhanced Catalysis and Single-Particle SERS. JACS Au 2021, 2, 178–187. [Google Scholar] [CrossRef]
- Pei, Y.; Wang, Z.; Zong, S.; Cui, Y. Highly Sensitive SERS-Based Immunoassay with Simultaneous Utilization of Self-Assembled Substrates of Gold Nanostars and Aggregates of Gold Nanostars. J. Mater. Chem. B 2013, 1, 3992–3998. [Google Scholar]
- Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R.; Kornowski, A.; Weller, H.; Liz-Marzán, L. Tuning Size and Sensing Properties in Colloidal Gold Nanostars. Langmuir 2010, 26, 14943–14950. [Google Scholar] [CrossRef]
- Cheng, L.-C.; Huang, J.-H.; Chen, H.; Lai, T.-C.; Yang, K.-Y.; Liu, R.-S.; Hsiao, M.; Chen, C.-H.; Her, L.-J.; Tsai, D. Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J. Mater. Chem. 2012, 22, 2244–2253. [Google Scholar] [CrossRef]
- Šubr, M.; Procházka, M. Polarization-and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures. Nanomaterials 2018, 8, 418. [Google Scholar]
- Wang, Y.; Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L. Stabilization and Encapsulation of Gold Nanostars Mediated by Dithiols. Small 2015, 11, 4314–4320. [Google Scholar] [CrossRef]
- Liebig, F.; Henning, R.; Sarhan, R.; Prietzel, C.; Schmitt, C.; Bargheer, M.; Koetz, J. A Simple One-Step Procedure to Synthesise Gold Nanostars in Concentrated Aqueous Surfactant Solutions. RSC Adv. 2019, 9, 23633–23641. [Google Scholar] [CrossRef]
- Pham, T.; Vu, X.; Dien, N.; Trang, T.; Van Truong, N.; Thanh, T.; Tan, P.; Ca, N. The Structural Transition of Bimetallic Ag–Au from Core/Shell to Alloy and SERS Application. RSC Adv. 2020, 10, 24577–24594. [Google Scholar] [CrossRef] [PubMed]
- Sharaha, U.; Hania, D.; Lapidot, I.; Salman, A.; Huleihel, M. Early Detection of Pre-Cancerous and Cancerous Cells Using Raman Spectroscopy-Based Machine Learning. Cells 2023, 12, 1909. [Google Scholar] [CrossRef] [PubMed]
- Makki, A.; Massot, V.; Byrne, H.; Respaud, R.; Bertrand, D.; Mohammed, E.; Chourpa, I.; Bonnier, F. Understanding the discrimination and quantification of monoclonal antibodies preparations using Raman spectroscopy. J. Pharm. Biomed. Anal. 2021, 194, 113734. [Google Scholar] [CrossRef]
- Hernández, B.; Pfluger, F.; Adenier, A.; Kruglik, S.; Ghomi, M. Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. VIII. Amino Acids with Aromatic Side Chains: L-Phenylalanine, L-Tyrosine, and L-Tryptophan. J. Phys. Chem. B 2010, 114, 15319–15330. [Google Scholar]
- Ramirez-Perez, J.; Durigo, D. Surface-Enhanced Raman Spectroscopy (SERS) for characterization SARS-CoV-2. J. Saudi Chem. Soc. 2022, 26, 101531. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.; Peng, J.; Huang, B.; Deng, W.; Xie, W.; Luo, Z. Preparation of CuO Nanowires/Ag Composite Substrate and Study on SERS Activity. Plasmonics 2021, 16, 1059–1070. [Google Scholar]
- Kurouski, D.; Postiglione, T.; Deckert-Gaudig, T.; Deckert, V.; Lednev, I. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst 2013, 138, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Chatterley, A.; Laity, P.; Holland, C.; Weidner, T.; Woutersen, S.; Giubertoni, G. Broadband Multidimensional Spectroscopy Identifies the Amide II Vibrations in Silkworm Films. Molecules 2022, 27, 6275. [Google Scholar] [CrossRef] [PubMed]
- Notingher, I. Raman Spectroscopy Cell-based Biosensors. Sensors 2007, 7, 1343–1358. [Google Scholar] [CrossRef]
- Anastasopoulos, J.; Beobide, A.S.; Manikas, A.; Voyiatzis, G. Quantitative Surface-enhanced Resonance Raman Scattering Analysis of Methylene Blue Using Silver Colloid. J. Raman Spectrosc. 2017, 48, 1762–1770. [Google Scholar] [CrossRef]
- Tycova, A.; Kleparnik, K.; Foret, F. Bi-Ligand Modification of Nanoparticles: An Effective Tool for Surface-Enhanced Raman Spectrometry in Salinated Environments. Nanomaterials 2019, 9, 1259. [Google Scholar] [CrossRef]
- Castro, J.; López-Ramírez, M.; Arenas, J.; Otero, J. Surface-enhanced Raman Scattering of 3-mercaptopropionic Acid Adsorbed on a Colloidal Silver Surface. J. Raman Spectrosc. 2004, 35, 997–1000. [Google Scholar]
- Baldrich, E.; Laczka, O.; del Campo, F.; Pascual, F.M. Self-assembled monolayers as a base for immunofunctionalisation: Unequal performance for protein and bacteria detection. Anal. Bioanal. Chem. 2008, 390, 1557–1562. [Google Scholar] [CrossRef]
- Tien-Chun, T.; Chia-Wei, L.; Yi-Chen, W.; Ondevilla, A.; Osawa, M.; Hsien-Chang, C. In situ study of EDC/NHS immobilization on gold surface based on attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). Colloids Surf. B Biointerfaces 2019, 175, 300–305. [Google Scholar]
- Arenas, J.; Castro, J.; Otero, J.; Marcos, J. Study of interaction between aspartic acid and silver by surface-enhanced Raman scattering on H(2)O and D(2)O sols. Biopolymers 2001, 62, 241–248. [Google Scholar] [CrossRef]
- Madzharova, F.; Heiner, Z.; Gühlke, M.; Kneipp, J. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil. J. Phys. Chem. C Nanomater. Interfaces 2016, 120, 15415–15423. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Seki, M.; Okabe, H.; Matsuda, N.; Wu, D.-Y.; Futamata, M. Three distinct adsorbed states of adenine on gold nanoparticles depending on pH in aqueous solutions. Chem. Phys. Lett. 2022, 786, 139202. [Google Scholar] [CrossRef]
- Costas, C.; López-Puente, V.; Bodelón, G.; González-Bello, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators. ACS Nano 2015, 9, 5567–5576. [Google Scholar] [CrossRef]
- Pichardo-Molina, J.; Frausto-Reyes, C.; Barbosa-García, O.; Huerta-Franco, R.; González-Trujillo, J.; Ramírez-Alvarado, C.; Gutiérrez-Juárez, G.; Medina-Gutiérrez, C. Raman Spectroscopy and Multivariate Analysis of Serum Samples from Breast Cancer Patients. Lasers Med. Sci. 2007, 22, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Dingari, N.; Horowitz, G.; Kang, J.; Dasari, R. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation. PLoS ONE 2012, 7, e32406. [Google Scholar] [CrossRef]
- Wang, S.; Ye, D.; Wang, B.; Xie, C. The Expressions of Keratins and P63 in Primary Squamous Cell Carcinoma of the Thyroid Gland: An Application of Raman Spectroscopy. Onco. Targets. Ther. 2020, 13, 585–591. [Google Scholar] [CrossRef]
- Wiggins, T.; Kumar, S.; Markar, S.; Antonowicz, S.; Hanna, G. Tyrosine, Phenylalanine, and Tryptophan in Gastroesophageal Malignancy: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2015, 24, 32–38. [Google Scholar] [CrossRef]
- Rockberg, J.; Uhlen, M. Prediction of antibody response using recombinant human protein fragments as antigen. Protein Sci. 2009, 18, 2346–2355. [Google Scholar] [CrossRef] [PubMed]
- Madzharova, F.; Heiner, Z.; Kneipp, J. Surface Enhanced Hyper-Raman Scattering of the Amino Acids Tryptophan, Histidine, Phenylalanine, and Tyrosine. J. Phys. Chem. C 2017, 121, 1235–1242. [Google Scholar] [CrossRef]
- Anfossi, L.; Baggiani, C.; Giovannoli, C.; Giraudi, G. Homogeneous immunoassay based on gold nanoparticles and visible absorption detection. Anal. Bioanal. Chem. 2009, 394, 507–512. [Google Scholar] [CrossRef]
- Zhang, C.; Zhan, Y.; Wang, X.; Ming, Z.; Hong, Z. Hyper-Rayleigh scattering of protein-modified gold nanoparticles. Anal. Biochem. 2003, 320, 136–140. [Google Scholar]
- Pang, J.; Li, P.; He, H.; Xu, S.; Liu, Z. Molecularly Imprinted Polymers Outperform Lectin Counterparts and Enable More Precise Cancer Diagnosis. Chem. Sci. 2022, 13, 4589–4592. [Google Scholar] [CrossRef]
- Pettinato, G.; Coughlan, M.; Zhang, X.; Chen, L.; Khan, U.; Glyavina, M.; Sheil, C.; Upputuri, P.; Zakharov, Y.; Vitkin, E. Spectroscopic Label-Free Microscopy of Changes in Live Cell Chromatin and Biochemical Composition in Transplantable Organoids. Sci. Adv 2021, 7, eabj2800. [Google Scholar] [PubMed]
- Zhang, Y.; Cheng, M.; Wang, Y.; Zhang, J.; Hua, Z. A SERS Biosensor Regulated by Tilt Angle: An Immunochip for α-Fetoprotein. J. Mater. Sci. 2021, 56, 18248–18257. [Google Scholar] [CrossRef]
- Liu, J.; Geng, Q.; Geng, Z. A Route to the Colorimetric Detection of Alpha-Fetoprotein Based on a Smartphone. Micromachines 2024, 15, 1116. [Google Scholar] [CrossRef]
- Li, L.; Liu, C.; Cao, X.; Tan, L.; Lu, W. Multiplexing Determination of Cancer-Associated Biomarkers by Surface-Enhanced Raman Scattering Using Ordered Gold Nanohoneycomb Arrays. Bioanalysis 2017, 9, 1561–1572. [Google Scholar] [PubMed]
- Wu, Y.; Yi, R.; Zang, H.; Li, J.; Xu, R.; Zhao, F.; Wang, J.; Fu, C.; Chen, J. A ratiometric SERS sensor with one signal probe for ultrasensitive and quantitative monitoring of serum xanthine. Analyst 2023, 148, 5707–5713. [Google Scholar] [PubMed]
- Wang, S.; Qin, Y.; Zou, Z. Determination of Liver Cancer Biomarkers by Surface-Enhanced Raman Scattering Using Gold-Silica Nanoparticles. Anal. Lett. 2016, 49, 1209–1220. [Google Scholar]
- Zhang, Y.; Sun, H.; Gao, R.; Zhang, F.; Zhu, A.; Chen, L.; Wang, Y. Facile SERS-active chip (PS@Ag/SiO2/Ag) for the determination of HCC biomarker. Sens. Actuators B Chem. 2018, 272, 34–42. [Google Scholar] [CrossRef]
- Wu, M.; Hartanto, H.; Wu, S.; Jiang, T.; Wang, G.; Chen, T.-H. Visualizing alpha-fetoprotein level in undiluted serum based on microfluidic particle accumulation. Sens. Actuators B Chem. 2023, 390, 133963. [Google Scholar] [CrossRef]
- Becerril-Castro, I.; Calderon, I.; Pazos-Perez, N.; Guerrini, L.; Schulz, F.; Feliu, N.; Chakraborty, I.; Giannini, V.; Parak, W.; Alvarez-Puebla, R. Gold Nanostars: Synthesis, Optical and SERS Analytical Properties. Anal. Sens. 2022, 2, e202200005. [Google Scholar] [PubMed]
- García-Ramírez, J.; Castillo, M.; Santiago, E.; Torres, J.; Rodríguez, A.; Aguilar, E.; Hernández, I.; Dupont, P.; Zamora-Peredo, L. Detection of MB and BSA with Au–Ag Nanostar-Coated Microspheres. MRS Adv. 2025, 10, 972–977. [Google Scholar] [CrossRef]
Peak Position (cm−1) | Assignment |
---|---|
611 | ω ν(C–C), τ phenylalanine, protein |
728 | ω ν(C–S, C–C), protein, CH2 rocking, C–N (membrane phospholipid head) |
884 | ω backbone, proteins C–C skeletal |
1015 | S ν(C–C), symmetric ring breathing mode of phenylalanine |
1141 | M ν(C–N, C–C), skeletal |
1251 | S amide III |
1290 | S CH3CH2, τ of lipids, collagen, tryptophan |
1322 | S CH3CH2, γ of collagen and polynucleotide chain (DNA bases) |
1405 | COO- |
1468 | VS δ(CH2), lipids, ν(C–H), proteins (collagen) |
1570 | S DNA, adenine, guanine, C=C, δ(N–H), ν(C–N), amide II |
1600 | S ν(C=C), phenylalanine, tyrosine, amide I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ramírez, J.I.; Luna-Cervantes, M.; Izaguirre-Hernández, I.Y.; Hernández-Torres, J.; Juárez-Aguilar, E.; Thomas-Dupont, P.; Remes-Troche, J.M.; Zamora-Peredo, L. SERS-Based Immunoassay for α-Fetoprotein Biomarker Detection Using an Au-Ag Nanostars Platform. Biosensors 2025, 15, 632. https://doi.org/10.3390/bios15090632
García-Ramírez JI, Luna-Cervantes M, Izaguirre-Hernández IY, Hernández-Torres J, Juárez-Aguilar E, Thomas-Dupont P, Remes-Troche JM, Zamora-Peredo L. SERS-Based Immunoassay for α-Fetoprotein Biomarker Detection Using an Au-Ag Nanostars Platform. Biosensors. 2025; 15(9):632. https://doi.org/10.3390/bios15090632
Chicago/Turabian StyleGarcía-Ramírez, Josué Ismael, Marcos Luna-Cervantes, Irma Yadira Izaguirre-Hernández, Julián Hernández-Torres, Enrique Juárez-Aguilar, Pablo Thomas-Dupont, José María Remes-Troche, and Luis Zamora-Peredo. 2025. "SERS-Based Immunoassay for α-Fetoprotein Biomarker Detection Using an Au-Ag Nanostars Platform" Biosensors 15, no. 9: 632. https://doi.org/10.3390/bios15090632
APA StyleGarcía-Ramírez, J. I., Luna-Cervantes, M., Izaguirre-Hernández, I. Y., Hernández-Torres, J., Juárez-Aguilar, E., Thomas-Dupont, P., Remes-Troche, J. M., & Zamora-Peredo, L. (2025). SERS-Based Immunoassay for α-Fetoprotein Biomarker Detection Using an Au-Ag Nanostars Platform. Biosensors, 15(9), 632. https://doi.org/10.3390/bios15090632