Technological Advances and Medical Applications of Implantable Electronic Devices: From the Heart, Brain, and Skin to Gastrointestinal Organs
Abstract
1. Introduction
1.1. Advantages of Implantable Sensors over Wearable Sensors
1.2. Design Principles for Single Laboratory Fabrication
1.3. Overview of Current Implantable Electronic Device Technologies
Device Category Device Name/Description | Target Organ/Location Size/Dimensions Target Signals Materials | Clinical Status | Performance Metrics | References | |
---|---|---|---|---|---|
Cardiac Devices | Micra Leadless Pacemaker | Right ventricle, 25.9 × 6.7 mm, 2.0 g ECG, R-wave, Titanium, Nitinol | FDA approved (2016) | Battery: 12–17 years, Capture threshold: <1.25 V@0.24 ms, R-wave: 10.7 ± 5.0 mV | [31,32] |
S-ICD (Boston Scientific) | Subcutaneous 83 × 69 × 12.7 mm Surface ECG Titanium | FDA approved (2012) | Shock success: >98%; Battery: 7.5 years; Detection: 170–250 bpm | [33,34] | |
CardioMEMS HF System | Pulmonary artery 15 × 3.5 × 2 mm Pressure Nitinol, Fused silica | FDA approved (2014) | Accuracy: ±2 mmHg; Range: 0–50 mmHg; Wireless: 1.5 m | [35,36] | |
Implantable Loop Recorder (ICM) | Subcutaneous chest 44 × 7 × 4 mm ECG(long-term) Titanium, Polymer | FDA approved | Battery ~3 years; ECG storage ~59 min; AF detection sensitivity ≈ 95% (clinical performance overview). | [37] | |
Neural Interfaces | Utah Array | Motor cortex 4 × 4 mm, 96 channels Action potentials, Silicon, Parylene-C | Clinical trials | SNR: >5, Impedance: 30–70 kΩ, Bandwidth: 0.3–7.5 kHz | [38] |
Stentrode (Synchron) | Jugular vein to brain 8 mm diameter, 40 mm length ECoG Nitinol, Platinum | Clinical trials (SWITCH) | Channels: 16, Bandwidth: 0.1–10 kHz, 12-month safety | [39] | |
DBS Electrodes (Medtronic) | Subthalamic nucleus 1.27 mm diameter, 4 contacts LFP, Beta oscillations Platinum-Iridium | FDA approved | Frequency: 60–185 Hz, Voltage: 0–10.5 V, Pulse width: 60–450 μs | [40,41] | |
Neuralink N1 | Cerebral cortex 23 × 8 mm chip, 1024 channels Spike activity Flexible polymer threads | Clinical trial (PRIME) | Threads: 64 per chip, Bandwidth: 20 kHz, Wireless: 10 Mbps | [42] | |
Metabolic Sensors | Dexcom G7 CGM | Subcutaneous tissue 24 × 11 × 2.5 mm Interstitial glucose Polymer membrane, Enzyme | FDA approved (2022) | MARD: 8.2%, Lag: 3.5 min, Duration: 10 days, Range: 40–400 mg/dL | [43] |
Abbott Libre 3 | Subcutaneous arm 21 mm diameter × 2.9 mm Glucose Enzymatic sensor | FDA approved (2022) | MARD: 8.9%, Lag: 1.8 ± 4.8 min, Duration: 14 days | [44] | |
Eversense 365 | Subcutaneous upper arm 18.3 × 3.5 mm Glucose (fluorescence) Fluoropolymer, Hydrogel | FDA approved (2024) | MARD: 8.8%, Duration: 365 days, Calibration: 1/week | [45] | |
GI/Biliary Devices | Self-Expandable Metal Stent (Uncovered) | Bile duct 8–10 mm diameter, 40–80 mm length N/A (passive) Nitinol | Clinical use | Patency: 4–6 months, Migration: <5%, Occlusion: 20–30% | [46] |
Self-Expandable Metal Stent (Covered) | Bile duct 8–10 mm diameter, 40–80 mm length N/A (passive) Nitinol + polymer covering | Clinical use | Patency: 6–12 months; Migration: <10%; Occlusion: 10–20% | [47] | |
Magnetoelastic Sensor | Biliary stent surface 28 μm thickness Viscosity/Mass Metglas, PDMS, Ferrite | Research | SNR: 106, Detection: 17 cm distance, Sensitivity: 0.1% mass change | [18] | |
Wireless pH Sensor | Esophagus/Stomach 26 × 13 mm capsule pH, Temperature Silicon nanowire | Research/ FDA cleared | pH range: 0–14, Accuracy: ±0.1 pH, Battery: 48–96 h | [48] | |
Smart Biliary Stent | Bile duct 8–10 mm diameter Pressure, pH, Temperature Nitinol, Flexible sensors | Pre-clinical | Pressure: 0–50 mmHg, pH: 4–9, Wireless: 10 cm range | [49,50] |
2. Implantable Electronic Devices in the Cardiac Field
2.1. Electrophysiological Characteristics of the Heart and the Need for Implantable Devices
2.2. Evolution of Pacemakers
2.3. Evolution of Implantable Cardioverter-Defibrillators (ICDs)
2.4. Other Cardiac Implantable Electronic Devices
2.5. Quantitative Performance Metrics
3. Implantable Electronic Devices in Brain–Neural Interface Field
3.1. Importance of Brain–Machine Interfaces
3.2. Hierarchical Structure of Brain Signal Recording Technologies
3.3. Next-Generation Distributed and Multichannel Neural Interfaces
3.4. Technological Development for Improved Biocompatibility
3.5. Advances in Deep Brain Stimulation
3.6. Clinical Translation Pathways and Emerging Applications of Implantable Brain–Computer Interfaces
3.7. Integration of Wireless Technology
4. Skin-Implantable Electronic Devices
4.1. Various Applications of Skin-Implantable Devices
4.2. Drug Delivery Systems
4.3. Integrated Systems for Diabetes Management
4.4. Quantitative Evaluation of Device Performance
5. Expansion to Gastrointestinal Organs: Biliary Stents and Implantable Electronic Devices
5.1. Necessity and Challenges of Developing Gastrointestinal Implantable Electronic Devices
5.2. Clinical Importance of Bile Duct Cancer and Biliary Obstruction
5.3. Types and Development of Biliary Stents
5.4. Development Strategy for Implantable Electronic Devices for Biliary Stents
5.4.1. Current Research Trends
5.4.2. Pressure Sensor-Based Monitoring
5.4.3. pH Sensor-Based Monitoring
5.4.4. Biofilm Formation Inhibition
5.5. Preclinical Validation Methods
6. Key Challenges and Future Directions in Implantable Biosensor Technologies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICDs | implantable cardioverter-defibrillators |
ICM | implantable cardiac monitors |
EEG | electroencephalography |
ECoG | Electrocorticography |
ECG | Electrocardiogram |
LFPs | Local field potentials |
SNR | Signal-to-Noise Ratio |
DBS | Deep brain stimulation |
HCLS | Hybrid closed-loop systems |
CGM | Continuous glucose monitors |
AID | Automated insulin delivery |
PCL | polycaprolactone |
PLGA | poly(lactic-co-glycolic acid) |
PGA | Polyglycolic acid |
PDX | Poly(dioxanone) |
PDMS | Polydimethylsiloxane |
MARD | Mean Absolute Relative Difference |
References
- Zhou, X.; Wang, P.; Zhou, L.; Xun, P.; Lu, K. A survey of the security analysis of embedded devices. Sensors 2023, 23, 9221. [Google Scholar] [CrossRef]
- De Micco, L.; Vargas, F.L.; Fierens, P.I. A literature review on embedded systems. IEEE Lat. Am. Trans. 2019, 18, 188–205. [Google Scholar] [CrossRef]
- Arandia, N.; Garate, J.I.; Mabe, J. Embedded sensor systems in medical devices: Requisites and challenges ahead. Sensors 2022, 22, 9917. [Google Scholar] [CrossRef]
- Kawyanjali, K.; Vanitha, V.; Pandiyan, I.A.; Ramachandran, M.; Sivaj, C. A Review on Embedded System, Design and Simulation. Electr. Autom. Eng. 2022, 1, 54–60. [Google Scholar] [CrossRef]
- Ibrahim, A.; Klopocinska, A.; Horvat, K.; Abdel Hamid, Z. Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations. Polymers 2021, 13, 2869. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Carbon-based polymer nanocomposites for high-performance applications. Polymers 2020, 12, 872. [Google Scholar] [CrossRef]
- Jyoti, J.; Singh, B.P. A review on 3D graphene–carbon nanotube hybrid polymer nanocomposites. J. Mater. Sci. 2021, 56, 17411–17456. [Google Scholar] [CrossRef]
- Bi, S.; Wang, R.; Han, X.; Wang, Y.; Tan, D.; Shi, B.; Jiang, C.; He, Z.; Asare-Yeboah, K. Recent progress in electrohydrodynamic jet printing for printed electronics: From 0D to 3D materials. Coatings 2023, 13, 1150. [Google Scholar] [CrossRef]
- Rao, C.H.; Avinash, K.; Varaprasad, B.; Goel, S. A review on printed electronics with digital 3D printing: Fabrication techniques, materials, challenges and future opportunities. J. Electron. Mater. 2022, 51, 2747–2765. [Google Scholar] [CrossRef]
- Patil, A.S.; Tupe, U.J. Recent Trends in Platforms of Embedded Systems. Int. J. Creat. Res. Thoughts 2020, 8, 12–19. [Google Scholar]
- Zidar, J.; Matić, T.; Aleksi, I.; Hocenski, Ž. Dynamic voltage and frequency scaling as a method for reducing energy consumption in ultra-low-power embedded systems. Electronics 2024, 13, 826. [Google Scholar] [CrossRef]
- Pedram, M. Power optimization and management in embedded systems. In Proceedings of the 2001 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 30 January–2 February 2001; pp. 239–244. [Google Scholar]
- Zhang, Z.; Li, J. A review of artificial intelligence in embedded systems. Micromachines 2023, 14, 897. [Google Scholar] [CrossRef]
- Yue, X.; Li, H.; Meng, L. Ai-based prevention embedded system against COVID-19 in daily life. Procedia Comput. Sci. 2022, 202, 152–157. [Google Scholar] [CrossRef]
- Singh, K.; Jindal, S.K. Design of low cost IoT enabled embedded control system for COVID free smart home. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012058. [Google Scholar] [CrossRef]
- Maghded, H.S.; Ghafoor, K.Z.; Sadiq, A.S.; Curran, K.; Rawat, D.B.; Rabie, K. A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: Design study. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; pp. 180–187. [Google Scholar]
- Nandini, K.; Seshikala, G. Role of embedded computing systems in biomedical applications–opportunities and challenges. In Proceedings of the 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Bangalore, India, 19–20 August 2021; pp. 332–335. [Google Scholar]
- Green, S.R.; Gianchandani, Y.B. Wireless magnetoelastic monitoring of biliary stents. J. Microelectromech. Syst. 2008, 18, 64–78. [Google Scholar] [CrossRef]
- Srovnal, V. Using of embedded systems in biomedical applications. In Proceedings of the IFMBE Proceedings, Seoul, Republic of Korea, 20–22 April 2005; pp. 1727–1983. [Google Scholar]
- Ali, W.G.; Nagib, G. Embedded control design for insulin pump. Adv. Mater. Res. 2011, 201, 2399–2404. [Google Scholar] [CrossRef]
- Upadhyay, A.; Dhapola, A.S. Embedded systems and its application in medical field. Emerg. Trends Comput. Sci. Inf. 2015, 3. [Google Scholar] [CrossRef]
- Ullah, H.; Wahab, M.A.; Will, G.; Karim, M.R.; Pan, T.; Gao, M.; Lai, D.; Lin, Y.; Miraz, M.H. Recent advances in stretchable and wearable capacitive electrophysiological sensors for long-term health monitoring. Biosensors 2022, 12, 630. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhu, R.; Peng, I.; Xu, Z.; Jiang, Y. Wearable and Implantable Biosensors: Mechanisms and Applications for Closed-Loop Therapeutic Systems. J. Mater. Chem. B 2024, 12, 8577–8644. [Google Scholar] [CrossRef]
- Li, Q.; Wang, W.; Yin, H.; Zou, K.; Jiao, Y.; Zhang, Y. One-dimensional implantable sensors for accurately monitoring physiological and biochemical signals. Research 2024, 7, 507. [Google Scholar] [CrossRef]
- Seok, S. Polymer-based biocompatible packaging for implantable devices: Packaging method, materials, and reliability simulation. Micromachines 2021, 12, 1020. [Google Scholar] [CrossRef]
- Kakkar, V. An ultra low power system architecture for implantable medical devices. IEEE Access 2018, 7, 111160–111167. [Google Scholar] [CrossRef]
- Yang, S.Y.; Sencadas, V.; You, S.S.; Jia, N.Z.X.; Srinivasan, S.S.; Huang, H.W.; Ahmed, A.E.; Liang, J.Y.; Traverso, G. Powering implantable and ingestible electronics. Adv. Funct. Mater. 2021, 31, 2009289. [Google Scholar] [CrossRef]
- Bahru, R.; Hamzah, A.A.; Mohamed, M.A. Thermal management of wearable and implantable electronic healthcare devices: Perspective and measurement approach. Int. J. Energy Res. 2021, 45, 1517–1534. [Google Scholar] [CrossRef]
- Coucke, E.M.; Akbar, H.; Kahloon, A.; Lopez, P.P. Biliary Obstruction; StatPearls Publishing: Tampa, FL, USA, 2019. [Google Scholar]
- Cheung, K.-L.; Lai, E.C. Endoscopic stenting for malignant biliary obstruction. Arch. Surg. 1995, 130, 204–207. [Google Scholar] [CrossRef]
- Leal, M.A.; Sheldon, T.; Escalante, K.; Holm, M.; Galarneau, M.; Rosemas, S.; Stromberg, K.; Piccini, J.P. Device longevity of a leadless pacemaker family. Future Cardiol. 2025, 21, 753–758. [Google Scholar] [CrossRef]
- Stazi, F. Leadless pacemaker 5-year outcomes: Good news? Eur. Heart J. Suppl. 2025, 27, iii150–iii152. [Google Scholar] [CrossRef]
- Lloyd, M.S.; Brisben, A.J.; Reddy, V.Y.; Blomström-Lundqvist, C.; Boersma, L.V.; Bongiorni, M.G.; Burke, M.C.; Cantillon, D.J.; Doshi, R.; Friedman, P.A. Design and rationale of the MODULAR ATP global clinical trial: A novel intercommunicative leadless pacing system and the subcutaneous implantable cardioverter-defibrillator. Heart Rhythm O2 2023, 4, 448–456. [Google Scholar] [CrossRef]
- Lloyd, M.; Mont, L.; Amin, A.; Tolosana, J.; Marijon, E.; Epstein, L.; Callahan, T.; Aasbo, J.; Speakman, B.; Swackhamer, B. Spontaneous arrhythmic episodes in the study of a modular, communicative, leadless pacing-defibrillator system (Modular ATP trial). Europace 2025, 27, euaf085.590. [Google Scholar] [CrossRef]
- Störk, S.; Bernhardt, A.; Böhm, M.; Brachmann, J.; Dagres, N.; Frantz, S.; Hindricks, G.; Köhler, F.; Zeymer, U.; Rosenkranz, S. Pulmonary artery sensor system pressure monitoring to improve heart failure outcomes (PASSPORT-HF): Rationale and design of the PASSPORT-HF multicenter randomized clinical trial. Clin. Res. Cardiol. 2022, 111, 1245–1255. [Google Scholar] [CrossRef]
- Tolu-Akinnawo, O.; Akhtar, N.; Zalavadia, N.; Guglin, M.; Zalavadiya, N. CardioMEMS Heart Failure System: An Up-to-Date Review. Cureus 2025, 17, e77816. [Google Scholar] [CrossRef]
- Giancaterino, S.; Lupercio, F.; Nishimura, M.; Hsu, J.C. Current and future use of insertable cardiac monitors. JACC Clin. Electrophysiol. 2018, 4, 1383–1396. [Google Scholar] [CrossRef]
- Das, R.; Moradi, F.; Heidari, H. Biointegrated and wirelessly powered implantable brain devices: A review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 343–358. [Google Scholar] [CrossRef]
- Neely, R.M.; Piech, D.K.; Santacruz, S.R.; Maharbiz, M.M.; Carmena, J.M. Recent advances in neural dust: Towards a neural interface platform. Curr. Opin. Neurobiol. 2018, 50, 64–71. [Google Scholar] [CrossRef]
- Parastarfeizabadi, M.; Kouzani, A.Z. Advances in closed-loop deep brain stimulation devices. J. Neuroeng. Rehabil. 2017, 14, 79. [Google Scholar] [CrossRef]
- Neumann, W.J.; Gilron, R.; Little, S.; Tinkhauser, G. Adaptive deep brain stimulation: From experimental evidence toward practical implementation. Mov. Disord. 2023, 38, 937–948. [Google Scholar] [CrossRef]
- Mitchell, P.; Lee, S.C.; Yoo, P.E.; Morokoff, A.; Sharma, R.P.; Williams, D.L.; MacIsaac, C.; Howard, M.E.; Irving, L.; Vrljic, I. Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: The stentrode with thought-controlled digital switch (SWITCH) study. JAMA Neurol. 2023, 80, 270–278. [Google Scholar] [CrossRef]
- Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 2019, 21, e16194. [Google Scholar] [CrossRef]
- Garg, S.K.; Kipnes, M.; Castorino, K.; Bailey, T.S.; Akturk, H.K.; Welsh, J.B.; Christiansen, M.P.; Balo, A.K.; Brown, S.A.; Reid, J.L. Accuracy and safety of Dexcom G7 continuous glucose monitoring in adults with diabetes. Diabetes Technol. Ther. 2022, 24, 373–380. [Google Scholar] [CrossRef]
- Alva, S.; Brazg, R.; Castorino, K.; Kipnes, M.; Liljenquist, D.R.; Liu, H. Accuracy of the third generation of a 14-day continuous glucose monitoring system. Diabetes Ther. 2023, 14, 767–776. [Google Scholar] [CrossRef]
- Bailey, T.S.; Liljenquist, D.R.; Denham, D.S.; Brazg, R.L.; Ioacara, S.; Masciotti, J.; Ghosh-Dastidar, S.; Tweden, K.S.; Kaufman, F.R. Evaluation of Accuracy and Safety of the 365-Day Implantable Eversense Continuous Glucose Monitoring System: The ENHANCE Study. Diabetes Technol. Ther. 2025, 27, 592. [Google Scholar] [CrossRef]
- Moy, B.T.; Birk, J.W. An update to hepatobiliary stents. J. Clin. Transl. Hepatol. 2015, 3, 67. [Google Scholar] [CrossRef]
- Kim, C.; Han, S.; Kim, T.; Lee, S. Implantable pH sensing system using vertically stacked silicon nanowire arrays and body channel communication for gastroesophageal reflux monitoring. Sensors 2024, 24, 861. [Google Scholar] [CrossRef]
- Herbert, R.; Lim, H.-R.; Rigo, B.; Yeo, W.-H. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 2022, 8, eabm1175. [Google Scholar] [CrossRef]
- Bateman, A.; He, Y.; Cherono, C.; Lee, J.; Ghalichechian, N.; Yeo, W.-H. Implantable Membrane Sensors and Long-Range Wireless Electronics for Continuous Monitoring of Stent Edge Restenosis. ACS Appl. Mater. Interfaces 2025, 17, 42781–42790. [Google Scholar] [CrossRef] [PubMed]
- Afari, M.E.; Syed, W.; Tsao, L. Implantable devices for heart failure monitoring and therapy. Heart Fail. Rev. 2018, 23, 935–944. [Google Scholar] [CrossRef]
- Tan, T.C.; Sindone, A.P.; Denniss, A.R. Cardiac electronic implantable devices in the treatment of heart failure. Heart Lung Circ. 2012, 21, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Li, Z.; Zhou, Y.; He, Y.; Zhu, J. Computational diagnostic techniques for electrocardiogram signal analysis. Sensors 2020, 20, 6318. [Google Scholar] [CrossRef]
- Priest, B.T.; McDermott, J.S. Cardiac ion channels. Channels 2015, 9, 352–359. [Google Scholar] [CrossRef]
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J. The heart of the world. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef]
- Woods, B.; Hawkins, N.; Mealing, S.; Sutton, A.; Abraham, W.; Beshai, J.; Klein, H.; Sculpher, M.; Plummer, C.; Cowie, M. Individual patient data network meta-analysis of mortality effects of implantable cardiac devices. Heart 2015, 101, 1800–1806. [Google Scholar] [CrossRef]
- Mond, H.G.; Sloman, J.G.; Edwards, R.H. The first pacemaker. Pacing Clin. Electrophysiol. 1982, 5, 278–282. [Google Scholar] [CrossRef]
- Beck, H.; Boden, W.E.; Patibandla, S.; Kireyev, D.; Gupta, V.; Campagna, F.; Cain, M.E.; Marine, J.E. 50th Anniversary of the first successful permanent pacemaker implantation in the United States: Historical review and future directions. Am. J. Cardiol. 2010, 106, 810–818. [Google Scholar] [CrossRef]
- Mond, H.G.; Proclemer, A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: Calendar year 2009–a World Society of Arrhythmia’s project. Pacing Clin. Electrophysiol. 2011, 34, 1013–1027. [Google Scholar] [CrossRef]
- Gregoratos, G. Indications and recommendations for pacemaker therapy. Am. Fam. Physician 2005, 71, 1563–1570. [Google Scholar]
- Agarwal, S.; Shinde, R.K. Smart Pacemaker: A Review. Cureus 2022, 14, e30027. [Google Scholar] [CrossRef]
- Fuertes, B.; Toquero, J.; Arroyo-Espliguero, R.; Lozano, I.F. Pacemaker lead displacement: Mechanisms and management. Indian Pacing Electrophysiol. J. 2003, 3, 231. [Google Scholar]
- Choi, Y.S.; Yin, R.T.; Pfenniger, A.; Koo, J.; Avila, R.; Benjamin Lee, K.; Chen, S.W.; Lee, G.; Li, G.; Qiao, Y. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 2021, 39, 1228–1238. [Google Scholar] [CrossRef]
- Bhatia, N.; El-Chami, M. Leadless pacemakers: A contemporary review. J. Geriatr. Cardiol. JGC 2018, 15, 249. [Google Scholar] [CrossRef]
- Zhang, Y.; Rytkin, E.; Zeng, L.; Kim, J.U.; Tang, L.; Zhang, H.; Mikhailov, A.; Zhao, K.; Wang, Y.; Ding, L. Millimetre-scale bioresorbable optoelectronic systems for electrotherapy. Nature 2025, 640, 77–86. [Google Scholar] [CrossRef]
- Chieng, D.; Paul, V.; Denman, R. Current device therapies for sudden cardiac death prevention–the icd, subcutaneous icd and wearable icd. Heart Lung Circ. 2019, 28, 65–75. [Google Scholar] [CrossRef]
- Ezekowitz, J.A.; Rowe, B.H.; Dryden, D.M.; Hooton, N.; Vandermeer, B.; Spooner, C.; McAlister, F.A. Systematic review: Implantable cardioverter defibrillators for adults with left ventricular systolic dysfunction. Ann. Intern. Med. 2007, 147, 251–262. [Google Scholar] [CrossRef]
- Knight, B.P. Patient Education: Implantable Cardioverter-Defibrillators (Beyond the Basics). Uptodate. 2014. Available online: https://www.uptodate.com/contents/patient-education-implantable-cardioverter-defibrillators-beyond-the-basics (accessed on 17 August 2025).
- Eckert, M.; Jones, T. How does an implantable cardioverter defibrillator (ICD) affect the lives of patients and their families? Int. J. Nurs. Pract. 2002, 8, 152–157. [Google Scholar] [CrossRef]
- Gradaus, R.; Block, M.; Brachmann, J.; Breithardt, G.; Huber, H.G.; Jung, W.; Kranig, W.; Mletzko, R.U.; Schoels, W.; Seidl, K. Mortality, morbidity, and complications in 3,344 patients with implantable cardioverter defibrillators: Results from the German ICD Registry EURID. Pacing Clin. Electrophysiol. 2003, 26, 1511–1518. [Google Scholar] [CrossRef]
- Krahn, A.D.; Lee, D.S.; Birnie, D.; Healey, J.S.; Crystal, E.; Dorian, P.; Simpson, C.S.; Khaykin, Y.; Cameron, D.; Janmohamed, A. Predictors of short-term complications after implantable cardioverter-defibrillator replacement: Results from the Ontario ICD Database. Circ. Arrhythmia Electrophysiol. 2011, 4, 136–142. [Google Scholar] [CrossRef]
- Friedman, P.; Murgatroyd, F.; Boersma, L.V.; Manlucu, J.; O’Donnell, D.; Knight, B.P.; Clémenty, N.; Leclercq, C.; Amin, A.; Merkely, B.P. Efficacy and safety of an extravascular implantable cardioverter–defibrillator. N. Engl. J. Med. 2022, 387, 1292–1302. [Google Scholar] [CrossRef]
- Kaya, E.; Rassaf, T.; Wakili, R. Subcutaneous ICD: Current standards and future perspective. IJC Heart Vasc. 2019, 24, 100409. [Google Scholar] [CrossRef]
- Heywood, J.T.; Jermyn, R.; Shavelle, D.; Abraham, W.T.; Bhimaraj, A.; Bhatt, K.; Sheikh, F.; Eichorn, E.; Lamba, S.; Bharmi, R. Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS sensor. Circulation 2017, 135, 1509–1517. [Google Scholar] [CrossRef]
- Manyam, H.; Burri, H.; Casado-Arroyo, R.; Varma, N.; Lennerz, C.; Klug, D.; Carr-White, G.; Kolli, K.; Reyes, I.; Nabutovsky, Y. Smartphone-based cardiac implantable electronic device remote monitoring: Improved compliance and connectivity. Eur. Heart J.-Digit. Health 2023, 4, 43–52. [Google Scholar] [CrossRef]
- Oyunbaatar, N.-E.; Kim, D.-S.; Prasad, G.; Jeong, Y.-J.; Lee, D.-W. Self-rollable polymer stent integrated with wireless pressure sensor for real-time monitoring of cardiovascular pressure. Sens. Actuators A Phys. 2022, 346, 113869. [Google Scholar] [CrossRef]
- Oyunbaatar, N.-E.; Shanmugasundaram, A.; Kwon, K.; Lee, D.-W. Continuous monitoring of cardiovascular function with a smart stent incorporating a flexible and stretchable wireless pressure sensor. J. Micromech. Microeng. 2023, 33, 115001. [Google Scholar] [CrossRef]
- Knops, R.E.; Lloyd, M.S.; Roberts, P.R.; Wright, D.J.; Boersma, L.V.; Doshi, R.; Friedman, P.A.; Neuzil, P.; Blomstroem Lundqvist, M.C.; Bongiorni, M.G. A modular communicative leadless pacing-defibrillator system. N. Engl. J. Med. 2024, 391, 1402–1412. [Google Scholar] [CrossRef]
- Ung, H.; Baldassano, S.N.; Bink, H.; Krieger, A.M.; Williams, S.; Vitale, F.; Wu, C.; Freestone, D.; Nurse, E.; Leyde, K. Intracranial EEG fluctuates over months after implanting electrodes in human brain. J. Neural Eng. 2017, 14, 056011. [Google Scholar] [CrossRef]
- Sarica, C.; Iorio-Morin, C.; Aguirre-Padilla, D.H.; Najjar, A.; Paff, M.; Fomenko, A.; Yamamoto, K.; Zemmar, A.; Lipsman, N.; Ibrahim, G.M. Implantable pulse generators for deep brain stimulation: Challenges, complications, and strategies for practicality and longevity. Front. Hum. Neurosci. 2021, 15, 708481. [Google Scholar] [CrossRef]
- Kremen, V.; Brinkmann, B.H.; Kim, I.; Guragain, H.; Nasseri, M.; Magee, A.L.; Attia, T.P.; Nejedly, P.; Sladky, V.; Nelson, N. Integrating brain implants with local and distributed computing devices: A next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cajigas, I.; Davis, K.C.; Meschede-Krasa, B.; Prins, N.W.; Gallo, S.; Naeem, J.A.; Palermo, A.; Wilson, A.; Guerra, S.; Parks, B.A. Implantable brain–computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Commun. 2021, 3, fcab248. [Google Scholar] [CrossRef] [PubMed]
- Leuthardt, E.C.; Schalk, G.; Wolpaw, J.R.; Ojemann, J.G.; Moran, D.W. A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 2004, 1, 63. [Google Scholar] [CrossRef]
- Oswal, A.; Jha, A.; Neal, S.; Reid, A.; Bradbury, D.; Aston, P.; Limousin, P.; Foltynie, T.; Zrinzo, L.; Brown, P. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: A protocol and experimental validation. J. Neurosci. Methods 2016, 261, 29–46. [Google Scholar] [CrossRef]
- Graimann, B.; Townsend, G.; Huggins, J.; Schlögl, A.; Levine, S.; Pfurtscheller, G. A comparison between using ECoG and EEG for direct brain communication. In Proceedings of the 3rd European Medical & Biological Engineering Conference (EMBEC05), Prague, Czech Republic, 20–25 November 2005; Volume 11, p. 11. [Google Scholar]
- Noachtar, S.; Rémi, J. The role of EEG in epilepsy: A critical review. Epilepsy Behav. 2009, 15, 22–33. [Google Scholar] [CrossRef]
- Tabar, Y.R.; Mikkelsen, K.B.; Shenton, N.; Kappel, S.L.; Bertelsen, A.R.; Nikbakht, R.; Toft, H.O.; Henriksen, C.H.; Hemmsen, M.C.; Rank, M.L. At-home sleep monitoring using generic ear-EEG. Front. Neurosci. 2023, 17, 987578. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.A.; Szeri, A.J. Quantitative approximation of the cortical surface potential from EEG and ECoG measurements. IEEE Trans. Biomed. Eng. 2004, 51, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Mi, G.; Shi, D.; Bassous, N.; Hickey, D.; Webster, T.J. Nanotechnology and nanomaterials for improving neural interfaces. Adv. Funct. Mater. 2018, 28, 1700905. [Google Scholar] [CrossRef]
- Tahir, M.N.; Rashid, U. Wireless brain machine interface (bmi) system (review & concept). In Proceedings of the 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 14–15 September 2020; pp. 1–4. [Google Scholar]
- Kalcher, J.; Flotzinger, D.; Neuper, C.; Gölly, S.; Pfurtscheller, G. Graz brain-computer interface II: Towards communication between humans and computers based on online classification of three different EEG patterns. Med. Biol. Eng. Comput. 1996, 34, 382–388. [Google Scholar] [CrossRef]
- Engel, A.K.; Moll, C.K.; Fried, I.; Ojemann, G.A. Invasive recordings from the human brain: Clinical insights and beyond. Nat. Rev. Neurosci. 2005, 6, 35–47. [Google Scholar] [CrossRef]
- Jeong, J.; Heo, G.; Kwon, Y.W.; Chae, S.Y.; Kim, M.J.; Yu, K.J.; Shin, H.K.; Hong, S.W. Biomimetic Design of Biocompatible Neural Probes for Deep Brain Signal Monitoring and Stimulation: Super Static Interface for Immune Response-Enhanced Contact. Adv. Funct. Mater. 2025, 35, 2417727. [Google Scholar] [CrossRef]
- Ouyang, W.; Lu, W.; Zhang, Y.; Liu, Y.; Kim, J.U.; Shen, H.; Wu, Y.; Luan, H.; Kilner, K.; Lee, S.P. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 2023, 7, 1252–1269. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, M.; Vázquez-Guardado, A.; Wegener, A.J.; Grajales-Reyes, J.G.; Deng, Y.; Wang, T.; Avila, R.; Moreno, J.A.; Minkowicz, S. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 2021, 24, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Ling, W.; Chen, Y.; Li, C.; Huang, X. Construction of a flexible optogenetic device for multisite and multiregional optical stimulation through flexible µ-LED displays on the cerebral cortex. Small 2023, 19, 2302241. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.; Yu, J.; Ma, N.; Li, Y.; Wu, Z.; Liang, R.; Hao, Y.; Pan, H.; Liu, W.; Fu, B. Flexible electronics and materials for synchronized stimulation and monitoring in multi-encephalic regions. Adv. Funct. Mater. 2020, 30, 2002644. [Google Scholar] [CrossRef]
- Prochazka, A. Neurophysiology and neural engineering: A review. J. Neurophysiol. 2017, 118, 1292–1309. [Google Scholar] [CrossRef]
- Prasad, A.; Xue, Q.-S.; Sankar, V.; Nishida, T.; Shaw, G.; Streit, W.J.; Sanchez, J.C. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J. Neural Eng. 2012, 9, 056015. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V. Implantable devices: Issues and challenges. Electronics 2012, 2, 1–34. [Google Scholar] [CrossRef]
- Caldwell, R.; Sharma, R.; Takmakov, P.; Street, M.G.; Solzbacher, F.; Tathireddy, P.; Rieth, L. Neural electrode resilience against dielectric damage may be improved by use of highly doped silicon as a conductive material. J. Neurosci. Methods 2018, 293, 210–225. [Google Scholar] [CrossRef]
- Du, Z.J.; Kolarcik, C.L.; Kozai, T.D.; Luebben, S.D.; Sapp, S.A.; Zheng, X.S.; Nabity, J.A.; Cui, X.T. Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 2017, 53, 46–58. [Google Scholar] [CrossRef]
- Egert, D.; Pettibone, J.R.; Lemke, S.; Patel, P.R.; Caldwell, C.M.; Cai, D.; Ganguly, K.; Chestek, C.A.; Berke, J.D. Cellular-scale silicon probes for high-density, precisely localized neurophysiology. J. Neurophysiol. 2020, 124, 1578–1587. [Google Scholar] [CrossRef]
- Minev, I.R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E.M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347, 159–163. [Google Scholar] [CrossRef]
- Xia, M.; Agca, B.N.; Yoshida, T.; Choi, J.; Amjad, U.; Bose, K.; Keren, N.; Zukerman, S.; Cima, M.J.; Graybiel, A.M. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional probing of neurochemical activity in deep brain structures of rodents. Biosens. Bioelectron. 2023, 241, 115625. [Google Scholar] [CrossRef]
- Hong, G.; Yang, X.; Zhou, T.; Lieber, C.M. Mesh electronics: A new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol. 2018, 50, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Lau, K.S.K.; Singh, A.; Zhang, Y.X.; Taromsari, S.M.; Salari, M.; Naguib, H.E.; Morshead, C.M. Biodegradable stimulating electrodes for resident neural stem cell activation in vivo. Biomaterials 2025, 315, 122957. [Google Scholar] [CrossRef] [PubMed]
- Benabid, A.L. Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 2003, 13, 696–706. [Google Scholar] [CrossRef]
- Salanova, V. Deep brain stimulation for epilepsy. Epilepsy Behav. 2018, 88, 21–24. [Google Scholar] [CrossRef]
- Zhou, J.J.; Chen, T.; Farber, S.H.; Shetter, A.G.; Ponce, F.A. Open-loop deep brain stimulation for the treatment of epilepsy: A systematic review of clinical outcomes over the past decade (2008–present). Neurosurg. Focus 2018, 45, E5. [Google Scholar] [CrossRef]
- Kuo, C.-H.; White-Dzuro, G.A.; Ko, A.L. Approaches to closed-loop deep brain stimulation for movement disorders. Neurosurg. Focus 2018, 45, E2. [Google Scholar] [CrossRef]
- He, S.; Baig, F.; Mostofi, A.; Pogosyan, A.; Debarros, J.; Green, A.L.; Aziz, T.Z.; Pereira, E.; Brown, P.; Tan, H. Closed-loop deep brain stimulation for essential tremor based on thalamic local field potentials. Mov. Disord. 2021, 36, 863–873. [Google Scholar] [CrossRef]
- Ghasemi, P.; Sahraee, T.; Mohammadi, A. Closed-and open-loop deep brain stimulation: Methods, challenges, current and future aspects. J. Biomed. Phys. Eng. 2018, 8, 209. [Google Scholar] [CrossRef]
- Swinnen, B.E.; Hoy, C.W.; Little, S.J. Towards Adaptive Deep Brain Stimulation for Non-Motor Symptoms in Parkinson’s Disease? Mov. Disord. 2025. Online Version of Record before inclusion in an issue. [Google Scholar] [CrossRef]
- Kleeman, J. Elon Musk Put a Chip in This Paralysed Man’s Brain. Now He Can Move Things with His Mind. Should We Be Amazed—or Terrified. The Guardian. 2025. Available online: https://www.theguardian.com/science/2025/feb/08/elon-musk-chip-paralysed-man-noland-arbaugh-chip-brain-neuralink (accessed on 8 February 2025).
- Rubin, D.B.; Ajiboye, A.B.; Barefoot, L.; Bowker, M.; Cash, S.S.; Chen, D.; Donoghue, J.P.; Eskandar, E.N.; Friehs, G.; Grant, C. Interim safety profile from the feasibility study of the BrainGate neural interface system. Neurology 2023, 100, e1177–e1192. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Barbosa, A.I.; Rebelo, R.; Kwon, I.K.; Reis, R.L.; Correlo, V.M. Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- kumar, A.; Pillai, J. Implantable Drug Delivery Systems: An Overview. In Nanostructures for the Engineering of Cells, Tissues and Organs: From Design to Applications; Mozafari, M., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 473–511. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012, 2, 2. [Google Scholar] [CrossRef]
- Kim, S.; Malik, J.; Seo, J.M.; Cho, Y.M.; Bien, F. Subcutaneously implantable electromagnetic biosensor system for continuous glucose monitoring. Sci. Rep. 2022, 12, 17395. [Google Scholar] [CrossRef] [PubMed]
- Bisignani, A.; De Bonis, S.; Mancuso, L.; Ceravolo, G.; Bisignani, G. Implantable loop recorder in clinical practice. J. Arrhythmia 2019, 35, 25–32. [Google Scholar] [CrossRef]
- Giannini, O.; Mayr, M. Finger pricking. Lancet 2004, 364, 980. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Lei, Y. Microneedle-based glucose monitoring: A review from sampling methods to wearable biosensors. Biomater. Sci. 2023, 11, 5727–5757. [Google Scholar] [CrossRef]
- Adolfsson, P.; Hanas, R.; Zaharieva, D.P.; Dovc, K.; Jendle, J. Automated insulin delivery systems in pediatric type 1 diabetes: A narrative review. J. Diabetes Sci. Technol. 2024, 18, 1324–1333. [Google Scholar] [CrossRef]
- Mansour, M.; Darweesh, M.S.; Soltan, A. Wearable devices for glucose monitoring: A review of state-of-the-art technologies and emerging trends. Alex. Eng. J. 2024, 89, 224–243. [Google Scholar] [CrossRef]
- Boughton, C.K.; Hovorka, R. New closed-loop insulin systems. Diabetologia 2021, 64, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.D.; Lepore, G.; Battelino, T.; Arrieta, A.; Castañeda, J.; Grossman, B.; Shin, J.; Cohen, O. Real-world performance of the MiniMed™ 780G system: First report of outcomes from 4120 users. Diabetes Technol. Ther. 2022, 24, 113–119. [Google Scholar] [CrossRef]
- Forlenza, G.P.; DeSalvo, D.J.; Aleppo, G.; Wilmot, E.G.; Berget, C.; Huyett, L.M.; Hadjiyianni, I.; Méndez, J.J.; Conroy, L.R.; Ly, T.T. Real-world evidence of Omnipod® 5 automated insulin delivery system use in 69,902 people with type 1 diabetes. Diabetes Technol. Ther. 2024, 26, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Considine, E.G.; Sherr, J.L. Real-world evidence of automated insulin delivery system use. Diabetes Technol. Ther. 2024, 26, 53–65. [Google Scholar] [CrossRef]
- Reznik, Y.; Bonnemaison, E.; Fagherazzi, G.; Renard, E.; Hanaire, H.; Schaepelynck, P.; Mihaileanu, M.; Riveline, J.P. The use of an automated insulin delivery system is associated with a reduction in diabetes distress and improvement in quality of life in people with type 1 diabetes. Diabetes Obes. Metab. 2024, 26, 1962–1966. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Acevedo-Mendez, B.A.; Izard, S.; Myers, A.K. Differences in Glycemic Control for Inpatients with Type 1 Diabetes on Insulin Pump Versus Subcutaneous Insulin Therapy. J. Gen. Intern. Med. 2024, 39, 1895–1900. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee 7. diabetes technology: Standards of care in diabetes—2025. Diabetes Care 2025, 48, S146–S166. [Google Scholar] [CrossRef] [PubMed]
- Porat, D.; Vaynshtein, J.; Gibori, R.; Avramoff, O.; Shaked, G.; Dukhno, O.; Czeiger, D.; Sebbag, G.; Dahan, A. Stomach pH before vs. after different bariatric surgery procedures: Clinical implications for drug delivery. Eur. J. Pharm. Biopharm. 2021, 160, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, A.; Uomo, R.; Spagnuolo, G.; Paduano, S.; Cimino, R.; Valletta, R.; D’Antò, V. Effect of pH on in vitro biocompatibility of orthodontic miniscrew implants. Prog. Orthod. 2013, 14, 15. [Google Scholar] [CrossRef]
- Li, S.; Lu, D.; Li, S.; Liu, J.; Xu, Y.; Yan, Y.; Rodriguez, J.Z.; Bai, H.; Avila, R.; Kang, S. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. Sci. Adv. 2024, 10, eadj0268. [Google Scholar] [CrossRef]
- Hajer, J.; Novák, M.; Rosina, J. Wirelessly powered endoscopically implantable devices into the submucosa as the possible treatment of gastroesophageal reflux disease. Gastroenterol. Res. Pract. 2019, 2019, 7459457. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ramjeesingh, R.; Chaudhury, P.; Tam, V.C.; Roberge, D.; Lim, H.J.; Knox, J.J.; Asselah, J.; Doucette, S.; Chhiber, N.; Goodwin, R. A practical guide for the systemic treatment of biliary tract cancer in Canada. Curr. Oncol. 2023, 30, 7132–7150. [Google Scholar] [CrossRef]
- Tsung, C.; Quinn, P.L.; Ejaz, A. Management of intrahepatic cholangiocarcinoma: A narrative review. Cancers 2024, 16, 739. [Google Scholar] [CrossRef]
- Boulay, B.R.; Birg, A. Malignant biliary obstruction: From palliation to treatment. World J. Gastrointest. Oncol. 2016, 8, 498. [Google Scholar] [CrossRef]
- Ahn, S.; Lee, Y.-S.; Lim, K.S.; Lee, J.-L. Malignant biliary obstructions: Can we predict immediate postprocedural cholangitis after percutaneous biliary drainage? Support. Care Cancer 2013, 21, 2321–2326. [Google Scholar] [CrossRef] [PubMed]
- Moss, A.C.; Morris, E.; Leyden, J.; MacMathuna, P. Malignant distal biliary obstruction: A systematic review and meta-analysis of endoscopic and surgical bypass results. Cancer Treat. Rev. 2007, 33, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, A.R.; Kamarul Anuar, Q.Z.D.; Khalid, S.; Mokhtar, S. Acute cholangitis secondary to a clogged biliary stent: A review on the cause of clogging and the appropriate time of replacement. Case Rep. Gastroenterol. 2022, 16, 55–61. [Google Scholar] [CrossRef]
- Afshar, M.; Khanom, K.; Ma, Y.T.; Punia, P. Biliary stenting in advanced malignancy: An analysis of predictive factors for survival. Cancer Manag. Res. 2014, 6, 475–479. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kato, H.; Horiguchi, S.; Tsutsumi, K.; Saragai, Y.; Takada, S.; Mizukawa, S.; Muro, S.; Uchida, D.; Tomoda, T. Efficacy and safety of chemotherapy after endoscopic double stenting for malignant duodenal and biliary obstructions in patients with advanced pancreatic cancer: A single-institution retrospective analysis. BMC Gastroenterol. 2018, 18, 157. [Google Scholar] [CrossRef]
- Pu, L.Z.; de Moura, E.G.H.; Bernardo, W.M.; Baracat, F.I.; Mendonça, E.Q.; Kondo, A.; Luz, G.O.; Júnior, C.K.F.; de Almeida Artifon, E.L. Endoscopic stenting for inoperable malignant biliary obstruction: A systematic review and meta-analysis. World J. Gastroenterol. 2015, 21, 13374. [Google Scholar] [CrossRef]
- van Boeckel, P.G.; Steyerberg, E.W.; Vleggaar, F.P.; Groenen, M.J.; Witteman, B.J.; Weusten, B.L.; Geldof, H.; Tan, A.C.; Grubben, M.J.; Nicolai, J. Multicenter study evaluating factors for stent patency in patients with malignant biliary strictures: Development of a simple score model. J. Gastroenterol. 2011, 46, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Baillie, J. Indications for and Contraindications to ERCP. In Ercp; Elsevier: Amsterdam, The Netherlands, 2019; pp. 54–58.e1. [Google Scholar]
- Nakamura, T.; Hirai, R.; Kitagawa, M.; Takehira, Y.; Yamada, M.; Tamakoshi, K.; Kobayashi, Y.; Nakamura, H.; Kanamori, M. Treatment of common bile duct obstruction by pancreatic cancer using various stents: Single-center experience. Cardiovasc. Interv. Radiol. 2002, 25, 373–380. [Google Scholar] [CrossRef]
- Park, S.W.; Lee, S.S. Which are the most suitable stents for interventional endoscopic ultrasound? J. Clin. Med. 2020, 9, 3595. [Google Scholar] [CrossRef]
- Donelli, G.; Guaglianone, E.; Di Rosa, R.; Fiocca, F.; Basoli, A. Plastic biliary stent occlusion: Factors involved and possible preventive approaches. Clin. Med. Res. 2007, 5, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Han, S.Y.; Baek, D.; Kim, G.H.; Song, G.A.; Kim, D.U. Risk Factors for Early-and Late-Onset Cholecystitis after Y-Configured Metal Stent Placement in Patients with Malignant Hilar Biliary Obstruction: A Single-Center Study. J. Clin. Med. 2023, 12, 4354. [Google Scholar] [CrossRef]
- Lam, R.; Muniraj, T. Fully covered metal biliary stents: A review of the literature. World J. Gastroenterol. 2021, 27, 6357. [Google Scholar] [CrossRef]
- Haseeb, A.; Siddiqui, A.; Taylor, L.J.; Mills, A.; Kowalski, T.E.; Loren, D.E.; Dahmus, J.; Yalamanchili, S.; Cao, C.; Canakis, A. Use of fully covered self-expanding metal stents for benign biliary etiologies: A large multi-center experience. Minerva Gastroenterol. E Dietol. 2017, 64, 111–116. [Google Scholar] [CrossRef]
- Qin, W.-Y.; Li, J.-Z.; Peng, W.-P.; Zhang, M.-M.; Lao, B.; Hong, J.-M.; Li, L.-B. Covered and uncovered self-expandable metallic stents in the treatment of malignant biliary obstruction. Iran. Red Crescent Med. J. 2020, 22, 7. [Google Scholar] [CrossRef]
- Yang, K.; Sun, W.; Cui, L.; Zou, Y.; Wen, C.; Zeng, R. Advances in functional coatings on biliary stents. Regen. Biomater. 2024, 11, rbae001. [Google Scholar] [CrossRef] [PubMed]
- Mohan, B.P.; Canakis, A.; Khan, S.R.; Chandan, S.; Ponnada, S.; McDonough, S.; Adler, D.G. Drug Eluting Versus Covered Metal Stents in Malignant Biliary Strictures—Is There A Clinical Benefit?: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2021, 55, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Zhao, H.Q.; Liu, Q.; Fan, Z. A review on biodegradable biliary stents: Materials and future trends. Bioact. Mater. 2022, 17, 488–495. [Google Scholar] [CrossRef]
- Kim, J.H.; Ha, D.-H.; Han, E.S.; Choi, Y.; Koh, J.; Joo, I.; Kim, J.H.; Cho, D.-W.; Han, J.K. Feasibility and safety of a novel 3D-printed biodegradable biliary stent in an in vivo porcine model: A preliminary study. Sci. Rep. 2022, 12, 15875. [Google Scholar] [CrossRef]
- Chen, M.-H.; Liang, P.-C.; Chang, K.-C.; Huang, J.-Y.; Chang, Y.-T.; Chang, F.-Y.; Wong, J.-M.; Lin, F.-H. Prototype of biliary drug-eluting stent with photodynamic and chemotherapy using electrospinning. Biomed. Eng. OnLine 2014, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Green, S.R.; Kwon, R.S.; Elta, G.H.; Gianchandani, Y.B. In vivo and in situ evaluation of a wireless magnetoelastic sensor array for plastic biliary stent monitoring. Biomed. Microdevices 2013, 15, 509–517. [Google Scholar] [CrossRef]
- Naitoh, I.; Nakazawa, T.; Ban, T.; Okumura, F.; Hirano, A.; Takada, H.; Togawa, S.; Hayashi, K.; Miyabe, K.; Shimizu, S. 8-mm versus 10-mm diameter self-expandable metallic stent in bilateral endoscopic stent-in-stent deployment for malignant hilar biliary obstruction. J. Hepato-Biliary-Pancreat. Sci. 2015, 22, 396–401. [Google Scholar] [CrossRef]
- Lammer, J.; Flueckiger, F.; Hausegger, K.A.; Klein, G.E.; Aschauer, M. Biliary expandable metal stents. Semin. Interv. Radiol. 1991, 233–241. [Google Scholar] [CrossRef]
- Rege, R.V. Adverse effects of biliary obstruction: Implications for treatment of patients with obstructive jaundice. AJR. Am. J. Roentgenol. 1995, 164, 287–293. [Google Scholar] [CrossRef]
- Geerlings, S.Y.; Kostopoulos, I.; De Vos, W.M.; Belzer, C. Akkermansia muciniphila in the human gastrointestinal tract: When, where, and how? Microorganisms 2018, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Matton, A.P.; De Vries, Y.; Burlage, L.C.; Van Rijn, R.; Fujiyoshi, M.; De Meijer, V.E.; De Boer, M.T.; De Kleine, R.H.; Verkade, H.J.; Gouw, A.S. Biliary bicarbonate, pH, and glucose are suitable biomarkers of biliary viability during ex situ normothermic machine perfusion of human donor livers. Transplantation 2019, 103, 1405–1413. [Google Scholar] [CrossRef]
- Kellum, J.A.; Song, M.; Li, J. Science review: Extracellular acidosis and the immune response: Clinical and physiologic implications. Crit. Care 2004, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Sutor, D.J.; Wilkie, L.I. Diurnal variations in the pH of pathological gallbladder bile. Gut 1976, 17, 971–974. [Google Scholar] [CrossRef]
- Sung, J.; Leung, J.; Shaffer, E.; Lam, K.; Costerton, J. Bacterial biofilm, brown pigment stone and blockage of biliary stents. J. Gastroenterol. Hepatol. 1993, 8, 28–34. [Google Scholar] [CrossRef]
- Kuchumov, A.; Kamaltdinov, M.; Selyaninov, A.; Samartsev, V. Numerical simulation of biliary stent clogging. Ser. Biomech. 2019, 33, 3–15. [Google Scholar]
- Park, J.-S.; Jeong, S.; Kim, J.M.; Park, S.S.; Lee, D.H. Development of a swine benign biliary stricture model using endoscopic biliary radiofrequency ablation. J. Korean Med. Sci. 2016, 31, 1438–1444. [Google Scholar] [CrossRef]
- Zhou, T.; Hong, G.; Fu, T.-M.; Yang, X.; Schuhmann, T.G.; Viveros, R.D.; Lieber, C.M. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl. Acad. Sci. USA 2017, 114, 5894–5899. [Google Scholar] [CrossRef]
- Filho, G.; Júnior, C.; Spinelli, B.; Damasceno, I.; Fiuza, F.; Morya, E. All-Polymeric Electrode Based on PEDOT: PSS for In Vivo Neural Recording. Biosensors 2022, 12, 853. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Zhang, X.; Wang, Y.; Zhang, J.; Yan, J.; Li, J.; Zhang, Z.; Yin, H.; Wei, Q. Ultrasensitive silicon nanowire biosensor with modulated threshold voltages and ultra-small diameter for early kidney failure biomarker cystatin C. Biosensors 2023, 13, 645. [Google Scholar] [CrossRef]
- Hejazi, M.; Tong, W.; Ibbotson, M.R.; Prawer, S.; Garrett, D.J. Advances in carbon-based microfiber electrodes for neural interfacing. Front. Neurosci. 2021, 15, 658703. [Google Scholar] [CrossRef] [PubMed]
- De Waele, L.; Di Pietro, M.; Perilli, S.; Mantini, E.; Trevisan, G.; Simoncini, M.; Panella, M.; Betti, V.; Laffranchi, M.; Mantini, D. Aerosol Jet Printing for Neuroprosthetic Device Development. Bioengineering 2025, 12, 707. [Google Scholar] [CrossRef]
- Ranno, L.; Sia, J.X.B.; Dao, K.P.; Hu, J. Multi-material heterogeneous integration on a 3-D photonic-CMOS platform. Opt. Mater. Express 2023, 13, 2711–2725. [Google Scholar] [CrossRef]
- Weninger, D.; Serna, S.; Jain, A.; Kimerling, L.; Agarwal, A. High density vertical optical interconnects for passive assembly. Opt. Express 2023, 31, 2816–2832. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Patel, S.; Troop, L.; Guru, R.; Faist, N.; Bellott, B.J.; Esterlen, B.A. 3D printed model of extrahepatic biliary ducts for biliary stent testing. Materials 2020, 13, 4788. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Stevens, L.; Thompson, B.C.; Gilmore, K.J.; Gorkin, R., III; Stewart, E.M.; in het Panhuis, M.; Romero-Ortega, M.; Wallace, G.G. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 2015, 67, 264–273. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, Y.; Chen, Y.; Zhou, Q. Ultrasound-induced wireless energy harvesting: From materials strategies to functional applications. Nano Energy 2020, 77, 105131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ghannam, R.; Htet, K.O.; Liu, Y.; Law, M.k.; Roy, V.A.; Michel, B.; Imran, M.A.; Heidari, H. Self-Powered implantable medical devices: Photovoltaic energy harvesting review. Adv. Healthc. Mater. 2020, 9, 2000779. [Google Scholar] [CrossRef] [PubMed]
- Sobianin, I.; Psoma, S.D.; Tourlidakis, A. Recent advances in energy harvesting from the human body for biomedical applications. Energies 2022, 15, 7959. [Google Scholar] [CrossRef]
- Gerken, E.; König, A. Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping. Sensors 2025, 25, 3841. [Google Scholar] [CrossRef] [PubMed]
- Kobler, R.J.; Sburlea, A.I.; Mondini, V.; Müller-Putz, G.R. HEAR to remove pops and drifts: The high-variance electrode artifact removal (HEAR) algorithm. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 5150–5155. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Han, S.Y.; Kwon, Y.W. Technological Advances and Medical Applications of Implantable Electronic Devices: From the Heart, Brain, and Skin to Gastrointestinal Organs. Biosensors 2025, 15, 543. https://doi.org/10.3390/bios15080543
Lee J, Han SY, Kwon YW. Technological Advances and Medical Applications of Implantable Electronic Devices: From the Heart, Brain, and Skin to Gastrointestinal Organs. Biosensors. 2025; 15(8):543. https://doi.org/10.3390/bios15080543
Chicago/Turabian StyleLee, Jonghyun, Sung Yong Han, and Young Woo Kwon. 2025. "Technological Advances and Medical Applications of Implantable Electronic Devices: From the Heart, Brain, and Skin to Gastrointestinal Organs" Biosensors 15, no. 8: 543. https://doi.org/10.3390/bios15080543
APA StyleLee, J., Han, S. Y., & Kwon, Y. W. (2025). Technological Advances and Medical Applications of Implantable Electronic Devices: From the Heart, Brain, and Skin to Gastrointestinal Organs. Biosensors, 15(8), 543. https://doi.org/10.3390/bios15080543