Activation and Expansion of Human T-Cells Using Microfluidic Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Device Fabrication
2.2. Cell Lines and Culture
2.2.1. Jurkat Cell Line
2.2.2. Human T-Cell Isolation and Activation
2.2.3. Human T-Cell Activation and Proliferation Assay
2.2.4. Cell Culture in Microfluidic Devices
2.2.5. Cell Viability Assay
2.3. Image Analysis
T-Cell Number Estimation
2.4. Statistical Analysis
3. Results
3.1. Cell Culture Conditions Testing Inside Microfluidic Devices Using Leukemic Jurkat Cell Line
3.2. Activation of Human T-Cells
3.3. Proliferation and Monitoring of Human T-Cells
4. Discussion
4.1. Cell Culture Conditions Testing Inside Microfluidic Devices Using Leukemic Jurkat Cell Line
4.2. Activation of Human T-Cells
4.3. Proliferation and Monitoring of Human T-Cells
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Antigen-presenting cell |
CAR | Chimeric Antigen Receptor |
CD | Cluster of differentiation |
Con A | Concanavalin A |
COC | Cyclic olefin copolymer |
CTC | Circulatory tumor cells |
FBS | Fetal bovine serum |
IS | Immunological synapse |
PBMC | Peripheral blood mononuclear cells |
PBS | Phosphate-buffered saline |
PDMS | Polydimethylsiloxane |
Pen Strep | Penicillin streptomycin |
PI | Propidium iodide |
PHA | Phytohemagglutinin |
rh IL-2 | Recombinant human interleukin-2 |
RPMI | Roswell Park Memorial Institute Medium |
SEM | Scanning electron microscopy |
TIL | Thermal imaging layer |
References
- Wang, X.; Rivière, I. Clinical Manufacturing of CAR T Cells: Foundation of a Promising Therapy. Mol. Ther.Oncolytics 2016, 3, 16015. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Coppeta, J.R.; Rogers, H.B.; Isenberg, B.C.; Zhu, J.; Olalekan, S.A.; McKinnon, K.E.; Dokic, D.; Rashedi, A.S.; Haisenleder, D.J.; et al. A Microfluidic Culture Model of the Human Reproductive Tract and 28-Day Menstrual Cycle. Nat. Commun. 2017, 8, 14584. [Google Scholar] [CrossRef]
- Kumar, A.R.K.; Shou, Y.; Chan, B.; L., K.; Tay, A. Materials for Improving Immune Cell Transfection. Adv. Mater. 2021, 33, 2007421. [Google Scholar] [CrossRef]
- Elsemary, M.T.; Maritz, M.F.; Smith, L.E.; Thierry, B. Microfluidic Purification of T Lymphocytes Separated from Blood for Chimeric Antigen Receptor T-Cell Manufacturing. Cytotherapy 2019, 21, e4. [Google Scholar] [CrossRef]
- Yu, L.; Feng, R.; Zhu, L.; Hao, Q.; Chu, J.; Gu, Y.; Luo, Y.; Zhang, Z.; Chen, G.; Chen, H. Promoting the Activation of T Cells with Glycopolymer-Modified Dendritic Cells by Enhancing Cell Interactions. Sci. Adv. 2020, 6, eabb6595. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Gheibi, P.; Gao, Y.; Foster, E.; Son, K.J.; You, J.; Stybayeva, G.; Patel, D.; Revzin, A. Cell Biology Is Different in Small Volumes: Endogenous Signals Shape Phenotype of Primary Hepatocytes Cultured in Microfluidic Channels. Sci. Rep. 2016, 6, 33980. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The Present and Future Role of Microfluidics in Biomedical Research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M.T. Advantages and Challenges of Microfluidic Cell Culture in Polydimethylsiloxane Devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef]
- Diao, W.; Tong, X.; Yang, C.; Zhang, F.; Bao, C.; Chen, H.; Liu, L.; Li, M.; Ye, F.; Fan, Q.; et al. Behaviors of Glioblastoma Cells in in Vitro Microenvironments. Sci. Rep. 2019, 9, 85. [Google Scholar] [CrossRef]
- Sarioglu, A.F.; Aceto, N.; Kojic, N.; Donaldson, M.C.; Zeinali, M.; Hamza, B.; Engstrom, A.; Zhu, H.; Sundaresan, T.K.; Miyamoto, D.T.; et al. A Microfluidic Device for Label-Free, Physical Capture of Circulating Tumor Cell Clusters. Nat. Methods 2015, 12, 685–691. [Google Scholar] [CrossRef]
- Lou, C.; Yang, H.; Hou, Y.; Huang, H.; Qiu, J.; Wang, C.; Sang, Y.; Liu, H.; Han, L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. Adv. Mater. 2024, 36, 2307051. [Google Scholar] [CrossRef] [PubMed]
- Lecault, V.; VanInsberghe, M.; Sekulovic, S.; Knapp, D.J.H.F.; Wohrer, S.; Bowden, W.; Viel, F.; McLaughlin, T.; Jarandehei, A.; Miller, M.; et al. High-Throughput Analysis of Single Hematopoietic Stem Cell Proliferation in Microfluidic Cell Culture Arrays. Nat. Methods 2011, 8, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Riordon, J.; Sovilj, D.; Sanner, S.; Sinton, D.; Young, E.W.K. Deep Learning with Microfluidics for Biotechnology. Trends Biotechnol. 2019, 37, 310–324. [Google Scholar] [CrossRef]
- Manbachi, A.; Shrivastava, S.; Cioffi, M.; Chung, B.G.; Moretti, M.; Demirci, U.; Yliperttula, M.; Khademhosseini, A. Microcirculation within Grooved Substrates Regulates Cell Positioning and Cell Docking inside Microfluidic Channels. Lab A Chip 2008, 8, 747–754. [Google Scholar] [CrossRef]
- O’Connell, T.M.; King, D.; Dixit, C.K.; O’Connor, B.; Walls, D.; Ducrée, J. Sequential Glycan Profiling at Single Cell Level with the Microfluidic Lab-in-a-Trench Platform: A New Era in Experimental Cell Biology. Lab A Chip 2014, 14, 3629–3639. [Google Scholar] [CrossRef] [PubMed]
- Renner, K.; Bruss, C.; Farber, S. Monitoring Human T Cell Activation in the Context of Immunotherapeutic Approaches; University Hospital Regensburg: Regensburg, Germany, 2017. [Google Scholar]
- Bourguignon, N.; Olmos, C.M.; Sierra-Rodero, M.; Peñaherrera, A.; Rosero, G.; Pineda, P.; Vizuete, K.; Arroyo, C.R.; Cumbal, L.; Lasorsa, C.; et al. Accessible and Cost-Effective Method of PDMS Microdevices Fabrication Using a Reusable Photopolymer Mold. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1433–1442. [Google Scholar] [CrossRef]
- Olmos, C.; Peñaherera, A. Cost-Effective Fabrication of Photopolymer Molds with Multi-Level Microstructures for PDMS Microfluidic Device Manufacture. RSC Adv. 2020, 10, 4071–4079. [Google Scholar] [CrossRef]
- Novakovic, D.; Deduher, S.; Mahovic Poljacek, S. A Model for Improving the Flexographic Printing Plate Making Process. Teh. Vjesn. 2010, 17, 403–410. [Google Scholar]
- Miraclon. Flexcel-SRH-Datasheet-US.pdf. [Hoja de Datos]; Miraclon: Rochester, NY, USA, 2020. [Google Scholar]
- Olmos, C.M.; Vaca, A.; Rosero, G.; Peñaherrera, A.; Perez, C.; de Sá Carneiro, I.; Vizuete, K.; Arroyo, C.R.; Debut, A.; Pérez, M.S.; et al. Epoxy Resin Mold and PDMS Microfluidic Devices through Photopolymer Flexographic Printing Plate. Sens. Actuators B Chem. 2019, 288, 742–748. [Google Scholar] [CrossRef]
- Wlodkowic, D.; Skommer, J.; McGuinness, D.; Faley, S.; Kolch, W.; Darzynkiewicz, Z.; Cooper, J.M. Chip-Based Dynamic Real-Time Quantification of Drug-Induced Cytotoxicity in Human Tumor Cells. Anal. Chem. 2009, 81, 6952–6959. [Google Scholar] [CrossRef]
- Zaretsky, I.; Polonsky, M.; Shifrut, E.; Reich-Zeliger, S.; Antebi, Y.; Aidelberg, G.; Waysbort, N.; Friedman, N. Monitoring the Dynamics of Primary T Cell Activation and Differentiation Using Long Term Live Cell Imaging in Microwell Arrays. Lab A Chip 2012, 12, 5007–5015. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Li, A.W.; Briones, J.D.; Lu, J.; Walker, Q.; Martinez, R.; Hiraragi, H.; Boldajipour, B.A.; Sundar, P.; Potluri, S.; Lee, G.; et al. Engineering Potent Chimeric Antigen Receptor T Cells by Programming Signaling during T-Cell Activation. Sci. Rep. 2024, 14, 21331. [Google Scholar] [CrossRef]
- Zhang, D.K.Y.; Cheung, A.S.; Mooney, D.J. Activation and Expansion of Human T Cells Using Artificial Antigen-Presenting Cell Scaffolds. Nat. Protoc. 2020, 15, 773–798. [Google Scholar] [CrossRef]
- Lin, W.; Suo, Y.; Deng, Y.; Fan, Z.; Zheng, Y.; Wei, X.; Chu, Y. Morphological Change of CD4+ T Cell during Contact with DC Modulates T-Cell Activation by Accumulation of F-Actin in the Immunology Synapse. BMC Immunol. 2015, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Miltenyi Biotec. Productos T-Cell TransAct Humano. Bergisch Gladbach, Alemania. Available online: https://www.miltenyibiotec.com/US-en/products/t-cell-transact-human.html#130-111-160 (accessed on 21 April 2025).
- Thermo Fisher Scientific. T Cell Activation and Expansion. Available online: https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-isolation-and-expansion/cell-expansion.html (accessed on 21 April 2025).
- Di, M.; Long, J.B.; Isufi, I.; Foss, F.M.; Seropian, S.; Gross, C.P.; Huntington, S.F. Total Costs of Care during Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed/Refractory B Cell Non-Hodgkin Lymphoma: A Large Private Insurance Claim-Based Analysis. Blood 2022, 140, 10818–10819. [Google Scholar] [CrossRef]
- Cliff, E.R.S.; Kelkar, A.H.; Russler-Germain, D.A.; Tessema, F.A.; Raymakers, A.J.N.; Feldman, W.B.; Kesselheim, A.S. High Cost of Chimeric Antigen Receptor T-Cells: Challenges and Solutions. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e397912. [Google Scholar] [CrossRef]
Reagent | Characteristic | Activation Efficiency | Price (USD/mL) | References |
---|---|---|---|---|
Stim-R technology (Lyell Immunopharma, Seattle, WA, USA) | Synthetic cell biomimetic composed of lipid-coated silica micro-rods that emulate the physiological cell-like presentation of signal molecules to control T-cell properties | Enhanced potency Expansion Cytokine production Persistent cytotoxic function. Improved tumor control in vivo. | Not specified | [25] |
T Cell TransAct™, human | Used in clinical CAR-T cell manufacturing. This stimulation reagent is ready-to-use for in vitro activation and expansion of human T-cells. Its polymeric nanomatrix structure ensures gentle and efficient activation of resting T-cells from PBMCs and of enriched T-cell populations, while maintaining high viability. | Provides primary and co-stimulatory signals for optimized and efficient T-cell activation and expansion. | 1190 | [25,28] |
Synthetic antigen-presenting cells (APCs) | Silica microrods loaded with soluble mitogenic cues and coated with liposomes of defined compositions, to form supported lipid bilayers. | Enables several-fold higher polyclonal T-cell expansion and improved antigen-specific enrichment of rare T-cell subpopulations. | Not specified | [26] |
Dynabeads® Human T-Activator CD3/CD28 for T Cell Expansion | Beads are 4.5 μm superparamagnetic beads covalently coupled with an optimized combination of anti-human CD3 and anti-human CD28. | Expansion of the T-cells. | 477 | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñaherrera-Pazmiño, A.B.; Rosero, G.; Ruarte, D.; Pinter, J.; Vizuete, K.; Perez, M.; Follo, M.; Lerner, B.; Mertelsmann, R. Activation and Expansion of Human T-Cells Using Microfluidic Devices. Biosensors 2025, 15, 270. https://doi.org/10.3390/bios15050270
Peñaherrera-Pazmiño AB, Rosero G, Ruarte D, Pinter J, Vizuete K, Perez M, Follo M, Lerner B, Mertelsmann R. Activation and Expansion of Human T-Cells Using Microfluidic Devices. Biosensors. 2025; 15(5):270. https://doi.org/10.3390/bios15050270
Chicago/Turabian StylePeñaherrera-Pazmiño, Ana Belén, Gustavo Rosero, Dario Ruarte, Julia Pinter, Karla Vizuete, Maximiliano Perez, Marie Follo, Betiana Lerner, and Roland Mertelsmann. 2025. "Activation and Expansion of Human T-Cells Using Microfluidic Devices" Biosensors 15, no. 5: 270. https://doi.org/10.3390/bios15050270
APA StylePeñaherrera-Pazmiño, A. B., Rosero, G., Ruarte, D., Pinter, J., Vizuete, K., Perez, M., Follo, M., Lerner, B., & Mertelsmann, R. (2025). Activation and Expansion of Human T-Cells Using Microfluidic Devices. Biosensors, 15(5), 270. https://doi.org/10.3390/bios15050270